
ON LINEAR SYSTEMS WITH INTEGRAL

VALUED SOLUTIONS

I. HELLER

1* Introduction* We consider a system of linear equations and
inequalities in k variables

(1.1) Ax=b , x^>o ,

where the matrix A has r rows, k columns, and rank less than k.
Assuming the system consistent, the solution set is a convex poly-

hedron P in yfc-space. A solution x° that satisfies k independent relations
of (1.1) as equations, is a vertex of P, and conversely. Such solution
is generally called basic or extremal, and is equivalently defined by the
property, that the columns of A corresponding to nonzero coordinates
of xΰ are independent. Basic solutions are of particular interest in
problems where a linear functional is extremised over P, the extremum
then being assumed at a vertex or at all points of a positive dimensional
face F of P, that is, the convex hull of the vertices of F. In such
problems the interest is often restricted to the integral valued basic
solutions as the only ones that have meaning in the application. Now
given P, any vertex of P can appear as solution of an extremum pro-
blem for some linear functional, and a question of interest is: when, that
is for which systems (1.1), are all the vertices of P integral valued.

Directing the attention to the system

(1.2) Ax=b,

we may, slightly generalizing, respectively specializing, carry over the
definition and the question:

(1.3) DEFINITION. A solution xΰ of (1.2) is basic, when its nonzero co-
ordinates correspond to linearly independent columns of A.

(1.4) QUESTION. Which systems (1.2) have all their basic solutions
integral valued ?

Obviously (1.4) is not equivalent to the same question for systems
(1.1); the basic solutions of (1.2) contain those of (1.1); but they may
also contain others, namely such with negative integral coordinates.
Hence (1.4) asks more and will therefore yield a smaller family of
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systems as answer.
A further specialization in the same direction is obtained, when the

attention is restricted to the matrix A above and the question varied as
follows:

QUESTION. Wh.'ch matrices A have the property that

(1.5) whenever b is such that (1.2) has an integral solution (that is
whenever b belongs to the integral span of A), then all basic
solutions of (1.2) are integral?

The subject of this note is precisely the question above, which
will receive a partial answer.

We note first that (1.5) is equivalent to

(1.6) If a column of A is a linear combination of a set of independent
columns of A, then the coefficients in the combination are integers.

The proof is nearly obvious: If d is a column of A, d is certainly in
the integral span of A) hence, when A satisfies (1.5), the basic solutions
of Ax=d are integral, which is precisely (1.6). Conversely, if A satis-
fies (1.6), let a? be some (not necessarily basic) integral and y° an ar-
bitrary basic solution of (1.2); let B and C be the set of columns of A
corresponding to nonzero coordinates of x° and y° respectively, that is,

where L, M denote linear combinations. Extending C in A to a basis,
say C*, for the span of A, and substituting in L{B) for each column
of B its (certainly integral) representation in C*, yields an integral re-
presentation of b in C*, which representation, because of uniqueness,
is identical with M(C).

Next we observe that (1.6) is equivalent to

(1.7) THE DANTZING PROPERTY. If a column of A is a linear combi-
nation of a set of independent columns of A, then the coefficients
in the combination are 1, —1, or 0.

To see that (1.6) implies (1.7): a representation of a column d where a
column c enters with coefficient a φ 0, yields a representation of c where
d enters with coefficient 1/α.

After these remarks the question can be rephrased as: which
matrices A satisfy (1.7)?

