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Introduction. The aims of the present remarks are similar to those
pursued by L. Fejer in several papers in the early nineteen thirties and well
described by the title of one of his paper: Gestaltlίckes ύber die Partial-
summen und ihre Mittelwerte bei der Fourierreihe und der Potenzreihe.
However, the means which we use to realize these aims are different.
Fejer discovered the remarkable behavior of certain Cesaro means, es-
pecially that of the third Cesaro means for even or odd functions of
certain simple basic shapes. In what follows we show that the de la
Vallee Poussin means possess such shape-preserving properties to a much
higher degree thanks to their variation diminishing character.

Before stating our results, we have to explain a few concepts.

Variation diminishing Transformations on the Circle. If a19 a2, , an

s a finite sequence of real numbers we shall denote by v{a) or v(av) the
number of variations of sign in the terms of this sequence. By the
number vc(a) of cyclic variations of sign of our sequence we mean the
following: If all av—0 we set vc(a) = 0. If α^O we set

vo(a) = v(ai9 aι+19 , an9 a19 α2, , α f_i, α4) .

If we think of the αv as arranged clockwise in cyclic order, it becomes
obvious that vc(a) does not depend on the particular non-vanishing term
at we start with. Notice that vc(a) is always an even number. Let
now f(t) be a real-valued function of period 2π. Let tl9119 , tn be such
that

(1) ίi<*a< ••• <tn<t1+2π .

We may now define the number vc(f) of cyclic variations of sign of f(t)
by

(2) vc(/)=supi;β(/l(ίv)),

the supremum being taken for all finite sequences {£v} subject to (1).
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Also vc(f), if finite, is even. Thus vc(sin £) = 2, vc(sin2£) = 4, vc(|sin t\) = 0.
We now describe what is meant by a variation diminishing trans-

formation on the circle (See [4]). Such a transformation is characterized
by a non-negative weight-function, or kernel, Ω(t), of period 2π, of
bounded variation and normalized by the conditions

(3) . — [*Ω(t)dt = l,
2π Jo

Let f(t) be an arbitrary periodic function, with period 2ττ, real-valued
and integrable (cf. §1.2) let us form its convolution transform

(4) g(t) M
2π Jo

We say that this transformation is variation diminishing provided that
the inequality

(5) vc(g)^vc(f)

holds for each /. We mean the same thing if we say that Ω(t) is
a variation diminishing kernel.

V-means. One of our aims is to show that the de la Vallee Poussin
kernels

( 6 ) »•<«)= ^

the Fourier expansion of which has the simple form

^ vt ,
ί2n\ -n
\n)

7

(n — v)\

possess the property of being variation diminishing for % = 1,2, 3,
For Ω(t) — ωn{t) the transformation (4) becomes

() 2

and defines the de la Vallee Poussin means, or simply F-means, of the
function f(t). It is easily verified (See [14] and [5, p. 15]) that Vn{t)
is a trigonometric polynomial of an order not exceeding n, which is
readily expressed in terms of the Fourier coefficients of f(t). Indeed, if

( 8 )



ON DE LA VALLEE POUSSIN MEANS AND CONVEX MAPS 297

we obtain by convoluting (6') and (8)

\n)

In terms of the real Fourier series (2cv = αv—ibv)

(10) j\t)~ 1 ao+ Σ
2 i

we find

1 1 n

(11) Vn(t) = ±ad+ -n*••-- - Σ
2 /2?z\ i

U/
or

(12) y n ( i ) = ^ + £ _ ? L ! T - ^ - Γ ^ . cosvί + &v sinvί) .
2 i (n—v) ! (w—v) !

Main Results. Our principal result is the following

THEOREM 1. The inequalities

(13) vc(Vn)^Zc(VnUvc(f)

hold for an arbitrary integrable function f{t). (We let Zc(Vn) denote the
number of real zeros of Vn(t) within a period including multiplicities.)

The first inequality vc(Vn)^Zc(Vn)f which is obvious, shows that
Theorem 1 states considerably more than the variation diminishing pro-
perty of the kernel ωn(t) which amounts to vc(Vn)^vc(f). In Part I we
give two proofs of Theorem 1, both based on a theorem due to Sylvester
[12]. The first proof uses the result of Sylvester's theorem, the second
uses the method of one of its proofs.

In Part II we discuss applications of the variation diminishing pro-
perty of V-means. Theorem 1 gives a useful lower bound for vc(f) if
a certain number of Fourier coefficients of f(t) are known. It is shown
how this implies easily some results by Sturm, A. Hurwitz, Pόlya and
Wiener. In §5 we study the simplest classes of discontinuous periodic
functions the behavior of their F-means is described by Theorems 3
and 4. Fejer's Theorem III [1, p. 86] has an analogue for F-means
which is our Theorem 5 below. All this refers to real periodic func-
tions. However, the shape-preserving properties of T-means appear to
best advantage if applied to complex-valued periodic functions.
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Let us state here the main result of §6 concerning convex maps of
the circle. Let K denote the class of those "schlicht" power series
ΣΓ&,2V which map \z\<1 onto some convex domain. Let

(14)

n )

be the de la Vallee Poussin mean, or F-mean, of the power series (14).
It is known that the partial sums of the series (14) need not belong to
K. G. Szegδ has shown [13] that if F(z)eK then all partial sums of
(14) are "schlicht" in the circle |s |<l/4 and map it onto convex do-
mains, and that 1/4 is here the largest constant. That the F-means
belong to K is one part of the following

THEOREM 2. For

(16) f(z)eK

it is necessary and sufficient that

(17) Vn{z)eK for w=l, 2,

The sufficiency part does not even assume the regularity of (14) in
the unit circle, as for any formal power series (14) the assumption (17)
imply that (14) converges and defines an element of K.

Additional Results. Parts I and II are followed by two appendices
which contain related materials, but are almost independent of the main
text.

Appendix I brings out a certain analogy between approximations to
two kinds of functions: periodic functions and functions defined in
a finite interval. It will be shown that the shape-preserving properties
of the F-means, which approximate functions of period 2ττ, are analogous
to the shape-preserving properties of the so called Bernstein polynomials
which approximate functions defined in [0,1]. For the definition of these
polynomials see §7 where also their variation diminishing property
(Theorem 6) is stated and proved.

Appendix II is devoted to a conjecture on power series which re-
present a conformal one to one mapping of the unit circle onto a convex
domain. The conjecture is that the Hadamard composition, or convolu-
tion, of two such power series is again a power series of the same kind
(see §9). We do not know whether this conjecture is true or not (it
seems to us more likely that it is true) but at any rate, in view of the
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partial results which we have obtained (§§10 and 11), the problem to
prove or to disprove the conjecture seems to us worth while.

