THE RELATIONS BETWEEN A SPECTRAL
OPERATOR AND ITS SCALAR PART

S. R. FOGUEL

1. Introduction. It is shown in Dunford’s theory of spectral
operators, that every spectral operator T can be decomposed into the
sum of a scalar operator S, and a generalized nilpotent N [1]. We study
here properties which are inherited by S from 7. The main results are :

1. If the spectral operator T' is compact, weakly compact, or has

a closed range, then respectively S is compact, weakly compact, or has
a closed range.

2. The relations between the point spectra, continuous spectra, and
residual spectra of S and 7T are investigated.

3. If the sum of two commuting spectral operators is spectral,
then the sum of their scalar parts is scalar.

2. Notation. Most of the notation is taken from [1]. Let X be
a complex Banach space. A spectral measure is a set function E(-),
defined on Borel sets in the complex plane, whose values are projections
on X, which satisfy :
(a) For any two Borel sets o and ¢ E(o)E(6)=E(s n o).
() Let @ be the void set and p the complex plane.
Then

E(®)=0 and E(p)=I .

(7) There exists a constant M such that |E(c)'<M, for every Borel
set o.

(6) The vector valued set function E(-)xr is countable additive for
each ze X.

The operator 7' is a spectral operator, whose resolution of the identity
is the spectral measure E(-) if
(a) for every Borel set o E(c)T'=TE(s).
(b) Let T, denote the restriction of 7' to the subspace E(a)X, (7.,
=T|E(«x)X) then
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o(T)Ca

where o(4) is the spectrum of A.
Throughout the paper 7' denotes a spectral operator, E(-) its reso-

lution of the identity, S its secalar part given by S:S AE(d?2), N its
b

radical given by N=T—S. The operator N is a generalized nilpotent,
and the operators N, S, 7, E(a) commute [1]. A spectral operator is
of finite type, if for some integer n, N"*'=0. We shall denote N-E({0})
by N,, hence N,=TE({0>)=E(K0))T.

3. Topological properties. In this section, several topological pro-
perties will be shown to be valid for S whenever they are valid for 7.

The following lemma will be used.

LEMMA 1. S s in the uniformly closed operator algebra generated
by the projections E(x) with 0¢ «.

Proof. Szg . )AE(dZ) and o(7) is bounded, see [1] Theorem 1. Given
a(T
>0 let o(T) be divided into the disjoint sets ay, s, -+ , @, with

0eq,, 0¢a,, 9=1,2, --+, n and
diam(a;)<e 1=0,1,2, -, n.

Let 4,=0 and 4,€ «;. Then
lS— z‘é‘ Aokt l - ’ Sv(r)(j— é hx“i('{))E(d'{) l )
If 2eo(T) then
1= S| =
Now by [1], p. 330, for every bounded measurable function defined on o(T)
|| fOE@D | ssw (s, 2eo(D} - 401
Hence
’S— 5 0B | <40

THEOREM 1. Let A be a uniformly closed right (left) ideal in the
algebra of operators on X. If T belongs to A so do S, N, and E(a) with
oga,

Proof. By condition b of §2 T, with 0€ & possesses a bounded
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everywhere defined inverse 7.'. Let us define P, by P,x=T;'E(«x)x,
rzeX, 0éwa. P, is a bounded everywhere defined operator. Now

TPua=T(T;'E()x)=(TT;" (E(a)x)=E(x)x .
Also
PTa=T;'E(«)Tz=T;"TE(a«)x=(T;'T)E(a)x=E(a)x .

Hence if 0¢ « then E(a)e 2. Note that this fact remains true even if
A is not uniformly closed. Now by Lemma 1 Se? and therefore
Ne U too.

COROLLARY 1. If T s compact then so are S, N and E(a) (0¢ «).

COROLLARY 2. If T s weakly compact then so are S, N and E(«)
with 0¢ a.