Recent investigations on the subject comprise the following.
In the so-called Transportation Problem, there appears a matrix Df

which G. Dantzig [1] showed to have the property (1.7). This fact was
used by T. C. Koopmans and Dantzig to prove the existence of integral
solutions to the mentioned problem, and by Dantzig [1] to establish a
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simplified computational procedure for solving the problem.
The mentioned matrix D appears partitioned into an upper and a

lower submatrix, and the columns of D consist of all possible vectors
having a single 1 in each of the two submatrices .̂nd zeros everywhere
else. If ev denotes the ^th unit vector, then

(1.8) D={eί + ej} ( ΐ = l , 2, •••, m; j=m-\-l9 •••, m + w=r)

Later C. Tompkins and the author [2] showed the property (1.7) to
hold for a somewhat larger class of matrices:

If

u l f u 2 , •••, u m , v l 9 v 2 9 . - . , v n

is a set of linearly independent vectors in r-dimensional vector space
(rl>ra4-?ι), then the set

(1.9) T={±ui9 ±υJ9 ±(uί + vj), (%i-%4*), (VJ-VJ*)}

(i, i* = l, 2, ••-, ra; j9 j * = l, 2, •••, n)

has property (1.7).
Finally A. J. Hoffman and J. Krushall [5] showed property (1.7) to

hold for several classes of incidence matrices associated with partially
ordered sets.

The property (1.7) will be referred to as Dantzίg property through-
out this note. The term unimodular property has also been proposed
and used [5]. This term seems quite appropriate for the case of in-
cidence matrices, as in [5], where nonsingular submatrices then represent
unimodular transformations; in the general case it is the transition from
one basis in the matrix to another that is a unimodular transformation.

2. Unification of prior result. This is achieved by a few trivial
observations.

First, since the Dantzig property does not depend on the order in
which the columns of A are arranged, it is convenient to interpret A
simply as a set of vectors.

Second, the Dantzig Property is invariant under nonsingular linear
transformations, hence if A has the property, so does the image of A
under a nonsingular linear transformation.

Third, in (1.9) the partition of the set of vectors into two sets
{Ui} and {vj} is rather artificial. If, for instance, we substitute —w3

for vj9 (1.9) becomes

T={±Ui9 ±WJ9 ±{ut — Wj)9 (Ui — Ut*), (WJ* — WJ)}

which shows that T can be simply described by
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(2.1) T={±xu (Xi-x,)} (iφj\ i , i = l , 2, -. , r ) ,

or

(2.2) T={xt-xj} (iφy, ί, j = 0 , 1, .- . , r),

where xQ denotes the null vector, and x19 xi9 , xr are linearly indepen-
dent vectors.

In the last formulation T is the set of differences of the xt. Since
differences are invariant under translations, the xt in (2.2) may also be
specified as a set of r-f-1 vectors whose affine span (all linear combi-
nations with coefficients sum equal 1) is of dimension r; in other words,
the x% are the vertices of an r-simplex. This reduces the result (1.9) of
[2] to the simple statement:

(2.3) The set of edges (that is, one-dimensional faces, taken in both
orientations and interpreted as vectors) of a simplex has the
Dantzig property.

In this form the statement is nearly obvious. Clearly, a basis B
among the edges:

(i ) contains all the r 4-1 vertices (otherwise the vectors of B would
be among the edges of a lower-dimensional simplex, and hence
not a basis for the span of all edges),

(ii) is connected (otherwise the vectors of B would be among the
edges of two simplices of s and r + 1 — s vertices, so that
dim B <1 s — 1 -f r — s=r — 1),

(iii) is free of cycles (the vectors of a cycle being linearly dependent).
Hence B is a tree containing all vertices and r oriented segments. Any
edge not in B closes a chain in B, which proves the statement.

Using the statement (2.3) one can show the Dantzig property to
hold for a series of incidence matrices (incidence matrices are defined
here simply as having only O's and ± Γ s as entries), some of which can
be identified with matrices exhibited in [5]. Let E be Euclidean n-
space, S an ^-simplex in E, T the set of edges of S and B a maximal
independent subset of Γ, hence a basis in S. If B is taken as the basis
for the coordinate system, the representation of T is the set of columns
of an incidence matrix with Dantzig property.