PART I. THE DE LA VALLEE POUSSIN SUMMATION
METHOD IS VARIATION DIMINISHING

1.1 A theorem of Sylvester. In the course of his work on Newton's
rule of signs J. J. Sylvester discovered a remarkable theorem concerning
the real zeros of polynomials of the form

(see [12, p. 408], [7] and also [9, vol. 2, Problem 79, p. 50]). In Sylvester's
theorem q may assume any positive integral value, a fact which is im-
portant for its proof which proceeds by induction in q. We need
Sylvester's result only for q=2n and state it as follows.

LEMMA 1. Let ξλ<ξ2< ••• <fm, (m^2), be given reals and consider
the polynomial

(with real cyψ0 for all v), which we assume not to vanish identically.
Then

Z(P; -co<:χ<Cco)^v(clf c2, •• ,c w , cx) ,

where the left side denotes the number of real zeros of P(x) while the
right side is the number of variations of sign in the sequence displayed.

The significance for us of Sylvester's results is that it easily yields
the following

LEMMA 2. Let

(1.1) - τ r < r 1 < ^ < ••• <τm<π,

be given reals and consider the trigonometric polynomial

(1.2)

(for real c^ΦO for all v), which we assume not to vanish identically. Then

Z(T;-π<t<π)^v(clf c2, ---,cm, cλ) .

Proof. We introduce the new variable
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(1.3) α=tan~ -π<t<π

whose range is •—oo<o?<co. The images of the rv we denote by

and these give rise to the identities

nY
2 / (1+α χi+S)

Thus (1.2) may be expressed in terms of # by

where the γv are positive and so Lemma 2 immediately follows from
Sylvester's Lemma 1.

We now recast our result in the following more useful form;

LEMMA 3. Let τlfτ.if

 β ,~m (m^2) be m points in counter-clockwise
order on the circle such that τm should not overtake or even reach τx.
We may express these requirements by assuming that

(1.4) TX<T2< .-. <τm<τ1+2π .

Let

(1.5) Γ»(ί) = Σcvωn(e-rv) ,
V = l

where at least two among the cv do not vanish. Then

(1.6)

Proof, By omitting vanishing terms in (1.5) we may assume that
cvΦθ for all v. Moreover, a change of variable by t~tf—π will evi-
dently not alter the left hand side of (1.6). This implies that in our
statement (1.6) we may replace Tn(t) by the polynomial T(t) defined by
(1.2). By a second appropriate transformation t — f+c we may replace
the conditions (1.4) by the more restrictive inequalities (1.1), at the
same time making sure that T(π)Φθ. But then

and Lemma 3 is established,
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1.2. On the number of variations of a function. The reader may
interpret the term " integrable " either according to the definition of
Riemann or to that of Lebesgue, or to any other definition that involves
the familiar standard properties of the integral. We emphasize the
following property: If f(t) and g(t) are integrable and/(£)Ξ>0 in the
interval J, then

[fdt=0

implies

[fgdt = 0 .

We consider now a real-valued periodic function f(t) with the period
2π, we assume that it is integrable in the interval (0,2ττ) and that ve(f)f

as defined in the Introduction, is finite. We consider t (mod 2π), that
is, we consider t as attached to a point on the periphery of the unit
circle. If vc(f)=2k9 we can, as easily seen, divide the circumference
of the unit circle into 2k consecutive arcs

(1.7) Il9Ii9 •••,/»

such that

(1.8) (-lΓ-VW^Oin/v

for v=l, 2, , 2k the arcs (1.7) may be open, or closed, or open from
one side and closed from the other, some of them may even reduce to
a single point. Now, we normalize f(t), that is, we change f(t) (if
necessary) as follows: we set/(£)=0 in all points of any interval (1.7)
on which \fdt vanishes especially, if an interval listed under (1.7) con-
sists of just one point, we set/(£) = 0 in that point. This normalization
cannot increase (but may decrease) vc(f) and leaves unchanged the V-
means of / (cf. the initial remark of this section). Therefore, it will
be sufficient to prove Theorem 1 for normalized functions. If, however,
vc(f) = 2k for a normalized f{t), the intervals (1.7), constructed as above,
have the property

(1.8') (-iy-ι[ f(t)dt>0 for * = 1, 2, •-., 2k .

The foregoing remarks will be useful in the following proof of
Theorem 1. Yet we do not need them in establishing the weaker ine-
quality

(1.9)
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for a Riemann-integrable function /.
Indeed, let us consider the integral

2π Jo

and its approximating sums

n, m{t)= Σ ^ 4 t ~ )/( —)Σ 4 ) (

Lemma 3 and definition (2) imply

m

or

Since Vn,Jt)-±Vn{t) for all t, as m->^y the last inequality evidently
implies (1.9). An " approximation argument" extending (1.9) to a more
comprehensive class of functions is easy, but hardly deserves to be
presented here.

1.3. A first proof of Theorem 1. The first inequality (13) is im-
mediate and so the essential assertion of Theorem 1 consists in the
inequality

(1.10) Zc(Vn)£vc(f) .

If vG(f)^2n there is nothing to prove; also if vc(f) = 0 for then
Vn(t) clearly can not vanish. Let us assume, then, that fit) is "nor-
malized" according to §1.2, and that 0θ c(/)=2/b<2^, and let us divide
the unit circumference into the 2k consecutive arcs (1.7) which satisfy
the conditions (1.8) and (1.8') We may then write the Fourier coef-
ficients of f(t) in the form

αa=if*ίΛί)dί=Σlf |/(ί)lώ-Σ-( \f(t)\dt
π Jo s-iπjr^^ >-iπji2s

(1.11) α v=—ίΛ/(ί)cosj/ίdί=Σ—f \f(t)\ cosutdt
π Jo i π J-τ2s-i

- Σ —
1 7Γ

()
7Γ JO 1 7Γ
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- Σ — [ \f(t)\8inutdt.
i τrJ/2s

v = l, ••, n;

Consider in the 2^-dimensional space Em the closed curve Γ defined in
parametric form by cos^ί, ύnvt (Wl, , n; 0^t^2π). To the division
(1.7) of the circumference into the arcs Iμ, corresponds a division of Γ
into arcs

(1.12) Λ,Γ 2 , . . . , Γ a ,

where we think of the arc Γμ as carrying the positive mass

(1.13) - ( \f(t)\dt.

This mass has a centroid the coordinates of which, multiplied by (1.13),
are

(1.14) —f |/(£)|cos vtdt, JL( \f(t) sin vbdt (v=l, , w) .

By a well known theorem of Caratheodory the mass (1.13) of Γμ may
be concentrated in a finite number of points along Γμ so as to produce
the same centroid (1.14). This we do for each of the arcs (1.12).
Arranging all these points in cyclic order along Γ we obtain points τly τ2,
•• ,rm and corresponding coefficients c2, c2, , cm where ( —l)μ"1c j>0
when r, belongs to Iμ. In view of the relations (1.11) we obtain

(1.15) αu — 5>j> ^ . ^ Σ ^ j cosvτj, 6v = Σcj sin

j = l j = \ j = l

(1.16) ve(cj)=2k=ve(f) .