COROLLARY 3. If TXCY where Y is a closed subspace of X, then
SXcY and NXCY and E()XCY, 0¢«. Hence

SXUNXU U(E(a)X|0¢)cTX

and if the range of T is separable so are the ranges of S, N and E(x),
0¢ .

COROLLARY 4. If AT=0 (TA,=0) then AS=A,N=0 and A,E(a)=0,
0¢a (SA=NA=E(@)A,=0 if 0¢ ). In particular T s a spectral
operator of finite type if and only if some power of N annihilates T.

COROLLARY 5. If Ta=0 then Nxz=Sx=E(a)x=0 where a does not
contain 0.

COROLLARY 6. If (x,) s a bounded sequence of wvectors, and the
sequence (Tx,) has a limit then the sequences (Sz,), (Nw,) and (E(x)x,)
with 0¢ @ have limits.

To prove these corollaries one has to note that:

(a) The classes of compact and weakly compact operators are uniformly
closed two-sided ideals. (See [3] Chapter 6).

(b) The classes of operators A satisfying AXcCY or 4,A=0 are uni-
formly closed right ideals.

(c) The classes of operators A satisfying Ax=0 or A4,=0 or the limit
of Ax, exists are uniformly closed left ideals.

REMARK TO COROLLARY 6. By the proof of Theorem 1 the sequence
(E(a)x,), 0¢ «, has a limit whenever the sequence (7,) has, even if
the sequence (x,) is not bounded.
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THEOREM 2. AT=0 if and only if AE(p—0>)=0 (A=AE(0>)) and
AN,=0. Similarly TA=0 if and only if E(p—<{0>)A=N,A=0.

Proof. If AN,=AE(p—<{0>)=0 then AE(x)=AE(p—{0%)E)=0 if
0¢ «, thus by Lemma 1 AS=0. Now

AN=ANE(0»)+ANE(p—{0>)=AN,+(AE(p—<{0>))N=0 .
Thus AT=AS+AN=0. Conversely if AT=0 then AN,=ATE(0>)=0,
and AE(x)=0 if 0¢ a. Now for each xe X

AE(p—<{0)z=lim AE{z rlrrglzl}x:O
n

by countable additivity.

The second half of the theorem is proved in the same way.

Using Corollary 5 one can prove in the same way that Tx=0 if
and only if Na=FE(p—<{0>)x=0.

COROLLARY 1. If E({0>)=0, then AT=0 or TA=0 if and only if
A=0.

Proof. By Theorem 2 if AT=0 or TA=0 then A=AFE(0>) or
A=E(KO0>)A.

COROLLARY 2. If E(0%)=0 then TX=X.

Proof. If TX=+X then there exists a bounded functional z*+0 such
that #*(T'X)=0. Let Az=a*(x)x, where x, is any vector different from
0. AT=0 and A+#0 which contradicts Corollary 1.

THEOREM 3. If T has a closed range so does S.

1. Proof. Let E({0>)=0 then Corollary 2 of Theorem 2 shows that
TX=X. But by assumption TX=TX, thus TX=X. Also, the operator

T is one-to-one by [1] p. 327 and thus T possesses a bounded every-
where defined inverse. Thus 0¢ o(S)=0(7T) and SX=X.

2. Let E({0>)#0. The operator T, ., is a spectral operator whose
resolution of the identity F(-) is given by F(a)=E(a)E(p—<0>)=FE(«
—<0>), hence F({0>)=0. Now if T, ,xz,—y(yec E(p—{0>)X), then, there
exists a vector # in X such that Taw=y, because T has a closed range.
Therefore

Ty -o(E(p—<07)x)=TE(p—{03)r=E(p—0))To=E(p—0>y=y .
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Hence T, satisfies the same conditions assumed for T in the first part
and therefore 0¢ o(T,-,,) and

S, 0 X=E(p—{0»)X, but S, X=SX,

so S has a closed range.

By the proof of the last theorem it follows that if 7" has a closed
range then 0¢o(T,_,), hence 0 is an isolated point of the spectrum
of T.

