CHARACTERISTIC DIRECTION FOR EQUATIONS OF MOTION OF NON-NEWTONIAN FLUIDS

J. L. Ericksen

1. Introduction. According to the Reiner-Rivlin theory of nonNewtonian fluids, ${ }^{1}$ the stress tensor t_{j}^{i} is given in terms of the rate of strain tensor d_{j}^{i} by relations of the form

$$
\begin{equation*}
t_{j}^{i}=-p \delta_{j}^{i}+\mathscr{F}_{1} d_{j}^{i}+\mathscr{F}_{2} d_{k}^{i} d_{j}^{k}, \tag{1}
\end{equation*}
$$

where p is an arbitrary hydrostatic pressure, the \mathscr{F} 's are essentially arbitrary differentiable functions of

$$
\begin{equation*}
\mathrm{II}=-\frac{1}{2} d_{j}^{i} d_{i}^{j}, \quad \mathrm{III}=\operatorname{det} d_{j}^{i} \tag{2}
\end{equation*}
$$

and d_{j}^{i} satisfies the incompressibility condition

$$
\begin{equation*}
d_{i}^{i}=0 . \tag{3}
\end{equation*}
$$

The tensors d_{j}^{i} and t_{j}^{i} are both symmetric.
It is known [2] that the characteristic directions of the corresponding equations of motion are the unit vectors ν_{i} satisfying

$$
\begin{equation*}
F\left(\nu_{i}\right) \equiv 2 U^{2}+2 U U_{i}^{i}+\left(U_{i}^{i}\right)^{2}-U_{j}^{i} U_{i}^{j}=0, \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
U= & \mathscr{F}_{1}+\mathscr{F}_{2} \mu^{i} \nu_{i}, \\
U_{j}^{i}= & \mathscr{F}_{2}\left(d_{j}^{i}-\nu^{i} \mu_{j}\right)+2\left(\mu^{i}-\nu^{i} \mu_{k} \nu^{k}\right)\left(\mu^{m} d_{m j} \frac{\partial \mathscr{F}_{1}}{\text { IIII }}-\mu_{j} \frac{\partial \mathscr{F}_{1}}{\partial \mathrm{II}}\right) \\
& +2\left(d_{m}^{i} \mu^{m}-\nu^{i} \mu_{m} \mu^{m}\right)\left(\mu^{n} d_{n j} \frac{\partial \mathscr{F}_{2}}{\partial \mathrm{III}}-\mu_{j} \frac{\partial \mathscr{F}_{2}}{\partial \mathrm{II}}\right), \\
\mu_{i}= & d_{i j} \nu^{j} .
\end{aligned}
$$

Since $F\left(\nu_{i}\right)$ is a continuous function of ν_{i} on the compact set $\nu_{i} \nu^{i}=1$, a necessary and sufficient condition that no real characteristic directions exist is that $F\left(\nu_{i}\right)$ be of one sign for all unit vectors. Using this fact, we obtain simpler necessary conditions which are shown to be sufficient when $\mathscr{F}_{2} \equiv 0$.
2. Necessary conditions. Let d_{1}, d_{2} and d_{3} denote the eigenvalues of d_{j}^{i}. From (3),

[^0]$$
d_{1}+d_{2}+d_{3}=0 .
$$

We restrict our attention to unit vectors ν_{i} which are perpendicular to an eigenvector of d_{j}^{i} and note that $F\left(\nu_{i}\right)$, being a continuous function of ν_{i}, must be of one sign for all unit vectors in order that no real characteristic directions exist. Given any unit vector ν_{i} perpendicular to an eigenvector e_{i} corresponding to d_{3}, we may introduce a rectangular Cartesian coordinate system such that, at a point, ν_{i} is parallel to the positive x^{1}-axis and e_{i} is parallel to the x^{3}-axis. Then

$$
\begin{gathered}
\nu_{i}=\partial_{i 1}, d_{13}=d_{23}=d_{13} d_{3}^{i}=d_{22} d_{3}^{i}=0, \\
2 d_{12}=\left(d_{1}-d_{2}\right) \sin 2 \phi, d_{33}=d_{3},
\end{gathered}
$$

where ϕ is the angle between ν_{i} and an eigenvector corresponding to d_{1}. Making these substitutions in $F\left(\nu_{i}\right)$, given by (4), we obtain, by a routine calculation,