We consider now the trigonometric polynomial

(1.17) i ΣcJβ>,(ί

and claim that

(1.18) B\t)=VΛ{t).

Indeed, by (6')

ι-v)\
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= Έfis\ 7Γ + Σ - : '~rr -r-^-r—- (COSvί COSvr, + Sinvί sfrlvrλ \ ,
J (2 *=i(n~v)\ (n+v)\ )

and interchanging the order of summations, we obtain by (1.15)

F(t) = \aQ + ± nl ™L (av cosvέ+6v sinvέ)

which is identical with Vn(t) by (12). Finally, by (1.17), (1.18), (1.16)
and Lemma 3

which proves the inequality (1.10).

2. A second proof of Theorem 1. The foregoing proof is based on
Sylvester's result which we stated as Lemma 1. We shall now prove
Theorem 1 without assuming the knowledge of this result.

We transform (7) by changing the variables. Setting

#=tan— , £=—cot— ,
Δ Δ

we obtain from (7) (by steps similar to those exhibited following (1.3))
that

(M)

This relation is contained in the more general

(2.2) P(x)=\~ (x-ξ)mA(ξ)dξ

S oo

ξmA{ξ)dξ is absolutely

convergent; P{x) is by the structure of the formula (2.2) a polynomial
of degree not higher than m.

We consider the following quantities connected with (2.2):
N the number of real zeros of P(x), counted with multiplicity
v the number of variations of sign of A(ξ) in the open interval

) is the constant sign, different from 0, that A{ξ) possesses
whenever it is different from 0 in a suitably chosen interval ω<f<oo

waessume here that A(ξ) is normalized in the sense of §1.2
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sgnA( — oo) is similarly defined

7 = 1 |sgnA(oo)-sgn(-l)mA(-oo)|

so that V is either 0 or 1

In fitting (2.1) into the more general pattern (2.2), we can assume
without loss of generality (by rotating the circle through an appropriate
angle) that Vn(π)Φθ, that/(ί) is normalized in the sense of §1.2, and
that 0 is an interior point of one of the intervals of constant sign con-
sidered there, so located that, for some positive £, f(t) takes some non-
vanishing values in both intervals — 6<t<0 and 0<t<£. Under these
circumstances, in the particular case (2.1),

7 = 0 ,

V=v = vc(f) ,
N=Zc(Vn),

and so Theorem I is an immediate consequence of the following.

LEMMA 4. N<,V.

We need several steps to prove Lemma 4.
(a) There are some particular cases in which Lemma 4 is obvious.
If P(x) vanishes identically there is nothing to prove since in this

case, by definition, JV = O.
If V^m there is nothing to prove since, of course, N^m.
If v = 0 and m is even (so that V=V — 0) then P(x) will have for all

real x the constant sign of A(ξ) and so iV=0 as it should be according
to Lemma 4.

If t7 = 0 and m is odd (so that V—rj—Y) then m —1 is even and so

= (° β

has a constant sign for all x, by what we have just said. Therefore,
P(x) is monotone and JV=1 which agrees with Lemma 4.

And so we may and shall assume in the sequel that

(2.3)
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(b) Let c be a point of change of sign for A(ξ) that is, c is the
common endpoint of two contiguous intervals in each of which A(ξ)
keeps a constant sign, yet the two signs (cf. §1.2) considered are op-
posite. The number of such points is v and we have assumed (2.3).

We assert that at least one of the m —1 quantities Pf(c),P"(c), ••-,
is different from 0. If this assertion were wrong, the integral

5 (6—cY
- c o

would vanish for μ=m — l, , 2,1 and, as a linear combination of these
integrals,

(2.4) [~ (ξ-c)Q(ξ)A(ξ)dζ
J-oo

would vanish for any polynomial Q(ξ) of degree not exceeding m—2.
Yet this is certainly false if

(2.5) Q(f) = (a?-Ci)(«-c?) (x-c^)

where c, clf c2, , co_ι are all the points of change of sign of A(ξ); ob-
serve (2.3) in computing the degree of Q(ξ). In fact, with (2.5) the
integrand in (2.4) has a constant sign and so the integral (2.4) cannot
vanish.

We have seen by the way, that under the condition (2.3) P(x) cannot
vanish identically.

(c) Set

(2.6) G(x)=P(x)(x-c)-m

(2.7) P*(x) = {x-c)m+1G\x)
= (x-c)F(x)-mP(x)

where

(2.8) A*(ξ) = m{ξ

and let N*, m*, v*, ψ, V* be just so connected with P*(x) and A*(ξ) as
N, ΎΠj v, V and V are with P(x) and A(ξ). Obviously

(2.9)

and so Ψ — rj. Combining this with (2.9), we obtain
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(2.10) V * = F - 1 .

We intend to prove Lemma 4 by mathematical induction with re-
spect to V. In fact, we have already proved Lemma 4 in the particular
case V=0 under (a). We therefore assume V>1, cf. (2.3), and that
Lemma 4 has been proved for the preceding value (2.10), and so we
take for granted that

(2.11) N*^V* .

(d) Let k denote the number of those zeros of P(x) that coincide
with the point c; obviously &^0, and, by (b),

(2.12) fc^m-1 .

Let &* denote the number of those zeros of P*(a?) that coincide with c.
We set

(2.13) N=k+l, N*=k* + l* .

The quantities / and Z*, defined by (2.13), enumerate those zeros of
P(x) and P*(x), respectively, that fall into one or the other of the two
open intervals — oo<#<c and c<x<&>.

We note the critical term of the expansion of P(x) around the point

By (2.6) and (2.12), G(x) has a pole at the point c and (2.7) yields

k\

We infer that P*(x) has just as many zeros at the point c as P(x):

(2.14) k* = k .

By the way, we have seen that P*(x) does not vanish identically.
(e) It remains to consider the real zeros different from c P(x) or,

which is the same, G(x) has I such zeros, and P*(a?) or, which is the
same, G\x) has Z* such zeros. These zeros are distributed somehow in
the two open intervals, — cχ><x<c and c<x<oo.

By the theorem of Rolle, in each of these intervals at most one
zero can be lost in the passage from G(x) to G'(x), so that
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(2.15) Z * ^ Z - 2 ;

this information is correct, but insufficient for our purpose. We shall
obtain, however, additional information by using the following remark
(cf. [9, vol. 2, p. 39, problem 14]).

No zero can be lost in the passage from G(x) to G\x) in the interval

(~oo,c) if

(2.16) sgnG(-oo)=SgnG/(-oo)

and no zero can be lost in this passage in the interval (e, oo) if

(2.17) sgnG(oo)=-sgnG/(oo) .

The signs mentioned in (2.16) and (2.17) refer to a certain neigh-
borhood of -co or oo and, as G(x) has only a finite number of zeros,
they are certainly different from 0.