It is worthwhile to follow this somewhat closer. Since choosing a
basis among the vectors of T amounts to choosing, in the net of verti-
ces and edges of S, a tree containing all n + 1 vertices and n oriented
segments, the construction leads to as many essentially different inci-
dence matrices as there are graphically different trees of n + 1 vertices
(note that permutation of columns or rows in a matrix preserves the
Dantzig property, so that matrices obtained from each other by such
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permutations may be considered as equivalent; by essentially different
we then mean not equivalent).

We point out two particular choices.
(i) The star consisting of all edges radiating from a given vertex

and oriented from this vertex to the remaining vertices. This
yields the set T of (2.1) with the xt as unit vectors,

(ii) The oriented chain obtained by numbering the vertices from 0
to n and taking the set of oriented edges

X I XQ , Qϋ I X\ , * , dθn 00 n —\

If these vectors are taken as basis in the listed order, then the repre-
sentation of all edges in this basis is the set of all columns that have
a consecutive string of Γs or ( — l)'s, and O's everywhere else. This is
a result of [5].

Obviously the transition from one basis to another is a unimodular
transformation.

3. Maximal Dantzig sets. Since with a set D each subset of D
has the Dantzig property, or briefly is a Dantzig set, the interest lies
in determining maximal Dantzig sets.

Obviously a maximal Dantzig set contains with each vector x also
— x. Further, it should contain, but we agree to exclude, the null
vector.

(3.1) A set T consisting of the edges of a simplex is a Dantzig set which
is maximal for its dimension {in the sense that there is no Dantzig
set of the same dimension properly containing T).

Proof. We have to show that when a vector x not belonging to T
is adjoined to Γ, the new set does not have the Dantzig property. In
the representation (2.1) with the xt as basis vectors, x will have at
least two coordinates of the same sign (both = 1 or both =—1), since
all other possibilities are already in T. Say

L(x,, •••, xn),

where L denotes linear combination. But then

x = ( x 1 — x2)-\-2x2 + L(x3, •••, x n ) ,

that is, the representation of x in the basis

X\ X i) X'2 j *β'ό i ' ' * j Xn

does not satisfy the Dantzig property, since the coefficient of x2 equals
2 ^ 0 , ± 1 ,
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The question whether every maximal Dantzig set is the set of edges
of a simplex will obtain a negative answer by an example. We first
note that in order to test whether a Dantzig set D can be extended to
contain an additional vector b without losing the Dantzig property, it
is sufficient to test the representation of b in every basis of D. That
is:

(3.2) Let D be a Dantzig set, b a vector not in D, and C the union of
D and {b}. Then C has the Dantzig property if and only if the
coordinates of b with respect to every basis in D consist of O's and
±Vs.

To see (indirectly) that the condition is sufficient, let d be a vector of
C, B a basis in C, and let the representation of d in B have a coeffi-
cient =£0, ± 1 . Then obviously dφb, b is in £>, and the coefficient of b
is not 0:

d=λ1b + lj)2+----hλnbn (ΛiT^O; some λtφ 0, ±1)

But then the representation of 6 in the basis {d, bi9 •••, bn} contradicts
the condition. This proves (3.2), since the necessity of the condition is
obvious.

Further we formulate a necessary consistency condition for the
Dantzig property which will be helpful in the sequel. Let 6 and d be
two vectors in a Dantzig set Z>, and C a basis in D. Comparing the
representations of b and d in C, we consider those vectors of C (if any)
that enter with nonzero coefficients in both representations; say these
are clf c2, , cs, so that

+ +βscs+ . d=γ1c1 + γ2c,+ -f γscs+

(βiφQφϊi- i = l , 2, . . . ,*)

Obviously βi^j^ΰ et=±l. However, we confirm that e t remains con-
stant, that is

(3.3) β^eTi ( i = l , 2, . . . , s )

where 6 = constant = ± 1 .

Proof (indirect). Assume

Replacing cλ by d yields a new basis in which b is represented by 6=
cZ-f 2c24 , contradicting the Dantzig Property. This proves (3.3), which
excludes " mixed incidences" (and permits to assign an "incidence
number" 0 , 1 , —1 to every pair of vectors, with respect to a given
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basis in D).