$$
\begin{align*}
F\left(\nu_{i}\right)=2\left[\mathscr{F}_{1}-\mathscr{F}_{2} d_{2}\right]\left\{\mathscr{F}_{1}\right. & -\mathscr{F}_{2} d_{3}-\frac{1}{2}\left(d_{1}-d_{2}\right)^{2} \sin ^{2} 2 \phi\left[\frac{\partial \mathscr{F}_{1}}{\partial \mathrm{II}}\right. \tag{6}\\
& \left.\left.-d_{3} \frac{\partial \mathscr{F}_{2}}{\partial \mathrm{II}}+d_{3} \frac{\partial \mathscr{F}_{1}}{\partial \mathrm{III}}-d_{3}^{2} \frac{\partial \mathscr{F}_{2}}{\partial \mathrm{III}}\right]\right\},
\end{align*}
$$

which must be of one sign for all real angles ϕ. This is clearly true if and only if it is of the same sign for $\phi=0$ and $\phi=\pi / 4$. That is, either

$$
\begin{equation*}
\left[\mathscr{F}_{1}-\mathscr{F}_{2} d_{2}\right]\left[\mathscr{F}_{1}-\mathscr{F}_{2} d_{3}\right]>0 \tag{7}
\end{equation*}
$$

and

$$
\begin{align*}
{\left[\mathscr{F}_{1}-\mathscr{F}_{2} d_{2}\right]\left\{\mathscr{F}_{1}\right.} & -\mathscr{F}_{2} d_{3}-\frac{1}{2}\left(d_{1}-d_{2}\right)^{2}\left[\frac{\partial \mathscr{F}_{1}}{\partial \mathrm{II}}\right. \tag{8}\\
& \left.\left.-d_{3} \frac{\partial \mathscr{F}_{2}}{\partial \mathrm{II}}+d_{3} \frac{\partial \mathscr{F}_{1}}{\partial \mathrm{II}}-d_{3}^{2} \frac{\partial \mathscr{F}_{2}}{\partial \mathrm{II}}\right]\right\}>0,
\end{align*}
$$

or (7) and (8) hold simultaneously with the inequalities reversed. By similarly analyzing the cases where ν_{i} is perpendicular to eigenvectors of d_{j}^{i} corresponding to d_{1} and d_{2}, we conclude that either

$$
\begin{equation*}
\left[\mathscr{F}_{1}-\mathscr{F}_{2} d_{i}\right]\left[\mathscr{F}_{1}-\mathscr{F}_{2} d_{j}\right]>0 \quad(i \neq j), \tag{9}
\end{equation*}
$$

and

$$
\begin{align*}
{\left[\mathscr{F}_{1}-\mathscr{F}_{\mathfrak{F}} d_{j}\right]\left\{\mathscr{F}_{1}\right.} & -\mathscr{F}_{\mathfrak{F}} d_{k}-\frac{1}{2}\left(d_{i}-d_{j}\right)^{2}\left[\frac{\partial \mathscr{F}_{1}}{\partial \mathrm{II}}\right. \tag{10}\\
& \left.\left.-d_{k} \frac{\partial \mathscr{F}_{2}}{\partial \mathrm{II}}+d_{k} \frac{\partial \mathscr{F}_{1}}{\partial \mathrm{III}}-d_{k}^{2} \frac{\partial \mathscr{F}_{2}}{\partial \mathrm{III}}\right]\right\}>0 \quad(i, j, k \neq),
\end{align*}
$$

or

$$
\begin{equation*}
\left[\mathscr{F}_{1}-\mathscr{F}_{2} d_{i}\right]\left[\mathscr{F}_{1}-\mathscr{F}_{2} d_{j}\right]<0 \tag{11}
\end{equation*}
$$

and (10) holds with the inequality reversed. Now (11) cannot hold for all i and j, so this possibility is ruled out. We thus have

Theorem 1. A necessary and sufficient condition that no real characteristic directions exist is that $F\left(\nu_{i}\right)>0$; in order that there exist no real characteristic directions perpendicular to an eigenvector of d_{j}^{i}, it is necessary and sufficient that the inequalities (9) and (10) hold.