THEOREM 4. The operator T has a closed range if and only if
1. 0 is an isolated point of o(T).
2. The operator N, has a closed range.

Proof. We proved that Condition 1 is necessary. Now if Nyz,—vy
then E(C0Y)Na,—~E(0>)y but E(O0Y)N,=N, thus E(0>)y=y. Also N,
=TE(0>) and T has a closed range, thus if T(E({0>)x,)—y then for
some z, Tw=y. Hence TE(0>)x=Nx=E({0>)y=y. Conversely if 1.
and 2. are satisfied let T@w,—y. Then

TE(p—<0))zn+TE(K0)x.=TE(p—<0>)2n+ Ne@n
= y=E(@—L0)y+E(K0>)y .
Multiplying this equation by E(p—<0>) and E(<{0>) one gets the following
two equations

TE(p—<0>)x, — E(p—<0>)y
Ny, g E(<0>)y
By 1. T,_, possesses a bounded everywhere defined inverse. Hence,

for some a; in E(p—<{0>)X, Ta,=FE(p—{0>)y.
By 2. for some vector x,, Nw,=FE({0>)y. Thus

T(x,+ E(L0>)x,) =T+ Nyx, =y.
4. Properties of spectral points. Let A be a bounded linear operator
on X, define

o,(A)={2]AI—A is not one-to-one}
o(A)={2|1I—A is one-to-one and (A/—A)X is dense in X, but not
equal to X}.
o,(A)={2|2I—A is one-to-one and (AI—A)X+X}.
(See [6] p. 292.)

The sets o,(4), . (A) and o,(A4) are disjoint and
o(A)=0,(4)Uc(A)Us(A) .
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THEOREM 1. If T is a spectral operator of finite type, then A€ o, (T)
if and only if E(D)#0, and A2eol(T) iof and only if E(A))=0, and
reo(T). Thus o(T)=0,(T) v o(T).

Proof. If E((D)+0 let xe EKD)X, ©¢0, then

Sx:SU(T)#E(OZ/’)x:SU(T)#E(d#)E«D)x:M :

Let v be the first integer such that N’x=0, then
TN x=SN"'2+Nx=N""'Se=IN""z ,

therefore 1e o, (T). If E((2>)=0 then Corollary 2 of Theorem 2, §3,
applied to AI—T, shows that (A[—T)X=X. Also, by [1] Lemma 1, 2/—-T
is one-to-one and thus 1€ o (7).

THEOREM 2. o (S)CTa(T) and o,(T) v o (T)T oy (S).

Proof. If 1€ o4S) then E({2>)=0, and by the last part of the proof
of Theorem 1, 1€ o,(T). Thus c(S)co(T) and

e T) U (T)=0(T)—c(T)Co(T)— o (S)=c(S)—o(S)=0,S) .

If E(K2)=0 then 2e€s,(T). Let us examine therefore the case
where E((2>)#0. To simplify notation assume that 1=0.

THEOREM 3. Let E({0>)+0 then
1. 0eo(T) if N, is not one-to-one on E({0>)X.
. 0ea(T) if N, is one-to-one on E({0>)X and N(E(0)X)=E(0>)X.
3. 0eo/(T) if N, is one-to-one on E(0>)X and N(E(05)X+#E(0)X.

Proof.

1. If there exists a vector x such that x+0, x=E(0>)x and
Nyx=0 then

Tw=TE(0>)x= Nz=0

2. The operator T',_,, is one-to-one on E(p—<0>)X by [1] Lemma
1. Now if N, is one-to-one on E({0>)X then T is one-to-one on X: If
Tx=0 then E(K0>)Txz=Nwa=NEK0)z=0 and TE(p—<0>)x=T,_oE(»
—{0>)z=0. Thus E({0>)x=0 and E(p—<0>)x=0, but then x=E«(0>)x
+E(p—<0>)x=0. Now by Corollary 2 of Theorem 2, §3

TP-<0>E(p - <O>)X: E(p - <O>)X
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and by assumption

NX=E(0»)X

but
TXOT, o Ep—{0)X
and
TX>N,X
therefore
TX-X.