Finally we give the example:

(3.4) Let eιt e2, e3, eί be independent vectors and

A={±e1} ±e2, ±e-i, ±eί9 ±(e1 + e-s + e3 + e1) ,

Then A is a maximal Dantzig set which is not the set of edges of
a simplex.

To see that A has the Dantzig property, we note that the subset
A*, obtained from A by deleting ±(eι-\-eλ + e-i-\-eί), consists of (not all)
edges of the simplex S given by the vertices

Of 0χ, e.χy 6 3 , G± .

Hence A* is a Dantzig set. The deleted vector is represented with
coefficients 0, ± 1 in every basis of A*, as seen by direct verification.
By (3.2) this implies that A has the Dantzig property.

To see that A is maximal, assume a vector h can be adjoined to A
without disturbing the Dantzig property. If h is expressed in the basis
βi, en e-6j e±, then the nonzero coefficients are all equal, otherwise h
would have " mixed incidence " with d=e19+e2 + e d + eι in that basis and
contradict (3.3). This leaves for h the following possibilities:

±h=e1-hei + e3==d — ei and the equivalents.

However, each of these possibilities contradicts the Dantzig property,
since, after adequate choice of bases, we obtain:

βι + e 6=(eι + e2) + (e2 + e3) - 2e2

e2-\-ei=(eι-\- e.2) + (e14- β4) - 2eι

eλΛ-etΛ-e3=(eι + e±) + e.2 + (e34-ek) — 2e±.

Finally A has 18 elements and therefore is not the set of 20 edges
of a simplex (of dimension 4).

4. The two theorems in this section are prepared by the following
lemma:

(4.1) The image Π of a Dantzig set D under a projection, along a sub-
space N spanned by vectors of D, is a Dantzig set.
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Proof. Let D be in a vectorspace V, both of dimension n,

N the span of {dlf d,, •••, 4 } C A (k<^n; for k=n the lemma
is trivial),

M the range of the projection (some complement of N in V),
{b'l, b'2, •••, b's} a basis (for ilf) in Π (hence k-hs=n),
{bl9 δ2, •••, δs} some set of originals in D (that is b\ is image

of 60,
V an arbitrary vector in U,
b an original of br in Z), and

Clearly the set 5 = 1 ^ , d2, •••, dA., δj, δ2, •••, δs} is a basis (for V) in D
(a nontrivial representation of o could not have all its nonzero coefficients
attached to the dt alone, since these are independent; on the other
hand, nonzero coefficients of the bt would imply dependence for the δί).
Therefore δ is representable in B:

b=γιdι+- +γA + β1b, 4- +β8b8 ,

where all coefficients, and hence in particular the βu are 0, ± 1 , which
proves the lemma.

(4.2) THEOREM. A Dantzίg set of dimension n contains at most n(n
elements (not counting the nullvector); that is, if it contains

elements, then it is maximal.

The proof is by induction on the dimension n. For n=l the theorem
is obvious. Assuming it holds for dimensions < n, we prove it to hold
for n(n^> 2).

Let D be a Dantzig set of dimension n^>2 containing at least
n{n-\~l) elements. We may assume that D contains with each vector also
its negative (otherwise we extend D to that effect, since adjoining the
negatives does not remove the Dantzig property).

After choosing a basis B= [b19 δ2, , bn} in D, D is projected along
bλ on the span of {δ,, δ3, •••, bn}. Then the image D' of D is of dimen-
sion <Ln — l, has the Dantzig property (by Lemma 4.1), and, excluding
the nullvector, has at most n(n — l) elements (by the induction's assump-
tion that the theorem holds for dimensions <^ ri).