(f) We know, cf. (b), that the polynomial P(x) does not vanish
identically. We set

(2.18) P(x)=bΰx
m+b1x

m'1 + - +bm

and distinguish two cases.
Case I. If bo—O, there is an s such t h a t b^—bλ— ••• = 6 s _ 1 = 0, 6s

and so we easily find the initial terms in the expansions around

G ( x ) + , ^ + .
xs G{x) x

In this case, both conditions (2.16) and (2.17) are satisfied, and, by the
final remark under (e), we can improve (2.15) to

(2.19) 1*^1.

Case II. Now

(2.20) δ o =(~ A(ξ)dζΦθ ,

and the expansions around oo begin

(2.21) G(x)=bo+
 mώ* + h±.+ . . .

x

(2.22) G\x)= ^

where
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(2.23) mc&0+&i=mf A(ξ)(c-ξ)dξ .

We again distinguish two cases.
Subcase II, 1. If v — 1, c is the only point of change of sign of A(ξ),

the integrand in (2.23) is of constant sign, and so the integral is dif-
ferent from 0.

Subcase II, 2. If v>2, the integral (2.23) could vanish. Yet in
this case A(ξ) has at least another point of change of sign, clf and we
say that (2.23) and

A{ξ){cι-ξ)dξ

cannot vanish simultaneously: in fact, their difference is

by our present assumption (2.20). Therefore, assuming that the point
of change was properly selected from the start (which boils down to
a proper choice of notation) we may assume that (2.23) is different
from 0, also in the present subcase.

Finally, in both subcases, we conclude from (2.21) and (2.22)

lim _ ^ G M = _mcbo+bι

*->±oo G(x) b0

and we see that just one of the two conditions (2.16) and (2.17) is ful-
filled. Therefore, by the final remark under (e), we can improve (2.15)
to

(2.24) 1*^1-1 .

Thus, even in the less favorable of the two cases I and II, we
have (2.24). Combining this with (2.13) and (2.14), we obtain

and hence and from (2.10) and (2.11) we obtain

or V^N, which is the desired conclusion of Lemma 4.
The foregoing somewhat involved proof becomes more understanda-

ble if it is compared with the proof for Lemma 1 given in [7] or in
[9, vol. 2, p. 50, problem 79].
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PART II. SOME APPLICATIONS OF THE
VARIATION DIMINISHING PROPERTY OF F-MEANS

3. A theorem of Ch. Sturm and A Hurwitz. Let f(t) be a real-
valued, integrable, periodic function of period 2π. Let

(3.1) f(t) = — aύ+ Σ (αy cos vt+bv sin vt)
2 >=i

be its Fourier expansion. Suppose that the partial sum

(3.2) Sn(t) = ̂  a0+ Σ (αv cos vt+bv sin vt)

is known. What can we say about the number vc(f) of changes of
sign of f(t) in a period ? An answer is immediate : Knowing (3.2), we
can compute (11), the n\λι F-mean of f(t), and we must have

(3.3) vc(f)^Zc(Vn)

by Theorem 1.
The information provided by this inequality is strongest when the

right hand side attains its largest value 2n. There is a simple sufficient
condition for this eventuality which we record as follows.

COROLLARY 1. / /

K+δJ)1/a>(2^)(αU

then every function f(t) having (3.2) as the nth partial sum of its Fourier
series, must change sign within a period at least 2n times.

Indeed, it is clear by (3.4) that the last term of the expression (11)
for Vn(t) so predominates that Vn(t) has 2n simple zeros, hence Zc(Vn)=2n.
The statement now follows from (3.3).

We obtain a classical result [2, pp. 572-574] as a very special case.

COROLLARY 2. // aΰ — aι—hι— ••• =αw_1=:6w_1~0, a2

n+b2

n>0, then
vc(f)^2n.

The following is an equivalent formulation. If al+bl>0 then

(3.5) vc{f{t)-Sn^{t))^n .

This second formulation is especially interesting and intuitive because
it shows that the graph of the partial sum S^t) must cross the graph
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of f{t) at least 2n times. Hurwitz's proof of Corollary 2 is direct and
elementary. However, his classical argument is no longer available to
establish other special cases such as the following.

If
-t n oo

f{t)=~~ + Σ cos vt + Σ («v cos vt+bv sin vt)
2 v=i v=n+i

then

For in this case Vn(t)=—ωn(t), hence Ze(Vn)=2n so that (3.3) implies

the result. Such particular examples are easily constructed and we see
no other way of proving them except by the fundamental inequality
(3.3).

4. The simplest Polya-Wiener result concerning high order derivatives
of periodic functions. Let f(t) be a real function of period 2π which
is infinitely often differentiate. Let us consider its zeros and also the
zeros of its successive derivatives. Counting multiplicities as usual we
set

and assume all these numbers to be finite. A familiar application of
Rolle's theorem shows that

(4.1) N<v<^N<v^ ••• ̂ iV( fc)^iV( fc+1)^ . . . .

Can this sequence remain bounded ? This is surely the case if f(t) is a
trigonometric polynomial. The truth of the converse is stated by the
following proposition due to Pόlya and Wiener [8.]

COROLLARY 3. // the sequence (4.1) is bounded and

(4.2) limiVW=2m,

then f(t) is a trigonometric polynomial of exact order m.
Indeed, let (3.1) be the Fourier series of f{t). It is known to

converge under our assumptions and the expansion of /(/b)(ί) is obtained
by formal differentiations of the expansion of f(t). Let us assume that
for a certain n

(4.3) al+bl>0 .

It is clear then from the form of the Fourier series for βk)(t) that this
series will satisfy the inequality (3.4) of Corollary 1, provided only that
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k is sufficiently large, k>K say. But then by Corollary 1

ve(βk>)^2n, (if k>K) .

Thus (4.2) and (4.3) imply that n^m, and fit) must reduce to a
trigonometric polynomial of order ggm. On the other hand, if fit) is
such a polynomial, NC7c)<^2q which implies 2m^2q or m<q, hence q — m
and the theorem is established.

5. The graphic behavior of F-means. We now wish to discuss the
shape-preserving properties of the F-means which are implicitly contained
in the fundamental inequality

(5.1) Zc(Vn)^vc(f) .

It shows that Vn(t) can't oscillate about zero more frequently than f(t)
does. But there is nothing peculiar about the level zero. Indeed, if γ
is any real, then f(t) = γ implies Vn(t) = γ. Thus we may replace in (5.1)
/ and Vn by f—γ and Vn — γ, respectively, obtaining the inequality

(5.2) Zc{Vn-γ)^vc{f-γ) .

A second remark is based on the obvious known fact (see [5, p. 191])
that if fit) is absolutely continuous then VJt) is the F-mean of /'(£).
But then (5.1) immediately gives

(5.3)

This operation may naturally be repeated giving

(5.4)

which is valid depending on how many derivatives f(t) possesses. For
instance, if

/(ί)eC"

inflexion than the corresponding numbers for the graph of /(£).
It is desirable, however, to discuss this phenomenon for functions

of a lower degree of smoothness and the following developments aim
to do that. We consider the class Do of real periodic functions f(t), of
bounded variation, normalized by 2f(t)=f(t + 0)+f(t — 0). A subclass of
DQ is the class Dx of functions satisfying the classical Dίrίchlet condit-
ions. By fit) € D1 we mean that the circle can be dissected into a finite
number of consecutive open arcs in each of which fit) is monotone in
the wide sense.