3. By Part 2, T is one-to-one. Let a be a vector in E(<0>)X whose
distance from N, X is greater than some positive number ». Let y be
any vector in X. Then

lo—Ty|=|o—Ny—TE@p—L0>Ww| .

Hence

m—Tylg-AlZ1E(<0>)[w—Noy—TE(p—<o>>y]1

71% o= NECOWI= T

Hence
xeéTX.

The next theorem is valid for separable spaces only.
THEOREM 4. If X s separable, then o, (T)Uo(T) is countable.

Proof. Theorems 1 and 2 show that o,(T)Us(T)Co,(S)= {2 E(D)
#0}. For any 1 in o,(S) let x, be a vector satisfying |x,|=1 and
E(D)xy==x,. Now if 2,1, then
lxxll 1

M M

|xxl—%lz-}ﬁ|E<<xl>)(xxl—xkz)|:

The set {x,]|1€0,(S)} is separable because X is, hence the set is
countable.

We conclude this discussion by studying another subset of the
spectrum.

DEFINITION., Let A be a bounded linear operator on X, then s,(A4)
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= {1|there exists a sequence (z,) such that |z.|=1 and (AI—A)x,—0}.
See [5] p. b1.

LEMMA 1. o,(S)Col(T).
Proof. Let x+0 satisfy Sx=2ix. If for some n, N*x=0, let us
take the first such integer. Then
TN '2=(S+N)N* ‘o= N""'Sx=IN""x ,
and thus 1€ o, (T)Co(T). If for every n, N"x+0 then

(N"@) _ Ny Ne _, Nz, N*o
TIN%I 5+ )IN"-?’I IN*z| = |N"z|

It is enough to show that for some subsequence n;

| N7 |
Let us assume, to the contrary, that for some ¢>0 |N"*'z|=¢|N"xz| for
all n, then

i

lw|=< | Nz| gﬂ\@,lé e < [ N"z|

but this would imply that
lim /| N*|=1lim /| N*| /' [«| =1lim sup /| N"z|

n->00 n—>c0 ”

>lim sup &7 || =« .

n—>o

But N is a generalized nilpotent and thus lim*|N"|=0.

n—oo

THEOREM 5. o(T)=ay(T).

Proof. By Theorem 2 and Lemma 1 o,(7)v o (T)Co,(S)Coy(T).
Thus it is enough to show that o, (T)Co(T). Let 1€ (T) we may
assume that 1=0. If 0¢€ oy(T) then |Tz|=c¢|z|, v € X, for some positive
e. This implies that 7X has a closed range, but 7X=X hence TX=X,
which contradicts the assumption that 0e o (T).

Let us conclude this section with a few examples.

1. Define in [, the generalized nilpotent operator N by

N(xv Lzy L3y ** '):(372, O; &y, 0’ i ')

and let S=0. S is compact while T is not weakly compact.
2. Let X be the space of continuous funections on [0, 1] vanishing
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at the point 0. Define N by Nf=g, g(w)=g”f(s) ds, and let S=0. S
0

has a closed range while 7' does not. 0e€s,(S) but 0¢e o (7).
3. Let N be defined as in 2, and S=I. T and S have closed
ranges but the range of N is not closed.

5. Decompositions of spectral operators. Let T4, ---, T, be n com-
muting operators. There exists a minimal algebra of operators 2, with
the properties :

1. T,e¥, i=1,2,.--,m.

2. If UeA and U is a bounded everywhere defined operator then
Ute .

3. The algebra 2 is uniformly closed.

This algebra will be called the full algebra generated by T}, ---, T,,
and it is a commutativealgebra. Let 4y denote the space of homomor-
phisms from A to the algebra of complex numbers. By Condition 2,
and the Gelfand theory [4], if Ue U then o(U)={(U)|pe 4y} ; thus if
#(U)=0 for each pe 4y then U is a generalized nilpotent.