We prove that D has at most, and hence exactly, n(n + l) elements,
in showing that the number of nonzero elements cannot be reduced, by
the projection, by more than 2n=(n + l)n — n(n — l); this will be shown
in two steps, namely:
(i) that a vector in Ό' is image of at most two originals in D, and
(ii) that the set of nonzero vectors with double originals consists of a

linearly independent set and its negatives.
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If distinct vectors x and y of D have the same nonzero image,
then, with respect to the basis By they coincide ,in all but their first
coordinates. Further they cannot both have nonzero values for the first
coordinate, since these would then have to be 1 and —1 and contradict
the consistency condition (3.3). Therefore the first coordinate of the
two vectors is 0 and ± 1 respectively. This implies that no three vec-
tors can have the same nonzero image. If the image is 0, the only two
originals are ±bλ. Hence

(4.3) a vector x' in Dr is the image of at most two vectors x and y in
D; if xφy and χ'=y'φθ, then x=x' and y=x'±bτ (if α?'=0,
then x=±blf y=zfb1)

Denoting by D* the set obtained from Π after removal of the null
vector, let 2£* be the set of vectors in D* that have double originals in
D. Since D contains with each vector also its negative, so does JS1*.
Furthermore E* is also in D. If xr is in E*;, then its originals are

x' and y=x'-\-ebί (e=d=l)

while the originals of —x' are —xf and —y=—x/ — ebι.
From the pair — x', x' we choose one vector, call it d! so, that its orig-
inals are d' and d=d' + bι. Making this choice from each such pair in
E*, we obtain the set F*={d'l9 d'2, •••, d's}, where certainly d\Φ ±d'j for
iφj, and d\ and di=d/

i + b1 are the originals of d\ in D.

An indirect proof will establish that the vectors of ί1* are linearly
independent. Obviously a linear relation between them" must involve
at least 3 vectors, say the first 3, with nonzero coefficients (which im-
plies in particular that the assertion is true when F* contains less than
3 vectors). We consider separately each of the two following possibilities

( i ) d ' 1 = ± ( d ' 2 + d'fi) + L(<%, •••, d't)

(ii) dl^di — dl + Lid't, •••, d{),

where L denotes a linear combination with nonzero coefficients through-
out. We assume to have chosen, among all existing linear relations, the
one that involves the smallest number of vectors. Then the vectors ap-
pearing on the right hand side, that is d'2, d'3y d{, •••, d[, are linearly
independent. Therefore each of the following two sets in D is also
linearly independent:

(a) blf d2, d3, d'4, dl, - , d[

(b) blf d'«, d 3 , d'49 d'δ, •••, d\ .
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We now obtain,

i n c a s e ( i ) : d [ = ± ( - 2 b 1 + di + d3) + L(d'4, •••, d't)

i n c a s e ( i i ) : d 1 = 2 b ι - h d /

2 - d 3 + L(d^ •••, d ' t ) ,

hence in either case a contradiction to the Dantzig property (note that
all vectors are in D).

This completes the proof that the vectors of F¥ are linearly indepen-
dent, which implies, because of dimD* <I?z--l, that F* contains at
most n — 1 vectors. Hence £** contains at most 2(n — l) vectors.

Now, since E* consists of all nonnull vectors with double originals
and the null vector has two originals (namely ±b1), it follows that the
number of vectors in D exceeds the number of vectors in Z>* by at
most 2n. Since Z>*, as a Dantzig set of dimension <Ln — l, contains at
most n(n — l) vectors, it follows that D contains at most n(n — l) + 2n=
n(n hl) vectors.

This completes the proof of Theorem (4.2), and, in addition yields
the following conclusions, which will be used in the proof of next
theorem.

From the assumption that D contains at least n(n + l) vectors it
now follows that

(4.4) D contains exactly n(n + l) vectors
D* contains exactly n(n — l) vectors
F* contains exactly n — 1 vectors,

and hence

(4.5) F*={d[, d'2y •••, d'n-J is a basis in £)*.

(4.6) THEOREM. // a Dantzig set D of dimension n contains n{n-\-l)
vectors {not counting the null vector), then D is the set of edges of
an n-simplex.