With each f(t) e Dx we associate an even non-negative integer £(/),
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called the number of sense-reversals of f(t) and defined as follows.
Consider, for a given natural number k, the periodic sequence of ordinates

(5.5) /V=/(J^W^) , h=2πlk,

of period k, and the likewise periodic sequence of differences

v=0, 1, 2, ••• , n—1. We now define S(f) by

(5.6)

The reader is urged to supply proof for the statements implied in this
definition it depends on an analysis of the finitely many points which
have no neighborhood in which f(t) is monotone. If in addition to
f(t)eD1 we assume that f(t)eC then evidently S(f)=vc(f).

Our substitute for (5.3) for the class A is given by the following.

THEOREM 3. If f{t)eDι then

(5.7) vG(V'n)=S(Vn)<^S(f) .

The proof is very simple. Besides the F-mean

we consider the approximating sums

k v

Replacing t by t+h we obtain

k

and therefore

(5.8) ^

By Lemma 3, in view of (5.6), we obtain vc(JVnιJh)<>vc(Jf)^S(f) or
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Because the difference quotient (5.8) converges to V'n(t), as &->oo, for
all t, the last inequality implies (5.7).

There is a similar significant substitute for (5.4) if k=2. In order
to formulate it we define a class of functions f(t) which we denote by
A - By f(t) e A we mean that the circle can be dissected into a finite
number of consecutive open arcs in each of which f(t) is continuous and
convex, or concave, or linear. It is clear that D 2 c A .

With each f(t) e D2 we associate an even non-negative integer T{f),
called the number of turn-reversals of f(t) and defined as follows:
Besides the Δfv we consider the periodic sequence of second differences

and define T(f) by

(5.9)
fc-oo ΊC

Again a proof of the equality of the last two expressions requires the
consideration of the points (finite in number) which have no neighbor-
hood in which f(t) is convex, or concave. If in addition to f(t) e D2 we
assume that f(t) e C" then evidently

T(f)=vc(f").

A substitute of (5.4) for k—2 is given by

THEOREM 4. Iff(t)eD2 then

(5.10)

The proof is so very similar to the proof of Theorem 3 that it
suffices to indicate the main points. In place of (5.8) we now start
from the second order difference quotient

Ί^ΓΣiojn(t
2πh v

and observe that on the one hand it converges to V'ή(t), on the other
hand by Lemma 3 and (5.9)

This last inequality implies (5.10) on letting k->co.
The following remarks concerning the simplest elements of D1 and

D2 are called for: 1. If /(ί)=const, then clearly S(/)=0 and Γ(/)=0.
Conversely, either of these relations is easily seen to imply that/(ί) =
const. 2. The first non-trivial case is
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(5.11)

Functions j{t) satisfying (5.11) are in a way the simplest non-constant
periodic functions and may aptly be called periodically monotone. Likewise
functions with

(5.12) Γ(/)=2

may be called periodically convex.
It is easily shown that (5.12) implies (5.11). That these new terms

are appropriate is also shown by the following two statements.
1. If the periodic function f(t) is monotone (non-constant) in

—π<t<π then S(f)=2, that is, f(t) is periodically monotone.
2. If the periodic function f(t) is convex or concave (non-constant)

in —π<t<π then T(f)—2, that is f(t) is periodically convex.
Observe that the distinction between "increasing" and ' "decreasing"

as well as between "convex" and "concave", drops out for periodic
functions.

We conclude our short excursus into "descriptive function theory"
with a few examples :

S(sin ί) =

Sflsin ί|) = Γ(|sin ί|)=4 .

If /ft) = sin ί + 1 in (-π , 0) and/ft) = sin t in (0, π) then

If/ft) = sin t + t in 0<t<2π, then

S(/)=2, Γ(/)=4 .

From these examples we see that

(5.13)

and this inequality is generally true. We see this if we observe that
for a periodic sequence (5.5) we always have

In view of (5.6), (5.9) and the corresponding relations

ve(f) = ϊim vc(/v)=

we conclude that

(5.14) vc(f)
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It is of some interest to show that the remarkable properties of the
third Cesaro means established by L. Fejer in his Theorems 1, 2 and
3 [1, p. 82 and p. 86] are also enjoyed by the de la Vallee Poussin
means Vn(t). Thus Fejέr's work suggests the following

THEOREM 5. // f(t) is an odd periodic function which is positive
and concave in the range 0<£<π, then

(5.15) 0<Vn(t)^f(t) if 0<t<π (n^

Moreover, the function Vn(t) is also concave in 0<t<π.
The last statement and the first inequality (5.15) are easily proved.

Indeed, it is clear that

(5.16) Ve(f)=S(f) = T(f) = 2 .

Observe also that Vn(t)mθ if ra^l, for Vn(t)=0 would imply Sn(ί) = O,
hence also vc(f)^2n+2^4: (by Corollary 2) which contradicts (5.16).
By Theorem 1 and (5.16) surely

(5.17) SC(F«) = 2 .

Since Vn(t) is a sine polynomial it vanishes at 0 and π. By (5.17)
these zeros are simple and the only zeros of Vn(t). Also by (5.16) and
Theorems 3 and 4 we conclude that

These remarks show that Vn(t) or perhaps — Vn(t) enjoy the properties
to be established. That Vn(t), rather than —Vn(t), has these properties
is shown by observing that

(^Jn~\in^f(τ)dτ , c>0,

(obtained from (7) by differentiation) has a positive integrand and is
therefore positive.

To establish the second inequality (5.15) or

(5.18) Vn(t)Sf(t) 0<t<π,

is a little more troublesome and we resort to Fejer's own method. We
consider the "roof-function"

(I* if
(5-19) /(<)=', "

^π—^ if a^tSπ Q<a<π, b>0,
π—a
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and denote again by f(t) its odd periodic extension. We now observe that
indeed

(5.20) Vn(t)<f(t) , 0<t<π,

for these special functions. Since we already know from our previous

discussion that Vn(t) is positive and concave in (0, π), the inequality
(5.20) is perfectly clear as soon as we can prove that

(5.21) y;(0)</'(0) , V\π)>f'{π) ,

These inequalities, however, follow immediately from previous remarks.

Since f(t) is continuous, V'Jt) is the F-mean of /'(£). Since /'(0) =

sup f\t), f'(π)=mif'(t), we conclude, for instance from (5.2), that

f'(π)<V'n(t)<f'(0) for all t.

The proof of the general inequality (5.18) now follows from the
observation that the function f(t) of Theorem 5 may be approximated
by appropriate linear combinations of roof-functions with positive
coefficients.

