ON GENERAL MINIMAX THEOREMS

MAURICE SioN

1. Introduction. von Neumann’s minimax theorem [10] can be
stated as follows: if M and N are finite dimensional simplices and f
is a bilinear function on M x N, then f has a saddle point, i.e.:

max min f(z¢, v)=min max f(g,v) .

WEM YEN VEN pENM
There have been several generalizations of this theorem. J. Ville [9],
A. Wald [11], and others [1] variously extended von Neumann’s result
to cases where M and NN were allowed to be subsets of certain infinite
dimensional linear spaces. The functions f they considered, however,
were still linear. M. Shiffman [8] seems to have been the first to have
considered concave-convex functions in a minimax theorem. H. Kne-
ser [6], K. Fan [3], and C. Berge [2] (using induction and the method
of separating two disjoint convex sets in Kuclidean space by a hyper-
plane) got minimax theorems for concave-convex functions that are ap-
propriately semi-continuous in one of the two variables. Although these
theorems include the previous results as special cases, they can also be
shown to be rather direct consequences of von Neumann’s theorem. H.
Nikaidd [7], on the other hand, using Brouwer’s fixed point theorem,
proved the existence of a saddle point for functions satisfying the
weaker algebraic condition of being quasi-concave-convex, but the strong-
er topological condition of being continuous in each variable.

Thus, there seem 1o be essentially two types of argument: one
uses some form of separation of disjoint convex sets by a hyperplane
and yields the theorem of Kneser-Fan (see 4.2), and the other uses a
fixed point theorem and yields Nikaidd’s result.

In this paper, we unify the two streams of thought by proving a
minimax theorem for a function that is quasi-concave-convex and appro-
priately semi-continuous in each variable. The method of proof differs
radically from any used previously. The difficulty lies in the fact that
we cannot use a fixed point theorem (due to lack of continuity) nor the
separation of disjoint convex sets by a hyperplane (due to lack of con-
vexity). The key tool used is a theorem due to Knaster, Kuratowski,
Mazurkiewicz based on Sperner’s lemma.

It may be of some interest to point out that, in all the minimax
theorems, the crucial argument is carried out on spaces M and N thal
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are finite dimensional simplices. When concave-convexlike functions are

considered, the topological conditions of compactness and semi-continuity
are used only in reducing the problem to the finite dimensional case.
For quasi-concave-convex functions, however, semi-continuity is needed
in a more crucial way, as can be seen from the example in 3.6.

2. Fundamental notions and definitions. The following definitions
of concavelike and convexlike functions were first considered by K.
Fan [3]. They generalize the concepts of concavity and convexity and
are valid for spaces without linear structure.

2.1. A function f on MxN is concavelike in M if for every
P €M and 0=<¢<1, there is a pe M such that

tf (1, VA —=6) f (1, v) = f(p,v) for all veN.

2.2. A function f on MxN is convexlike in N if for every
vy, € Nand 0 <t <1, there is a ve N such

tf(p, v)+A—8)f (e, v) = f(pr,v) for all pe M.

2.3. A function f on Mx N is concave-convexlike if it is concave-
like in M and convexlike in N.

{

2.4. A function f on MxN is quasi-concave in M if {p: f(p,v)
> ¢} is a convex set for any »re N and real c.

2.5. A function f on M x N is quasi-convex in N if {v: f(r,v) < ¢}
is a convex set for any pge M and real c.

2.6. A function f on Mx N is quasi-concave-conver if it is quasi-
concave in M and quasi-convex in N.

2.7. A function S on MxN is u.s.c.-ls.c. if f(p, ) is upper
semi-continuous in g for each vre N and lower semi-continuous in » for
each pe M.

2.8. For a function f on Mx N, we set
sup inf f=sup inf f(y,v),
HEM VEN
inf sup f=inf sup f(y, ).
VEN pEN

2.9. The convex hull of X will be denoted by TX.

2.10. The closure of X will be denoted by X.



ON GENERAL MINIMAX THEOREM 173

3. Minimax theorems for quasi-concave-convex functions. The aim
of this section is Theorem 3.4. The method of proof, making use of
3.1, 3.2, and 3.3, is very different from any argument used previously
in obtaining minimax theorems.

3.1. THEOREM. Let S be an n-dimensional simplex with vertices
"

yy ooy, If A, -, A, are open sets such that Sc U A, S—A4, 1is
i=0

convex, and a,é A, for i+4 (i, 7, =0 -++,n), then ( A,#0.
i=0

Proof. We can set A,= DLOJBW.-, where the B,,, are open and
k=0

E,,,.rc’ B;,.«;. Since S is compact, there is an integer N such that
Sc U B, .. By a theorem of Knaster, Kuratowski, Mazurkiewicz [5],

=0
we have N A4, D N B,,#0.
i=0 =0

i=
3.2. THEOREM. Let A= {ay, ---,a,} consist of n-+1 points in a li-

M
near space of dimension k < n. Then N T(QA—{a,})1+0.

i=0

Proof. N "(A—{a;}) D {a;} #0 for 7=0, «-+, n.
i=0

%)

Hence by Helly’s Theorem [14], we have the desired result.

3.3. LEMMA. Let M be a convex set, Y a finite set, and | a func-
tion on MxY, quasi-concave and upper semi-continuous in M. Suppose,
wn addition, that Y is manimal with respect to the property: for each
re M there is a ye Y with f(u,y)<c. Then there exists p,€ M such
that f(p, y)<c for all yeY.