Proof. We will construct a basic H= {hlf h2, , hn) in Z), such
that every element of D which is not in H, is a difference of two ele-
ments of H. The mechanism that governs the construction is based on
the obvious geometrical picture (assuming the theorem true).

We take over the projection, notation and facts from the proof of
theorem (4.2); the assumptions made in that proof contain the assump-
tions of the present theorem as special case (note, that the induction's
hypothesis made there, is now a true statement).

For ease of writing we renumber the vectors of F* in (4.5) to

(4.7) F*={d*, d'3f •••, d'n} ,
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and first show that

(4.8) the representation of an element of D* in the basis F* has at
most two nonzero coefficients.

Proof (indirect). Let x' be in /)*, and

•••, d'n); e^il.

We distinguish whether x' is, or is not, in D.
(i) x' is in D: We use the fact, that two of the ê  are equal, say

e 2 = e 3 = l (if = — 1, we take —x'), and consider the basis in D (see page
1356):

bl9 d21 d3, d'4, d[, , d'n .

Then

which contradicts the Dantzig property.
(ii) x' is not in D: Then its original x=x'-\-eb1 ( e = ± l ) is in Dy

and we distinguish whether all three et are equal or not. In the first
case we may assume all e ^ l (otherwise we take —a?), and obtain, after
adequate choice of basis

where e — 3= — 2 or—4 contradicts the Dantzig property. In the second
case, e and one of the el9 say e2, have opposite sign. Then a contradic-
tion is obtained by the coefficient of bλ in the representation

x=(e — e.,)^ 4- e2dz 4- eβl + e±d{ + L .

This completes the proof of (4.8), and furthermore establishes the more
specific assertions (i) and (ii) of the following statement:

(4.9) (i ) If x' of (Z)*-E*) is in Ό, then x'=d'μ-d'y,
(ii) If y' of (D*-J5*) is not in D, then ±y'=d'^ + d'v,
(iii) Conversely, for any two distinct d^ and d'y of ί1*, either ±x'

of (i) or ±yr of (ii), but not both, are in (D* — E*).

Part (iii) follows from the fact that D* has n(n — l) elements and the
observation that the sum and the difference of d'μ and d'v cannot both
belong to the Dantzig set JD* because of the consistency condition (3.3).

By means of (4.9) F* can be divided in (at most two) classes, by
putting two distinct vectors of F* into the same class when their dif-
ference is in D\
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We first prove that this is an equivalence relation. Reflexivity and
symmetry are obvious. Transitivity is shown indirectly. Let only the
first two of the following three differences be in Π

d'i-d'j, dj-d'k, d'k-d't .

Then in particular d'k — d\φo, and hence by (4.9 iii), dk + dl=dr is in D*.
But then

d'=(d't-d'j)-(dj-d'k) + 2dj

violates the Dantzig property of D*.
To see that there are at most two classes, we assume that d\, d),

d'k belong to three distinct classes, which by (4.9 iii) implies that the
sum of any two of the three vectors is in D*. Then the representation

(d\ + d'k)=(d\ 4- d'j) + (d'j + dk) - 2d]

violates the Dantzig property of JD*. This establishes that F * decom-
poses in two classes

I = { d ' 2 , d'3f •••, d'k}

ΐ l = { d k + u dk+2f •••, dn}

(where II may be empty), such that

(4.10) ( i ) the difference of two distinct vectors of the same class is

in D*
(ii) the (positive and negative) sum of two vectors of distinct

classes is in D*
(iii) the representations (i) and (ii) comprise all vectors of Z)*

which are not in E*

We are now ready to construct the basis H={hιy hi9 •••, hn} of Z>,
setting

(4.11) h^by] h^d'. + h (2<:ί^k); h,= -d) (k < i <n) .

That hι=df

i

Jtbι=dί is in D, follows from the construction of the d\ on

page 1359.
To verify that every x of D is represented by either x=±hv or

x=zh^ — hv we consider the projection xf of x, so that x=x' + abι where
a may be one of the values 0, 1, — 1. We may disregard a=—l (which
amounts to consider only one vector of each pair x, —x), and distinguish
the following cases:

(a) x'=o

(b) χr φ o and α=0
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(c) xr -φo and a=l .