6. Convex, and star-shaped, conformal maps of the circle. The
following introductory remark (previously made by one of us see [10,
pp. 226-227]) applies to any variation diminishing kernel Ω,(t) as defined
by the relations (3), (4) and (5) of our Introduction.

Let

(6.1) f{t)-fι{t)+ifm (Λ, / 2 real-valued)

be a complex-valued continuous function of period 2π and let

(6.2)

be its transform g(t) is evidently also complex-valued periodic and we

may write

(6.3) g(t)=g1(t)+ig2(t) , (g19 g2 real-valued).

Since 12 is real and (3) holds it follows that the transforms of fλ{t)9

fit) and 1 are gλ{t), g.£t) and 1, respectively. If A, B, C are arbitrary
real constants it follows that Ag^+Bg^ + C is the transform of
AΛ(£)+-β/2(£) + C Since Ω(t) is assumed to be a variation diminishing
kernel, we conclude by (5) that the inequality

(6.4)
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always holds.
The inequality (6.4) admits a remarkable geometric interpretation.

Indeed, let us denote by {/} the closed curve traced out by f(t) in
the complex plane of the variable z~x+iy as t varies in the range
[0, 2τr], and let {g} be the corresponding curve described by g(t). Let
the following statement, too simple to be called a theorem, be referred
to as a

PRINCIPLE. The curve {g} never crosses a straight line more often
than the curve {/} does.

For if Ax+By+C~0 is the equation of a line L then the two
members of the inequality (6.4) are identical with the total numbers of
crossings of L by {g} and {/}, respectively. In particular we have the

COROLLARY 4. // the curve {/} is convex then {g} is interior to {/}
and {g} is also convex.

Indeed, {/} being convex, it crosses any L at most twice, hence
also {g} crosses any L at most twice and is therefore convex. That
{g\ has no points outside of {/} follows already from the properties

(6.5) Ω(t)^O9M

and in no way requires the sophisticated condition that Ω(t) be variation
diminishing. On the other hand the conditions (6.5) are by themselves
insufficient to enforce the convexity of {g}. It is also true, however,
that the variation diminishing property of Ω(t) is sufficient but far from
necessary for {g} to be convex. As an example we mention the perio-
dic kernel

( π\h if -h^t^h
(6.6) fl(ί)= j Q . f π ^ t ^ h o r h^t^π (0<h<π) ,

which is readily shown to have the ' 'convexity preserving" property
of Corollary 4. However, (6.6) is not variation diminishing because it
is not periodic totally positive (see [4]).

We now turn to an application of these remarks to conformal maps
of the circle, in particular to a proof of Theorem 2 of the Introduction.

Let

(6.7) F{z)=z+c.zz
2+c,z* +

be regular in the unit circle. For a fixed value of r we consider the
complex-valued periodic function

(6.8) f{t; r)^F(reu) = reu+c,f2em+ ••• ,



ON DE LA VALLEE POUSSIN MEANS AND CONVEX MAPS 319

By (6.8) and (9) its F-means are

2π Jo

or

(6.9) Vn(t; r) = Vn(reP) ,

where Vn(z) are the de la Vallee Poussin means of the power series as
defined by (15), with d = l. We also record the more explicit expression

(6.10) ^ **"%^s+ 7%r
n+1 (n+ΐ)(n+2)

φ-l)"Ί

Our Theorem 2 seems now almost self-evident. Indeed, if F(z)eK
then the curve {Vn(reu)} is convex by (6.8), (6.9) and Corollary 4. This
being true for every r < l , we conclude that Vn(z)eK. Conversely, if
Vn(z)eK for every n, then {Vn(reu)} is a convex curve for all n and
all r < l . From the relation

Km Vn(reu)=F(reu)
n-*oo

we conclude that also {F(reu)} is convex. Hence F(z)eK.

REMARK 1. In order to conclude from (17) that F(z)eK it is not
necessary to assume that the power series (6.7) converges in the unit
circle or that it converges at all. Rather the converse part of Theorem
2 holds for a formal power series (6.7). For it is known (see e.g. [9,
vol. II, p. 29]) that the assumptions (17) imply that all coefficients of
the polynomial (6.10) are bounded in absolute value by nl(n + l). Lett-
ing n-+oo we obtain \cv\^l (y = l, 2, •••) which clearly imply the
convergence of (6.7) within the unit circle.

REMARK 2. Let F(z) e K and hence Vn(z) e K. Let D and Dn denote
the convex domains into which the unit circle is mapped by F(z) and
Vn(z), respectively. We know by Corollary 4 that

(6.11)

At this point it is natural to suspect that more is true, namely
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that all the inclusions

(6.12) Ac Ac - c Ac Az+ic .

are valid, but we are unable to prove or disprove this.

REMARK 3. Since numerous elements of the class K are explicitly
known, Theorem 2 is a ready source of polynomials belonging to K.
Thus

(6.13) F(z)=-?--=z+zi + •••
1—z

is in K because it maps the unit circle onto the half-plane ςJfe>— .

The corresponding F-means

(6.14) Vn(z) = - -- H 2n )z + ( 2n V + ••• +zn\

( 2 Λ ι n+1 n+2

are a remarkable sequence of polynomials some extremal properties of
which might be discussed on another occasion. Of course (6.11) holds.

Here the convex boundary of Dn touches the line %lz= to an order

of contact which increases with n. Also the inclusions (6.12) can be
verified in this special case.

REMARK 4. Observe that the image A of the unit circle by

Vi(2;)= z is the circle
Δi

(6.15) A:N<}

By (6.11) we have D1aD for every F(z)eK. This proves the following
proposition : The circle (6.15) is covered by every convex map D and (6.15)
is the largest circle with this property. That A is the largest circle is
shown by the special function (6.13). This theorem is due to Study,
[11, p. 116], and our proof is really identical with Nehari's proof in
[6, pp. 223-224].

REMARK 5. A comparison of Theorem 2 with Fejer's Theorem IV
[1, p. 87] again shows the extent to which the de la Vallee Poussin
means of a power series are superior to its third Cesaro means as far
as shape-preserving properties are concerned.
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REMARK 6. In § 3 we have seen that from a knowledge of the
section (3.2) of the Fourier series (3.1) of f{t) we can infer the infor-
mation (3.3) concerning the zeros of f{t). Is there a similar result for
power series? Specifically, let

0

converge for |^]<1 and let, for a certain value of n,

n )

be given and known to have a certain number of zeros within the unit
circle. Can we then draw any positive conclusion concerning the
existence of zeros of f(z) in the unit circle ?

That the answer is negative is very simply shown as follows. With
the given c o=l, clf ••• , cn derive the expansion

l o g ( 1 + 0 x 3 + ••• + CnZ
n) = b1Z + ••• + b n Z n +

But then

n •• + c n z n + •••

is a zero-free entire function whose nth F-mean is precisely the given
Vn(z).

