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1. In the classical problems involving a simple integral

( 1 ) I^L(ί, q\ (t)dt, i = l

one is led to the consideration of the Pfaffian form

(2) ω ^ w 7 d q ( q
dqι dqι \ dqι

where

ωi=dqί~qidt .

For example this form ω is the one which gives rise to the "relative
integral invariant" of E. Cartan.

In a recent note [1] L. Auslander characterizes the form ω by a
theorem equivalent to the following one.

THEOREM 1. Among all semi-basic forms θ such that

(3) θ=Ldt mod ωι

the form ω of (2) is the only one satisfying the condition

(4) dθ^

In this, a semi-basic form is a form for which the local expression
contains only the differentials of t, q^not of qι). The integral /is defined
over an arc c of a space W with local coordinates t, q\ qι satisfying
the equations ωι — 0\ Therefore in (1) the form Ldt may be replaced
by any θ satisfying (3).

Condition (4) is a special case of a congruence discovered by Lepage
[5]. The purpose of the present note is to give a natural reason for this
congruence which goes beyond its nice algebraic expression.

Let us observe that the space W is the manifold of 1-dimensional
contact elements of a manifold 5^ with local coordinates £, qι. The map

(ί, q\ gr«)->(ί, (f)

is then the local expression of the natural projection π: W -> 5̂ Γ We
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remark that we do not integrate (1) on any arc c in W^ satisfying
ωι = 0 but on such an arc the projection c of which in 5^ is regular.

2 Let U be the domain in ^ of the coordinates t,qim, then the
t, q\ q* are defined in an open subset We W" of projection π(W) — U.
If we denote by L* n real undeterminates, we have coordinates t, q\ q% Lt

in WxRn; we then define in this product the PfaίRan form

(5) Qw=Ldt+L^ .

Now, let us cover "W with open sets W, W, this way we get a
family of products WxRn, W xRn, with forms ΩW9 Ωw,, . Using
fibre bundle techniques, one proves that over a non-empty intersection
Wf}W the products WxRn and W' xRn can be glued together in such
a way that the forms induced on WΓϊWxR" coincide. This yields a
fibre bundle E{ Ύ/f Rn) over 5T~ as base, with fibre Rn. This bundle is
covered by open subsets isomorphic with the products WxRn and in
which the t, q\ q\ Lt are local coordinates there is also on £ a global
Pfaffian form Ω of local expression (5). Combining the projections
E -> W and 7/^ -> 5^ we obtain a map E-^^ locally defined by

(ί, q\ q\ Li) -> (ί, (f) .

We want to characterize in E the extremal arcs c* of \Ω which have

a regular projection in X"

An extremal arc c* of \Ω has to satisfy the local equations

d(dΩ)z=θ(dΩ)_θ(dΩ)=

d(dt) d(ωτ) d(d(f)

We have

dΩ^ωAdt + ί
dqι \ dqι

These equations are therefore

Lz)dt 0 , dtdL^O .
dq% J dqι

Since an arc c* of regular projection in ψ" cannot satisfy simultaneously
co1 — 0 and dt — O it has to lie in the submanifold F of E locally charac-
terized by

dL _T
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or equivalently by condition (4).

THEOREM 2. Every arc c* in E for which \Ω is stationary and the

projection of which in ^ is regular necessarily lies in the submanifold
F of E locally defined by the congruence (4). Furthermore the projection
c of c* in 5^ extremizes in the classical sense the integral (1). Finally
if c is a regular extremal are of (1) in 5̂ " let c* be the arc of F the
projection c of which in Jp" is the arc of tangent directions to c; then

c* extremizes \Ω.

3. The submanifold F can be identified with *W in an obvious
way so that 5 ^ can be considered as a submanifold of E. Then clearly
Ω induces ω on W."

THEOREM 3. // the integral (1) is regular there exists a (one-to-one)
correspondence between the regular extremal arcs c in 5^ of (1) and the

extremal arcs c of \ω in *W* which have a regular projection in 3f

Starting from an extremal c, the corresponding c is the arc the points
of which are the tangent directions to c starting from c the correspond-
ing c is its projection in 5̂ f

In this statement, regularity of (1) means that the matrix {d^Ljdtfdq3)
is everywhere non singular.

Theorem 2 and 3 give a complete justification of condition (4).
Theorem 3 was actually proved by E. Cartan [2]. These theorems are
special cases of similar theorems involving multiple integrals and even
those in which the function L depends on higher order contact elements.
Theorem 2 was first proved by the author [3], as well as the alluded
generalizations.

Combining Theorems 2 and 3 yields the following.

THEOREM 4. In the regular case, every arc c in <W of regular

projection in 5̂ ~ which extremizes \ω with respect to variations confined

to W does also extremίze \Ω with respect to variations in the larger

space E.

4 There is a last question to be answered: why in Theorem 1
restrict oneself to semi-basic forms ?

We can only add to L.dt a linear combination of Pfaffian forms
vanishing with ωι every such form is a linear combination of the ωι
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and is therefore semi-basic. Hence the restriction to semi-basic forms
in Theorem 1 was actually redundant.

However, as mentioned above and as I have proved in various papers
(e.g. [3, 4]), the above properties generalize to a multiple integral

(6) h

to be integrated over a p-surface c defined by qί = qί(tcύ) and where qΐ
stands for dql\dt*. Then 5^ is of dimension n+p and *W (which is
geometrically the manifold of p-dimensional contact elements of 5^) is
of dimension n+p+np. We can consider that we integrate (6) in *W
over a p-surf ace c of regular projection in 5^ and solution of the Pfaffian
equations

Such a p-surface c is formed of the contact elements of dimension p to
a regular p-surface in 3^ and will be called a p-multίplieity.

Now in (6) we can add to L.dt any p-form vanishing on all p-
multiplicities and all such forms are no longer semi-basic if p>l: for
example dωιAdfA* Adtp is such one. Nevertheless, the semi-basic
forms satisfying the Lepage congrences [5]:

(7) θ=Ldt modω*,

(8) dθ=0 modω*.

play an important role for a deeper reason which is actually a trans-
versality condition. We briefly discuss this below referring the reader
to my memoir [4] for further details.

5. Let J?Γ be a p-dimensional manifold and K a domain of ^Γ with
regular boundary K. A map

c: K-+T~

is a domain of integration of (6) it gives rise canonically to a map

c: K-> W

such that for keK, c(k) is the contact element of dimension p to c at
k. A variation (or homotopy) of c is a family of maps

ct: K-> 3̂ ~, teR , co=c

this yields a variation of c:
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ct: K-

We also define C: KxR-^^C: KxR-> Why

The corresponding variation of \θ is then

which may be expressed as a sum of two terms:

( 9 ) =[ dθ+[ _θ.

The domains of integration Cot and λotC are the restrictions of C to

Kxlot and Kxlot respectively (where Iot = [O,f](zR). We say that the

variation C is transversal to θ if this form vanishes on λC (restriction

of C to KxR). This being the case, the last integral (or boundary
term) in (9) is zero.

Now the variations usually considered are those for which the re-
striction of C to K is constant (fixed boundary variations): for those,
λC has an everywhere non-regular projection in 5^ s o that every semi-
basic form vanishes on λC. Therefore if we replace in (6) L.dt by a
semi-basic p-form θ satisfying (7), all variations with fixed boundary are
transversal to it. This would of course not be the case, should we add
to L.dt a non-semi-basic p-form vanishing on all p-multiplicities.
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