LEMMA 1. Every scalar operator S is the sum S,+iS, where S, and
S, are scalar operators and

1. S.8,=8.S..

2. o(S) and o(S,) are sets of real numbers.

3. The Boolean algebra of projections generated by the resolutions
of the identity of S, and S, is bounded.

Proof. Let E(-) be the resolution of the identity of S; then

S— SzE(dz) - S(x Vi) E(de) = SxE(dz) +iSyE(dz)

:SAEl(d/I)—i—iSzEz(dZ)
where
E(ax)=E{z|z=a+y and zec a}
E(a)=E{z|z=x+1y and y e a}
Conditions 1, 2, and 3 are readily verified.
THEOREM 1. Let T be a spectral operator. Then there exist two
operators R and J such that
1. T=R+4J and RJ=JR

2. The sets o(R) and o(J) are real sets.
3. R is a scalar operator and J is a spectral operator.
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4. The Boolean algebra of projections generated by the resolutions
of the identity of R and J is bounded.

If R, and J, satisfy Conditions 1 and 2, then they are spectral
operators and there exists a generalized nilpotent M such that

R=R+M, Ji=J+iM .

REMARK. By the last assertion and Theorem 8 of [1] Conditions 1,
2, and 8 insure uniqueness. We shall call R the real part of 7 and
J the imaginary part of 7.

Proof. Let T=S+N. Using the notation of Lemma 1, put R=S,,
J=_S,—iN, and Conditions 1., 2., 3., and 4. follow by Lemma 1. Now,
if R, and J; satisfy 1., and 2., then by Theorem 5 of [1], the operators
R,J, R, J, commute. Let % be the full algebra generated by these
operators, if pe 4y then

0=p(T—-T)=p(R—R)+ipnJ—J)
but y(R—R,) and p(J—J,) are real numbers by Condition 2. Hence
HE—R)=p(J—J,)=0.
Thus if M=R—R, then M is a generalized nilpotent and J—J,=¢M.

LEMMA 2. Ewvery scalar operator S can be written as the product of
two scalar operators T, and T, which satisfy

1. T\T,=T,T,=S.

2. o(T)) is a set of mon-negative numbers and o(T,) is a subset of
the unit circle.

3. The Boolean algebra of projections generated by the resolutions of
the identity of T, and T, is bounded.

Proof. It follows from the multiplicative property of the spectral
measure E(-) of S that

S:SZE(d,Z)=S 12 IE(dl)Ssgn AE(d2) .
Thus S=T.T, where
7= (101 8@n={pEB@p it B()

is defined by
E(=E{| 12| ea)

and
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T,— Ssgn AE(d))= S/lEz(d/l)

where
Efa)=E{|sgniea} .

It is easy to verify Conditions 1, 2, and 3.

THEOREM 2. Let T be a spectral operator. Then there exist two
operators P and U such that

1. T=PU=UP.

2. o(P) i1 a set of non-negative numbers and o(U) is a subset of
the unit circle.

3. U s a scalar operator and P is spectral.

4. The Boolean algebra of projections generated by the resolutions of
the identity of P and U 1is bounded.

If P, and U, satisfy 1. and 2., then they are spectral operators and
U,=U+N, P,=P+N, where N, ond N, are generalized nilpotents and

Ny= 3 (—=NU-)yP .

n=0

REMARK. By the last assertion Conditions 1, 2, and 38 insure
uniqueness. The operator P will be called the absolute value of 7' and
U the argument of 7.

