
ON GENERAL MINIMAX THEOREMS
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1. Introduction, von Neumann's minimax theorem [10] can be
stated as follows : if M and N are finite dimensional simplices and /
is a bilinear function on MxN, then / has a saddle point, i. e.

max min f(μ, v) = min max f(μ, v) .
M VβN V6Λ' μβ M

There have been several generalizations of this theorem. J. Ville [9],
A. Wald [11], and others [1] variously extended von Neumann's result
to cases where M and N were allowed to be subsets of certain infinite
dimensional linear spaces. The functions / they considered, however,
were still linear. M. Shiffman [8] seems to have been the first to have
considered concave-convex functions in a minimax theorem. H. Kne-
ser [6], K. Fan [3], and C. Berge [2] (using induction and the method
of separating two disjoint convex sets in Euclidean space by a hyper-
plane) got minimax theorems for concave-convex functions that are ap-
propriately semi-continuous in one of the two variables. Although these
theorems include the previous results as special cases, they can also be
shown to be rather direct consequences of von Neumann's theorem. H.
Nikaidό [7], on the other hand, using Brouwer's fixed point theorem,
proved the existence of a saddle point for functions satisfying the
weaker algebraic condition of being quasi-concave-convex, but the strong-
er topological condition of being continuous in each variable.

Thus, there seem to be essentially two types of argument: one
uses some form of separation of disjoint convex sets by a hyperplane
and yields the theorem of Kneser-Fan (see 4.2), and the other uses a
fixed point theorem and yields Nikaidό's result.

ΐn this paper, we unify the two streams of thought by proving a
minimax theorem for a function that is quasi-concave-convex and appro-
priately semi-continuous in each variable. The method of proof differs
radically from any used previously. The difficulty lies in the fact that
we cannot use a fixed point theorem (due to lack of continuity) nor the
separation of disjoint convex sets by a hyperplane (due to lack of con-
vexity). The key tool used is a theorem due to Knaster, Kuratowski,
Mazurkiewicz based on Sperner's lemma.

It may be of some interest to point out that, in all the minimax
theorems, the crucial argument is carried out on spaces M and N that
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are finite dimensional simplices. When concave-convexlike functions are

considered, the topological conditions of compactness and semi-continuity
are used only in reducing the problem to the finite dimensional case.
For quasi-concave-convex functions, however, semi-continuity is needed
in a more crucial way, as can be seen from the example in 3.6.

2. Fundamental notions and definitions. The following definitions
of concavelike and convexlike functions were first considered by K.
Fan [3]. They generalize the concepts of concavity and convexity and
are valid for spaces without linear structure.

2.1. A function / o n MxN is concavelike in M if for every
μLi μ2eM and O^ί^l , there is a /̂ eΛf such that

tf(μi, v) + (l-t)f{μ2, v) ^ f(μ, v) for all v e N .

2.2. A function / on MxN is convexlike in TV if for every

lf vt e N and 0 <; t ^ 1, there is a v e N such

v) for all /* e M .

2.3. A function / on MxN is concave-convexlike if it is concave-
like in M and convexlike in JV.

2.4. A function / on MxN is quasi-concave in Λί if {/; : f{μ,v)
>̂ c} is a convex set for any v e N and real c.

2.5. A function / on MxN is quasi-convex in JV if {v : /(//, v) <J c}
is a convex set for any μ e M and real c.

2.6. A function / on MxN is quasi-concavc-convex if it is quasi-
concave in M and quasi-convex in N.

2.7. A function / on MxN is u. s. c.-l. s. c. if /(//, u) is upper
semi-continuous in μ for each v e JV and lower semi-continuous in v for
each μe M.

2.8. For a function / on MxN, we set

supinf/ = sup inf

inf sup f — mΐ sup /(^, v) .

2.9. The convex hull of X will be denoted by ΓX\

2.10. The closure of X will be denoted by X.
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3. Minimax theorems for quasi-concave-convex functions. The aim
of this section is Theorem 3.4. The method of proof, making use of
3.1, 3.2, and 3.3, is very different from any argument used previously
in obtaining minimax theorems.

3.1. THEOREM. Let S be an n-dimensional simplex with vertices
n

a{), , an. If A{), , An are open sets such that S c U AL, S—A , is
i = ΰ

n

convex, and atφ Aj for iφj(i,j, =0 « ,ra), then Π A^O.

Proof. We can set A~ U Bitk where the Biyk are open and

Bi1k c Bίfkι+i. Since S is compact, there is an integer N such that

S c U Bίfλ. By a theorem of Knaster, Kuratowski, Mazurkiewicz [5],
ΐ 0

we have n At D Π BifNφ0.
i=0 ϊ=0

3.2. THEOREM. Let 3ΐ={α0, •• , α j consist of n + 1 points in a li-
n

near space of dimension k < n. Then Π Γ(?t— {αz}
ΐ

Proof. n Γ (9Ϊ- {αj)"1 3 {α,} ̂ 0 for i = 0 , , rc.
i = 0

Hence by Helly's Theorem [14], we have the desired result.

3.3. LEMMA. Let M be a convex set, Y a finite set, and f a func-
tion on MxYy quasi-concave and upper semi-continuous in M. Suppose,
in addition, that Y is minimal with respect to the property : for each
μeM there is a ye Y with f{μ,y)<c. Then there exists μΰeM such
that f(μύf y)<c for all yeY.