Proof. Let Y=1{y, -+, v,} and set A,={px: f(p, y,)<c} for i=0,
--,n. Then the A, are open and M—A, convex. By hypothesis, for
each 4, there exists a,€ M such that a,e M—A, for j+#i. Let A={a,

~ . n
-+, a,}. Then "(A—{a;})' © M—A, and, since M c U 4,, we must have
1=0

N '(A—{a;})'=0. Hence, by 3.2., A spans an n-dimensional simplex in
i=0

i=

M and, by 3.1, there exists a g, € (7'11 A,
i=0

3.3". LEMMA. Let N be a convex set, X a finite set, and f a func-
tion on X x N, quasi-convex and lower semi-continuous in N. Suppose, in
addition, that X is minimal with respect to the property : for each ve N
there is an wve X with f(x,v)>c. Then there exists v,€ N such that
S, v)>c for all ze X,
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3.4. THEOREM. Let M and N be comvex, compact spaces, and f a
Junction on Mx N, quasi-concave-convex and u. s. c.-1. s. ¢.. Then sup inf
f=inf sup f.

Proof. Suppose sup inf f<e<inf sup f. Let A,={v: f(p, v)>c}
and B,={g: f(#,v)<c}. The A, are open and cover N. Since N is
compact, a finite number of the A4, cover N. Similarly, a finite num-
ber of the B, cover M. We can therefore choose finite subsets X, c M
and Y, © N such that for each ve N, and hence for each ve Y], there
is an z e X, with f(z, v) >c; and for each ¢z e M, and hence for each e "X7,
there is a ye Y, with f(g, y)<ec.

Let X, be a minimal subset of X, such that for each ve "Y' there
is an e X, with f(2,v)>c. Next, let Y, be a minimal subset of Y,
such that for each peTX,? there is a ye Y, with f(g, y)<e.

Thus, by repeating this process of alternately reducing the X, and
Y,, after a finite number of steps, we can choose finite subsets XcM
and Yc N such that X is minimal with respect to the property: for
each ve 'Y thereis an £e¢ X with f(x,v)>c¢; and Y is minimal with
respect to the property : for each e "X there is a ye Y with f(g,y)<e.
By 3.8, there exists g, "X such that f(g, y)<<c for all ye Y and hence
(by quasi-convexity) f(m, r)<c for all »efY1l. By 3.3, there exists
v, € Y7 such that f(x, v,)>c¢ for all e X and hence (by quasi-concavity)
flp, v)>ec for all pe™X". Then e¢<f(y, v)<c, which is impossible.

3.3. COROLLARY. Let M and N be convexr spaces one of which 1s
compact, and f a function on Mx N, quasi-concave-convex and 1u.S.cC.
-l.s.c.. Then sup inf f =inf sup f.

Proof. Suppose M is compact and sup inf f<e<infsup /. Then
there exists a finite set Y N such that for any pze M there is a ye Y
with f(g, y)<e. Taking f'=f/(Mx"Y"), we get sup inf f'<e<inf sup f’
in contradiction to 3.4 with NV replaced by "Y'! and f by f.

3.6. REMARK. In Theorem 3.4, the condition that f be u.s.c.-Is.c.
cannot be removed nor appreciably weakened even if the spaces M, N
are finite dimensional. To see this, we consider the following example.
Let M=N=[0,1] and f(z,+)=0 for 0<p<1/2 and +=0or 1,2<p=<1 and
v=1; f(pr,»)=1 otherwise. We easily check that f is quasi-concave-con-
vex ; for each p, f(1, v) is lower semi-continuous in »; however f(y, 1)
is not upper semi-continuous in z. We also have: sup inf f=0 and inf
sup f=1.

4. Minimax theorems for concave-convexlike functions. For con-
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cave-convexlike functions, the topology for the spaces on which they
are defined plays only a secondary role. Theorem 4.2 (4.2') below, which
is the generalization of Kneser’s theorem to concave-convexlike functions
due to K. Fan [3], is not a special case of 3.4 since the concepts of
concave-convexlike and quasi-concave-convex are independent of each
other (see [7]). It is however a special case of 4.1’ (4.1), which is it-
self an immediate consequence of 3.4 (actually, von Neumann’s theorem).

4.1. THEOREM. Let M and N be any spaces, f a function on Mx N
that 1s concave-convexlike. Lf for any c<inf sup f there exists a finite
subset XM such that for any ve N there is an xe X with f(x,v)>e,
then sup inf f=inf sup f.

4.1'. THEOREM. Let M, N be any spaces, f & function on Mx N
that 1is concave-convexlike. If for any ¢>sup inf f there exists a finite
set YC N such that for any re M there is @ ye'Y with flp, y)<c, then
sup inf f=inf sup f.

4.2. THEOREM. (Kneser, Fan). Let M be compact, N any space, f
a function on M x N that is concave-convexlike. If f(p, v) is upper semi-
continuous in p for each v, then sup inf f=inf sup f.

Proof. If ¢>supinf f, let A,={p: f(g, v)<c} for each ve N. The
A, are open and cover M, hence a finite number of them cover M.
We may therefore apply 4.1'.

4.2 THEOREM. Let M be any space, N compact, f a function on
M x N that is concave-convexlike. Lf f(p, v) is lower semi-continuous in v
Jor each p, then sup inf f=inf sup f.
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