For (9) and (10) to hold, it is necessary and sufficient that either

$$
\begin{equation*}
\mathscr{F}_{1}-\mathscr{F}_{2} d_{i}>0 \tag{12}
\end{equation*}
$$

and

$$
\begin{align*}
\mathscr{F}_{1}-\mathscr{F}_{2} d_{k}-\frac{1}{2}\left(d_{i}-d_{j}\right)^{2}\left[\frac{\partial \mathscr{F}_{1}}{\partial \mathrm{II}}-d_{k} \frac{\partial \mathscr{F}_{2}}{\partial \mathrm{II}}+d_{k} \frac{\partial \mathscr{F}_{1}}{\partial \mathrm{II}}-d_{k}^{2} \frac{\partial \mathscr{F}_{2}}{\partial \mathrm{III}}\right] & >0 \tag{13}\\
& (i, j, k \neq),
\end{align*}
$$

or

$$
\begin{equation*}
\mathscr{F}_{1}-\mathscr{F}_{2} d_{i}<0 \tag{14}
\end{equation*}
$$

and

$$
\begin{align*}
\mathscr{F}_{1}-\mathscr{F}_{2} d_{k}-\frac{1}{2}\left(d_{i}-d_{j}\right)^{2}\left[\frac{\partial \mathscr{F}_{1}}{\partial \mathrm{II}}-d_{k} \frac{\partial \mathscr{F}_{2}}{\partial \mathrm{II}}+d_{k} \frac{\partial \mathscr{F}_{1}}{\partial \mathrm{III}}-d_{k}^{2} \frac{\partial \mathscr{F}_{2}}{\partial \mathrm{III}}\right]<0 \tag{15}\\
(i, j, k \neq) .
\end{align*}
$$

3. Equivalent conditions. Let t_{i} denote the eigenvalues of the stress tensor corresponding to the eigenvalue d_{i} of $d_{m n}$ so that from (1),

$$
t_{i}=-p+\mathscr{F}_{1} d_{i}+\mathscr{F}_{2} d_{i}^{2} .
$$

Using (5),

$$
\begin{align*}
t_{i}-t_{j} & =\left[\mathscr{F}_{1}+\mathscr{F}_{2}\left(d_{i}+d_{j}\right)\right]\left(d_{i}-d_{j}\right) \tag{16}\\
& =\left[\mathscr{F}_{1}-\mathscr{F}_{2} d_{k}\right]\left(d_{i}-d_{j}\right) \quad(i, j, k \neq) .
\end{align*}
$$

From (2) and (5),

$$
\begin{align*}
& \mathrm{II}=-\frac{1}{2}\left(d_{1}^{2}+d_{2}^{2}+d_{3}^{2}\right)=-\frac{1}{4}\left(d_{i}-d_{j}\right)^{2}-\frac{3}{4} d_{k}^{2} \tag{17}\\
& \mathrm{III}=d_{1} d_{2} d_{3}=\frac{1}{4} d_{k}\left[d_{k}^{2}-\left(d_{i}-d_{j}\right)^{2}\right]
\end{align*}
$$

Using (16) and (17) to express $t_{i}-t_{j}$ as a function of $d_{i}-d_{j}$ and $d_{k}(i, j, k \neq)$, we calculate

$$
\begin{align*}
& \left.\frac{\partial\left(t_{i}-t_{j}\right)}{\partial\left(d_{i}-d_{j}\right)}\right|_{d_{k}=\text { const. }} \tag{18}\\
= & \mathscr{F}_{1}-\mathscr{F}_{2} d_{k}-\frac{1}{2}\left(d_{i}-d_{j}\right)^{2}\left[\frac{\partial \mathscr{F}_{1}}{\partial \mathrm{II}}-d_{k} \frac{\partial \mathscr{F}_{2}}{\partial \mathrm{II}}+d_{k} \frac{\partial \mathscr{F}_{1}}{\partial \mathrm{III}}-d_{\kappa}^{2} \frac{\partial \mathscr{F}_{2}}{\partial \mathrm{III}}\right] .
\end{align*}
$$