Proof. Let T=S+N. Using the notation of Lemma 2 put P=(T}
+T5'N) and U=T,, then PU=T because T.N=NT, (Theorem 8 of [1]).
Now, Conditions 1, 2, 8, and 4 follow by Lemma 2. Let P, and U,
satisfy 1 and 2; then by Theorem 8 of [1], P, U, P, U commute.
Let 2 be the full algebra generated by these operators. If pe 4y then
wUT)=pP)(U)=p(P)(U) and by Condition 2 px(P)=p(P,) and #(U)
=u(U,). Thus N,=U,—U and N,=P,—P are generalized nilpotents.
Now

T'=UP=(U+N,)(P+N,)= UP+N,P+UN,+N.N,
or
—PN,=(U+N)N,
hence
N,=—(U+N,)"'N.P
=~ (S (1)U NP NP= 3 (~U NP

=0

In order to apply these theorems we need the following result.
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THEOREM 3. A spectral operator T is a scalar operator whose
spectrum lies on the unit circle if and only if : T is a bounded every-
where defined operator, and there exists a constant M such that

| ™ <M n=+1, +2, +--.

Proof. 1If T=S[  AE(d2) then

Al
IT"lz.Sm_ A"E(dx)lgzl sup {|E(«)| |« a Borel set}

by [1], p. 341. Conversely assume that |T"|<M n=+1, +2, --- then

[iuT [41>1
R(; T)=
[— >, (T 121<1
n=0

because that two series converge. Thus «(T)c {2| |A|=1} and |R(1; T)|
<M]J|1—{4|| if |2]#1. By Lemma 3.16 of [2] if T=S-+N, where S is
scalar and N is a generalized nilpotent, then N*=0. Hence

Tr=S"+nNS"" .

Therefore nN=(T"—S")S-®",
Thus nN is a bounded sequence of operators and therefore N=0.

LEMMA 8. Let S, and S, be two commuting scalar operators with
real spectra, if S,+S, is spectral then it is scalar.

Proof. Let S;+8S,=S+N where S is scalar and N is a generalized
nilpotent. By Theorem 3 the operator ¢fS*M=¢". ¢ s a scalar
operator, but

€S+ M) — giSgiN — giS | NgiS i Liy)nﬂ

Ferl Y B

hence

iNe's 2 GN)"" g

n=1 n'

e > n—1
but the operator ie® Z(z—N)' —— possesses an inverse and thus N=0.
a1 p!

THEOREM 4. Let S, and S, be two commuting scalar operators, tf
S,+S, is spectral then
1. S,+8; is a scalar operator.
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2. The real (tmaginary) part of S,+S, is the sum of the real
(tmaginary) parts of S, and S,.

Proof. Let S;, S, and S,+S, be decomposed into real and imaginary
parts as in Theorem 1. Then

S1:R1+7:J1 ’ Szsz'l‘?;Jz ’ S1+Sz—_—R+?:J

where R, J,, R,, J, and R are scalar operators, while J is spectral, and
would be scalar if and only if S;+S, is a scalar operator. The operators
R, J,, R,, J, commute and thus by the Gelfand theory [4] R,+R, and
J,+J, have real spectra. By Theorem 1 R, +R,=R-+M and J,+J,=J
+4M, where M is a generalized nilpotent. By Lemma 3 the operator
R,+ R, is a scalar operator, but R is scalar too, thus by Theorem 8 of
[1] M=0. Now J,+J,=J which is a spectral operator and, again, by
Lemma 3, J is scalar. Thus S,+S, is scalar and R,+R,=R, J,+J,=J.

THEOREM 5. Let S, and S, be two commuting scalor operators. If
S.S; is spectral then
1. S.S, is a scalar operator.
2. The absolute value (argument) of S.S, is the product of the ab-
solute values (arguments) of S, and S,.

Proof. Let S, S, and S.S, be decomposed as in Theorem 2.
S1:P1U1 9 SZ:PZUZ SpSz:PU .