In concluding this section we wish to point out similar applications

concerning the class Σ of power series Σ M v which map the unit circle
1

onto a univalent domain which is star-shaped with respect to the origin.
It is well known that the two classes K and Σ are related as follows :

LEMMA 5. Σ a%zv eΣ if and only if
1

Σ-^V e K .
1 V

But then Theorem 2 easily implies the following.

COROLLARY 5. For F{z) e Σ it is necessary and sufficient that
Vn(z)eΣ for n = l, 2, •••.

APPENDIX I. THE BERNSTEIN POLYNOMIALS

7. The Bernstein construction is variation diminishing. The purpose
of the present appendix is to furnish for functions f(x) defined in a
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finite interval a theory analogous to that given in Parts I and II for
periodic functions. It is remarkable that such a theory is provided by
the classical Bernstein polynomials. Indeed, let fix) be defined in [0, 1]
and let

(7.1) Bn(x) = ± f (-

be the corresponding Bernstein polynomial (see [5]). Let Z(Bn) denote
the number of zeros of Bn(x) in the open range (0, 1). We now state
the following

THEOREM 6. Denoting by v(f) the number of changes of sign of fix)
in [0, 1] we have the inequalities

(7.2) v(Bn)^Z(BnUv(f) .

This result, an analogue of Theorem 1, can be derived as a special
case from a general theorem of S. Karlin [3]. It admits, however, a
very simple direct proof. Indeed, with z—xl(l~x) for 0 < # < l , we
have

hence by Descartes' rule of signs

= Z

8. The graphic behavior of the Bernstein polynomials. If we
write Bn(x)=Bn(x; f) to indicate the dependence on f(x), it is known
that

(8.1) Bn(x Ax+B)=Ax+B .

But then (7.1) implies that Bn{x) — Ax—B is the Bernstein polynomial of
f(x)~Ax~B. Now (7.2) implies the

COROLLARY 6. / / Ax+B is an arbitrary linear function then

(8.2) ZiBn{x)~Ax-B)^v{fix)-Ax-B) .

Intersecting the graphs of fix) and Bn(x) by appropriate straight
lines y=Ax+B, the inequality (8.2) furnishes a good deal of information
concerning the shape of the graph of Bn(x). Notice in particular the
following
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COROLLARY 7. If f(χ) is convex in [0, 1], possibly discontinuous at
the endpoints, but not linear in [0, 1], then

1. Bn(x) is convex,
2. Bn{x)>f{x) if 0<a?<l,
3. Bn(0)=/(0), 5 n ( l)=/(l) .
We may omit the simple proof based an Corollary 6.
Observe that the relation B'n{x ;f)=Bn(x /') is not valid. However

a simple calculation shows that (7.1) implies

and

where we have set

(See Natanson [5], p. 179, fifth line from the bottom). The Theorems
3, 4 and 5 have precise analogues as will now be shown with a minimum
of details. The function classes Dλ and D2 have analogues in the present
situation and the numbers of sense-reversals and turn-reversals may
again be defined by the relations

f e Dlf

respectively.

As in the periodic case we obtain the following.

THEOREM 7. If f(x) e A then

If f(x) e A then

If f(x) is odd about the point x—~, then Bn{x) is found to share

this property. As an analogue of Theorem 5 we have the following
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THEOREM 8. If f{x) is odd about x = —~, concave and non-negative

in ^x^l, positive in - <x<l, then also Bn(x) is concave in —, 1
L\ & L_ Li _l

and

(8.3) 0<Bn(x)<f(x) if ~<x<l .
Li

Indeed, let us first observe the following. Because of the invariance
of linear functions expressed by (8.1), we may subtract from f(x) the
linear function whose graph is the chord joining the extreme points
(0, /(0)) and (1, /(I)), without altering the assumptions on f(x). Thus
without loss of generality we may assume that /(0)=/(l) = 0. From
this point the proof is entirely similar to the proof of Theorem 5 in all
details, including the use of the roof-functions. Finally notice that the
equality is excluded in the second inequality (8.3). This is so because
of the inequality (8.2) of Corollary 6 in the periodic case we only had
the weaker analogue (5.2).

APPENDIX II. A CONJECTURE ON POWER SERIES
MAPPING A CIRCLE ONTO A CONVEX DOMAIN

9. Sources and forms of the conjecture. As stated in the Introd-
uction, a power series

(9.1) aLz+a β2+a3z
3+ •«• +anz

n+ «• —f{z)

is said to belong to the class K, if it converges in the circle |^ |<1 and
maps this circle onto a convex domain. We say that the infinite sequence
of complex numbers λu Λ2, Λ3, λn, « is a convexity-preserving factor
sequence if the series λ1a1z+λ2a.β2+λ3aiz

3+ «•- necessarily belongs to K
whenever (9.1) belongs to K. Let us apply such a factor sequence to
the simplest power series belonging to K, to the geometric series

(9.2)

We obtain

(9.3)

if λ19 λ2, λ3y i s a convexity-preserving factor sequence, the power
series (9.3) must necessarily belong to K. We state the conjecture
that this obvious necessary condition is also sufficient that is, we
formulate
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CONJECTURE I. If both power series

belong to K, also

a1b1z+aφ2z
z+aφiz

3+

belongs to K.2

In view of Lemma 5, the conjecture can be restated in other forms,
equivalent to the first.

CONJECTURE II. // the power series

aιz+aiz
L+ad>z

Zjr

belongs to K and

belongs to Σ, then

belongs to Σ.

CONJECTURE III. If both power series

belong to Σ, also

belongs to Σ.
These three Conjectures I, II and III are completely equivalent,

they stand and fall together. The third form brings out most clearly
the relation to a conjecture that has been found, years ago and inde-
pendently of each other, by two of our friends, Professor S. Mandelbrojt
and Professor M. Schiffer, and which is published here with their
permission :

2 One of the "intuitive sources" of the conjecture is the feeling that (9.2) plays a
"leading role" in K, that it "sets the fashion." Which one of the two authors of this
paper is the author of the conjecture will be disclosed if and when the conjecture is
proved.
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CONJECTURE M. S. // both power series

are "schlicht" in the unit circle, also

is "schlicht" in the unit circle.

Whereas III is equivalent to I or II, it appears logically independent
of MS. As far as obvious conclusions from the statements go, III could
be true but MS false, or MS true yet III false, or both could be true
or both false. Still, the conjectures are obviously related and their
joint consideration may lead to various suggestions.

The Conjectures I, II and III are more ''elementary" than MS and
they are certainly more accessible we succeeded in treating several of
their particular cases and consequences.

10. Verification of the conjecture in some particular cases. We
shall exhibit several particular series Σ bnz

n belonging to K which,
convoluted with an arbitrary series (9.1) belonging to K, generate a
series Σ <*>nf>nZn belonging to K.

(a) The polynomial (6.14) belongs to K. That its convolution with
an arbitrary series belonging to K necessarily belongs to K is precisely
what Theorem 2 asserts.