From (12), (13), (14), (15), (16), (18) and Theorem 1, we have

Theorem 2. When the eigenvalues of d_{j}^{i} are all unequal, a necessary and sufficient condition that there exist no real characteristic direction perpendicular to an eigenvector of d_{j}^{i} is that either

$$
\left(t_{i}-t_{j}\right) /\left(d_{i}-d_{j}\right)>0 \quad \text { and } \quad \partial\left(t_{i}-t_{j}\right) /\left.\partial\left(d_{i}-d_{j}\right)\right|_{d_{k}=\text { const. }}>0,
$$

or

$$
\left(t_{i}-t_{j}\right) /\left(d_{i}-d_{j}\right)<0 \quad \text { and } \quad \partial\left(t_{i}-t_{j}\right) /\left.\partial\left(d_{i}-d_{j}\right)\right|_{d_{k}=\text { const. }}<0 \quad(i, j, k \neq)
$$

When (12) holds, the stress power Φ, given by

$$
3 \Phi=3 t_{j}^{i} d_{j}^{i}=\left(t_{1}-t_{2}\right)\left(d_{1}-d_{2}\right)+\left(t_{2}-t_{3}\right)\left(d_{2}-d_{3}\right)+\left(t_{3}-t_{1}\right)\left(d_{3}-d_{1}\right)
$$

is negative, a possibility which many writers exclude on thermodynamic grounds.
4. The case $\mathscr{F}_{2} \equiv 0$. When $\mathscr{F}_{2} \equiv 0, \mathscr{F}_{1} \neq 0$, the characteristic equation (4) has been shown [2] to reduce to

$$
\begin{equation*}
G\left(\nu_{i}\right) \equiv \mathscr{F}_{1}+A^{i} B_{i}=0, \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
& A^{i}=2\left(\mu^{i}-\nu^{i} \mu_{k^{2}}{ }^{k}\right), \\
& B_{i}=\mu^{m} d_{m i} \frac{\partial \mathscr{F}_{1}}{\partial \mathrm{III}}-\mu_{i} \frac{\partial \mathscr{F}_{1}}{\partial \mathrm{II}} .
\end{aligned}
$$

In fact, $F\left(\nu_{i}\right)=\mathbf{2} \mathscr{F}_{1} G\left(\nu_{i}\right)$. When $\mathscr{F}_{2}=0, \mathscr{F}_{1}=0$, every direction is characteristic, a case which we exclude. Using the Hamilton-Cayley theorem,

$$
d_{j}^{i} d_{k}^{j} d_{m}^{k}=\mathrm{III} \delta_{m}^{i}-\mathrm{II} d_{m}^{i},
$$

we can reduce (19) to the form

$$
\begin{equation*}
G(\alpha, \beta) \equiv \mathscr{F}_{1}+2(\mathrm{III}-\mathrm{II} \alpha-\beta \alpha) \frac{\partial \mathscr{F}_{1}}{\partial \mathrm{III}}+2\left(\alpha^{2}-\beta\right) \frac{\partial \mathscr{F}_{1}}{\partial \mathrm{II}}=0, \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\mu_{i} \nu^{i}=d_{i j} \nu^{i} \nu^{j}, \quad \beta=\mu^{i} \mu_{i}=d_{k}^{i} d_{i m} \nu^{k^{k} \nu^{m}} . \tag{21}
\end{equation*}
$$

Now (21) is a mapping of the unit sphere $\nu_{i} \nu^{i}=1$ onto a region R in the $\alpha-\beta$ plane. The conditions

$$
\begin{aligned}
& \frac{\partial G}{\partial \alpha}=-2(\mathrm{II}+\beta) \frac{\partial \mathscr{F}_{1}}{\partial \mathrm{III}}+4 \alpha \frac{\partial \mathscr{F}_{1}}{\partial \mathrm{II}}=0 \\
& \frac{\partial G}{\partial \beta}=-2 \alpha \frac{\partial \mathscr{F}_{1}}{\partial \mathrm{III}}-2 \frac{\partial \mathscr{F}_{1}}{\partial \mathrm{II}}=0 \\
& \pm d^{2} G= \pm 4\left[\frac{\partial \mathscr{F}_{1}}{\partial \mathrm{II}} d \alpha^{2}-\frac{\partial \mathscr{F}_{1}}{\partial \mathrm{III}} d \alpha d \beta\right] \geqq 0 \text { for all } d \alpha, d \beta
\end{aligned}
$$