Proof Let Y= {y0, , yn} and set At={μ: f(μ,yL)<c} for i = 0,
"',n. Then the Ah are open and M-AL convex. By hypothesis, for
each i, there exists ateM such that a^eM—Aj for jΦi. Let s2t={α0,

n

• , an). Then Γ(SI— {α,})1 c M—At and, since M e U -44, we must have
ί = 0

n

Π Γ(?l— {at})Ί = 0. Hence, by 3.2., ?ϊ spans an Tί-dimensional simplex in
i = o

Λf and, by 3.1, there exists a ^ e Π 4
ί = 0

3.3r. LEMMA. Let N be a convex set, X a finite set, and f a func-
tion on X x N, quasi-convex and lower semi-continuous in N. Suppose, in
addition, that X is minimal tvith respect to the property : for each v e N
there is an xeX with f(x,v)>c. Then there exists v{)eN such that
f(x, vύ)>c for all xe X,
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3.4. THEOREM. Let M and N he convex, compact spaces, and f a
function on MxN, quasi-concave-convex and u . s .c .- l . s .c Then sup inf
/ = inf sup /.

Proof. Suppose sup inf /<<?<inf sup / . Let Aμ—{v\ f{μ,v)>c]
and Bv—{μ: f(μ,v)<c}. The Aμ are open and cover N. Since N is
compact, a finite number of the Aμ cover N. Similarly, a finite num-
ber of the Bv cover M. We can therefore choose finite subsets X1 c M
and Yι c N such that for each v e N, and hence for each v e ΓΓΛ there
is an x e Xx with f(x, v) >c and for each μ e M, and hence for each μ e ΓXΛ
there is a ye Yλ with f{μ, y)< c.

Let X.λ be a minimal subset of XΛ such that for each u e Γ FT

Ί there
is an xeXλ with f(x,v)>c. Next, let YΛ be a minimal subset of Yτ

such that for each μeΓX>? there is a y e Y > with f(μ,y)<c.
Thus, by repeating this process of alternately reducing the Xt and

Yί, after a finite number of steps, we can choose finite subsets XaM
and 7 c N such that X is minimal with respect to the property : for
each ueΓY1 there is an x e X with f(x,v)>c, and Y is minimal with
respect to the property : for each μe VXΊ there is a ye Y with f(μ,y)<c.
By 3.3, there exists μQ e ΓX1 such that f(μ0, y)<c for sillyeY and hence
(by quasi-convexity) f(μΌ,v)<c for all ve Γ 7 Ί . By 3.3', there exists
voe

ΓYΊ such that /(a?, vo)>c for all xeX and hence (by quasi-concavity)
for all μeΓXΊ. Then c<f(μ0, vo)<c, which is impossible.

3.3. COROLLARY. Let M and N be convex spaces one of ivhich is
compact, and f a function on MxN, quasi-concave-convex and u. s. c.
-1. s. c Then sup inf / =inf sup /.

Proof. Suppose M is compact and sup inf / < c < inf sup /. Then
there exists a finite set Ya N such that for any μe M there is a y e Y
with f(μ, y)<c. Taking f=fl(Mx ryi), we get sup inf / / <c<inf sup/'
in contradiction to 3.4 with N replaced by ΓY] and / by / ' .

3.6. REMARK. In Theorem 3.4, the condition that / be u. s. c.-l s. c.
cannot be removed nor appreciably weakened even if the spaces M, N
are finite dimensional. To see this, we consider the following example.
Let M=N=[0, 1] and f(μ, u) = 0 for 0 ^ < l / 2 and v = 0 or 1/2^/^1 and
v=l f(μ, v) = l otherwise. We easily check that / is quasi-concave-con-
vex for each μ, f(μ, v) is lower semi-continuous in v however f(μ, 1)
is not upper semi-continuous in μ. We also have : sup inf /—0 and inf
sup f=l.

4. Minimax theorems for con cave-con vexlike functions. For con-



ON GENERAL MINIMAX THEOREM 175

cave-convexlike functions, the topology for the spaces on which they
are defined plays only a secondary role. Theorem 4.2 (4.2') below, which
is the generalization of Kneser's theorem to concave-convexlike functions
due to K. Fan [3], is not a special case of 3.4 since the concepts of
concave-convexlike and quasi-concave-convex are independent of each
other (see [7]). It is however a special case of 4.Γ (4.1), which is it-
self an immediate consequence of 3.4 (actually, von Neumann's theorem).

4.1. THEOREM. Let M and N be any spaces, f a function on MxN
that is concave-convexlike. If for any c<inf sup / there exists a finite
subset XdM such that for any veN there is an xeX with f(x,u)>cy

then sup inf / = inf sup /.

4.1 7. T H E O R E M . Let M,N be any spaces, f a function on MxN

that is concave-convexlike. If for any c > s u p inf / there exists a finite

set YCLN such that for any μe M there is a yeY with f(μ, y)<c, then

sup inf /=inf sup /.

4.2. THEOREM. (Kneser, Fan). Let M be compact, N any space, f
a junction on MxN that is concave-convexlike. If f{μ, v) is upper semi-
continuous in μ for each v, then sup inf /=inf sup f.

Proof. If c>supinf/, let A^={μ: f{μ,v)<c] for each veN. The
Av are open and cover M, hence a finite number of them cover M.
We may therefore apply 4.1'.

4.2' THEOREM. Let M be any space, N compact, f a function on
MxN that is concave-convexlike. If f(μ, v) is lower semi-continuous in v
for each μ, then sup inf /=inf sup/.
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