The operators U,, U, U, P, and P, are scalar, and P is a spectral
operator, which is scalar if and only if S,S, is scalar. Using commuta-
tivity of the operators in question and Theorem 2 we derive that

P1P2=P+Nz ’ U1U2=U+N1 ’

where N, and N, are generalized nilpotents and N,= >\ (—N,U)"+'P.
By Theorem 3, N;=0 and hence N,=0 too, which proves the second
assertion. In order to complete the proof it remains to show that PP,
is scalar. Now P is spectral, let P=P,P,=S-+M where S is scalar and
M a generalized nilpotent. Let E(-) and F'(-) be the resolutions of the
identity of P, and P, respectively. Denote E{1[1>¢}=FE, and F{i|2
>e} =F,, then the spectrum of E, P.F. P,=SE, I, +ME. F, on E.F, X
is contained in the set {i|1=¢¢,} by the Gelfand theory. The operator
log (E. P.E.P,) is thus well defined and it is not difficult to show that
it is equal to log (E. P)+log (E.P,). This sum is spectral by [1], p. 340,
and by Theorem 4 it is scalar. Thus E. P,/F. P, is scalar and therefore
ME. F.,=0. By countable additivity ME,F,=0 but P.E,=P, and P,F,
=P,. Thus
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PP,=P.E/PF,=SEF,+MEF,=SE,F, ,

but P,P,=S+M, hence S+ M=SE,F,, therefore S=SE F, and M=0 by
Theorem 8 of [1]. Hence P,P,=S is a scalar operator.

REMARK. From Theorems 4 and 5 it follows that the sum or pro-
duct of two commuting spectral operators is spectral, if and only if, the
sum or product of their scalar parts is scalar.

A decomposition of a non-spectral operator A into real and imagi-
nary parts is possible in some cases.

THEOREM 6. Let A be an operator and o(A)C K where K satisfies

1. There exists a function f which is analytic and one-to-one in a
netghborhood of K.

2. The image of K is a subset of the unit circle.

3. The inverse function of f exists and is analytic tn a neighborhood
of the unit circle, let us denote this function by g.

4. 9R)=9() if lz|=1.
Then A=A,+1A, where o(A)) and o(A,) are sets of real numbers and
AA,=AA,. If A=B,+iB, where B, and B, satisfy the same conditions
then Bi=A,+N and B,=A,+iN and N is a generalized nilpotent.

Proof. Let ¢(z)=g(1/f(z)) then ¢ is analytic in a neighborhood of
K and for ze K, ¢(z)=z. Define

A=ATeA) g a=ATeA)
! 2 ’ 24

If A is the full algebra generated by 4 and pe dy,

(A= HA T ((A)
2

is the real part of x(A4), and p(4,) is the imaginary part of x(4). Thus
the first part of the theorem is proved. The second part is proved as
in Theorem 1.

We conclude this section by a study of roots of operators. The
operator B is said to be an nth root of A if B*=A. The operators A
and B commute AB=BA=B"*'. Let % be the full algebra generated
by B. If pe dy then p(B)*=p(A) thus

o(B)C (a(A)"

Thus if B"=I then o(B)c {2]2"=1} and hence is a finite set. By
Theorem VII. 3.20 of [3], B is spectral and by Theorem 3, B is a scalar
operator. Thus



THE RELATIONS BETWEEN A SPECTRAL OPERATOR 65

n—

B= 3 ¢*"i"E), where E;=F,, E.E,=0

k=

if k#4, and 7o, E.=1.

-

THEOREM 7. Let S be a scalar operator with real spectrum whose
resolution of the identity is E(-). Let Slzgx’/"E(dZ) where arg Vn

=(arg A)/n. If S, satisfies S}=S, then o(S,)C (a(S))'", and if «(S,)c {2'*|2
€ o(S) and arg 2'"=(arg A)[n} then

S,=S,+N and N=NE0>) and N =0.
Proof. The operators S, and S, commute by [1] p. 329. Let U be the

full algebra generated by them. If pgedy then g(S)=px(S,) and thus
S,—S,=N is a generalized nilpotent. Now

(1) S=S”=S?+nNS?-1+i(752“_1lMSq—z+ cee FNP=SP
therefore
N(nS?’1+ﬁ(%llNSq—z+ cer £ NHY=0

but by Corollary 4 of Theorem 1, Section 8, NS?'=0. Thus by Theorem
2 of §3, N=NE({0>), but then NS?=0 for every integer ¢. Instead of
(1) we have, therefore,

S=8"+N* or N*=0
which completes the proof.
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