must be satisfied at any interior point of R at which G is a maximum or minimum. These conditions cannot be satisfied unless $\partial \mathscr{F}_{1} / \partial \mathrm{II}=$ $\partial \mathscr{F}_{1} / \partial \mathrm{III}=0$, in which case $G\left(\nu_{i}\right)$ is independent of ν_{i}, and $\mathscr{F}_{1} \neq 0$ is then necessary and sufficient that there exist no real characteristics. From the implicit function theorem, values of ν_{i} corresponding to boundary points of R are such that the equations

$$
d \alpha=2 d_{i j} \nu^{i} d \nu^{j}, \quad d \beta=2 d_{k}^{i} d_{i m} \nu^{k} d \nu^{m}, \quad 0=\nu_{i} d \nu^{i}
$$

do not admit a unique solution for $d_{\nu}{ }^{i}$ in terms of $d \alpha$ and $d \beta$. We thus have

Theorem 3. Maximum and minimum values of $G\left(\nu_{i}\right)$, hence of $F\left(\nu_{i}\right)$, hence of $F\left(\nu_{i}\right)$, occur only at values of ν_{i} such that the vectors $\nu_{i}, d_{i j} \nu^{j}$ and $d_{i}^{k} d_{k m} \nu^{m}$ are linearly dependent or, equivalently, at values such that the determinant D of these three vectors vanishes.

Whatever be the unit vector ν_{i}, we can always choose rectangular Cartesian coordinates such that, at a point, $\nu_{i}=\delta_{i 1}, d_{23}=0$. The condition $D=0$ then reduces to

$$
\begin{aligned}
0 & =\left|\begin{array}{ccc}
1 & 0 & 0 \\
d_{11} & d_{21} & d_{31} \\
d_{11}^{2}+d_{12}^{2}+d_{13}^{2} & d_{21}\left(d_{11}+d_{22}\right) & d_{31}\left(d_{11}+d_{33}\right)
\end{array}\right| \\
& =d_{21} d_{31}\left(d_{33}-d_{22}\right) .
\end{aligned}
$$

If $d_{21}=0\left(d_{31}=0\right), \delta_{i 2}\left(\delta_{i 3}\right)$ is an eigenvector of $d_{i j}$. If $d_{21} d_{31} \neq 0, d_{33}=d_{22}$, the vector with components $\left(0, d_{31},-d_{21}\right)$ is an eigenvector of $d_{i j}$, whence follows

Theorem 4. The vectors $\nu_{i}, d_{i j} \nu^{j}, d_{i}^{k} d_{k m} \nu^{m}$ can be linearly dependent only when ν_{i} is perpendicular to an eigenvector of d_{j}^{i}.

Theorems 3 and 4 imply that, when $\mathscr{F}_{2} \equiv 0$, we will have $F\left(\nu_{i}\right)>0$ for all unit vectors ν_{i} if and only if $F\left(\nu_{i}\right)>0$ for each unit vector ν_{i} which is perpendicular to an eigenvector of d_{j}^{i}. From Theorem 1, we then deduce

Theorem 5. When $\mathscr{F}_{2} \equiv 0$, a necessary and sufficient condition that there exist no real characteristic directions is that the inequalities (9) and (10) hold.

References

1. M. Baker and J. L. Ericksen, Inequalities restricting the form of the stress-deformation relations for isotropic elastic solids and Reiner-Rivlin fluids, J. Wash. Acad. Sci. 44 (1954), 33-35.
2. J. L. Ericksen, Characteristic surfaces of the equations of motion for non-Newtonian fluids, ZAMP 4 (1953), 260-267.
3. - A consequence of inequalities proposed by Baker and Ericksen, J. Wash. Acad. Sci. 45 (1955), 268.
4. M. Reiner, A mathematical theory of dilatancy, Amer. J. Math. 67 (1945), 350-362.
5. R. S. Rivlin, The hydrodynamics of non-Newtonian fluids I., Proc. Roy. Soc. London (A) 193 (1948), 260-281.

Applied Mathematics Branch, Mechanics Division, U. S. Naval Research LABORATORY.

[^0]: Received April 12, 1957.
 ${ }^{1}$ This theory was proposed independently by Reiner [4] for compressible fluids, by Rivlin [5] for incompressible materials. We treat the latter case.