(a) implies x=b1=h1.
(b) implies x=x', that is, x is in D*; we distinguish (bl) x is in 2?*,

(b2) x is in D*-E*.
(bl) implies ±x=d'v; hence, according to whether d'v belongs to class I

or II, we have either ±x=hv — b1=h^ — hι or ±x=— hv.
(b2) and (4.9 i) imply x=d'μ.— d[, where the last two vectors are in the

same class because of (4.10); hence either x=hiλ~hv or x= — (hfX—h^).
(c) implies x=x/ + b1; we distinguish: (cl) x' is in 2?*, (c2) x' is in

D*-E* and in D, (c3) x' is in Z ) * - ^ 1 * and is not in D.
(cl) implies ^ = ± ^ + 6^ the negative sign would yield mixed incidence

of x and dv=d'v-]-b1 and hence contradict (3.3); this leaves only
x=d'v + bι; hence either x=hv or x==b1 — hv=h1 — hv.

(c2) cannot occur, since x' Φ x and x' in D imply that x' has two dis-
tinct originals in D and therefore x' is in E1*.

(c3), (4.9 ii) and (4.10) imply # ' = ±(d;-f<ζ); hence # = ±{d'i-\-d'j)-\-bι\ the
negative sign would yield x=— di — dj-hSbt violating the Dantzig
property. This leaves only

This completes the proof of Theorem (4.6).

5 Open questions. While the set of edges of a simplex, which we
may briefly call "difference s e t " , is maximal in the sense of statement
(3.1), it is, by Theorems (4.2) and (4.6), also maximal in the sense that
it contains the largest number of elements for its dimension. Obviously
the class of all difference sets of a given dimension can be obtained
from a single one of its members by nonsingular linear transformations,
and we may consider the set

(5.1) jθ={e4 — βj} (iφj: i9 j=-0, 1, •••, n; e0=o; e z =ΐth unit vector)

as a canonical representative of the class.
In regard to computational aspects we refer to [3].
For dimensions n I> 4 the example (3.4) establishes the existence of

other maximal Dantzig sets of necessarily less than n(n + l) elements.
A classification of these sets has not been attempted, yet would certain-
ly constitute the next natural step. The problem may be formulated as
follows: Determine, for each dimension n, a complete (obviously finite)
set of representatives Dlf Dz, •••, Dk (k=k(n)) of maximal Dantzig sets,
in the sense that

(i) two distinct Dt are not related by a linear transformation
(ii) every maximal Dantzig set of dimension n is the image of some Όi

under a linear transformation.
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6, Interpretations* Geometrically, the statement (3.1) and Theorem
(4.6) solve the following problem: Given a set S of n(n + l)j2 (free)
vectors φ o in Euclidean space, such that S is of dimension n, and
does not contain the negative of any of its vectors; what is a necessary
and sufficient condition that S may be so arranged in space as to form
a simplex? Statement (3.1) gives the Dantzig property as obvious ne-
cessary condition, while Theorem (4.6) proves that it is also sufficient.

The considerations of this note were carried on in vector space in
order to assure the benefit of intuition from the geometric picture. It
is clear, however, that the study of Dantzig sets belongs properly to
group theory; from the number field underlying the vector space only
the integers are used, which amounts to actually restricting the con-
siderations to an Abelian group. To interpret the results in terms of
this structure, let G be a free Abelian group, and S a set of rank n,
in G. The Dantzig property for £ is, by § 1, precisely the condition
that every set of n linearly independent elements of S span the same
group as S. In particular; if S spans G, the Dantzig property means
that every set of n linearly independent elements of S is a basis for
G. The translation of statement (3.1) and Theorems (4.2) and (4.6) is
immediate (compare [4]).
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