(b) If the series (9.1) belongs to K, it belongs, a fortiori, to Σ.
Therefore, by Lemma 5, the series

belongs to K. This is another special case of Conjecture I that the
series

Ϊ+M+ — ' - ! -

maps the unit circle onto a convex domain follows from its relation to
(9.2) and from Lemma 5 but this fact can also be established directly
(see [9, vol. 1, p. 106, problem 114]).

(c) The result mentioned under (a) (Theorem 2) is due to the fact
that the F-means are variation diminishing cf. §6. Any variation
diminishing transformation on the circle leads to an analogous result,
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and so we obtain especially the following (cf. [4]). Let g(z) be the
product of e~yz\ where r^O, with an entire function of genus 1, all
coefficients and all zeros of which are reat then

Σ Z

i g(in)

belongs to K, and, provided that (9.1) belongs to K, also

i g(in)

belongs to K. The term "entire function of genus 1" is used here in
the comprehensive sense, that is, it is supposed to include also entire
functions of genus 0 and polynomials (but, obviously, not the identically
vanishing polynomial) the case in which g(z) reduces to z was mentioned
under (b).

(d) Let p and q denote two different given points on the unit
circle (|p| = M = l, PΦq)- Assume that (9.1) belongs to K and let z
describe a circle concentric with, and interior to, the unit circle. Then
f(z) describes a convex curve of which f(pz) —f(qz) represents a moving
chord as it is easy to see geometrically this chord turns all the time
in the same sense. The argument of the complex number f(pz)—f(qz)
increases steadily. That is, the power series

p-q i n p—q

belongs to Σ (maps the unit circle onto a star-shaped domain) and so,
by Lemma 5, the power series

(lo.i) Σ — v ~q *n

p—q

belongs to K (cf. [6]). The series (10.1) is the convolution of (9.1) and
of that particular case of (10.1) in which αn = l this particular series
maps | s |<l onto an infinite strip bounded by two parallels.

11. Verification of some consequences. In the foregoing, we have
dealt mainly with form I of the conjecture, but now we shall consider
its form III. We assume, therefore, that the function (9.1) belongs to
the class Σ, that is, it maps the circle |z |<l onto a star-shaped domain.
We shall say that (9.1) is normalized if

(11,1) a1=l ,
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(a) We are given an integer n, n^2. Let us consider the normal-
ized functions of the class Σ and let us seek one for which \an\ is a
maximum. We leave aside the (easy) discussion of the existence and
assume that (9.1) is such a function with maximum \an\. Now we apply
Conjecture III with bm=am for m — 1, 2, 3, the resulting series is
again normalized and so its nth coefficient cannot have an absolute

value exceeding the maximum that is, ~n~^\an\, from which it follows
n

that

\an\<,n .

For series of the class 2 this inequality is well known and easily estab-
lished independently of the Conjecture III. And so our previous reason-
ing served only to enhance somewhat the plausibility of Conjecture III.
Yet the same reasoning is also applicable to the Conjecture MS and
reveals one of the essential sources of this Conjecture.

(b) The function f(z) belongs to the class 2 if, and only if,

(11.2)

is regular in the circle | z | < l and has there a positive real part. This
will be the case if, and only if, the Hermitian form of the variables

(11.3)

(a_v~av, by definition) is positive (definite or semidefinite) for n — \, 2,
3, . This well known important necessary and sufficient condition
is due to Caratheodory and Toeplitz. It can also be expressed in terms
of the determinants

(11.4)

Oil

1

an

<*n-2

a _ n a - n + ι a _ n + 2 -•• 1

Now (see (9.1)) the relation (11.2) can be written in the form

or in the form
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(11.6)

and so we can express both aJaL as a polynomial in the a and an as
a polynomial in the ajaL:

(11.7)

(11.8)

α4 _

•

2 α 3 =

(2α 1) 2+2α: 3

2 !

ai

al_2aiCb3

al

χs)+3(2α iX2α1)
3 !

1 Q 2

It would be easy to write down (11.7) or (11.8) for general n, but we
shall not enter into details. Using (11.8) we could express the Her-
mitian form (11.3) and the determinant (11.4) in terms of the coefficients
of the series (9.1) and doing so we wonld render more explicit the
necessary and sufficient condition for the class S. Yet we postpone
this consideration.

(c) Now consider, besides (9.1), two other power series with coef-
ficients bn and cn respectively, and let βn and Bn be so linked to the δ,
and γn and Cn so linked to the c, as an and An are to the α. Thus we
have besides (11.5) (in all summations n = l,2,3, •••)

(11.9) Σ M w i p ( Σ ) Σ ^ ^ p f e

Set

(11.10) - ^ - = c Λ .
n

Now express an\ax in terms of the a from (11 7), and express analogously
δjδx in terms of the β, then cn\cλ in terms of the a and β from (11.10)



330 G. POLYA AND I. J. SCHOENBERG

and finally from relations analogous to (11.8), express γn in terms of
the c\cλ and so in terms of the a and β. This leads to

(11.11) +2a\β2-2a\β\

Not all details of the general formula for γn are obvious a few features
will be discussed under (e). The determinant Cn (expressed in terms of
the γ as An is in terms of the α, cf. (11.4)) becomes by virtue of (11.11)

a polynomial in the a, a, β and β. By the theory of Caratheodory and
Toeplitz, Conjecture III is equivalent to the following.

CONJECTURE IV. The 2n inequalities

Λ > 0 , A 2 > 0 , ••-, An>0 ,

imply the n inequalities

), C 2 > 0 , .• , C n > 0

and this holds for n — ly 2, 3, .
This formulation excludes the case of equality in all the Sn inequalities

considered. This is due to the fact that, without loss of generality, we
may suppose l<anz

n and Ί<bnz
n regular in | z | ^ l .

(d) The case n = l of Conjecture IV is trivial. In fact, if we as-
sume that the series are normalized, see (11.1), and introduce the coef-
ficients of the mapping functions, see (11.8), the statement that we
have to prove reduces to this :

The inequalities \a2\ <2, |62 | < 2

imply ! ^ 1 < 2

which is obvious.
(e) The case n — 2 of Conjecture IV was first established by Dr. G.

A. Hummel and can be proved as follows.
We take the series as normalized, see (11.1), and set
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we suppose, without loss of generality, that α^O, 6^0. We have to

show:

The two inequalities

(11.12)

imply

(11.13)

A 3α2

4
^ 1 -

AB
3

α2

- 4 - "

3α2δ2

16

R 3δ2

4

< i α 2 & 2

16

4

(The first inequality (11.12) results from the condition A%>0, see (11.4),

by virtue of (11.8); it implies α<2, and so the condition ^
Let

(11.14) A=**-+u, B=
4 4

By t h e hypothesis (11.12) of t h e theorem t h a t we are about to prove

(11.15) | w | < l — — , \v\<l—^-.

We derive from (11.14) and (11.15)

(11.16) AB-
16

We assert that

(11.17)
α2 , δ2

, _
4^

in fact, this follows from α<2, δ<2, since it is equivalent to

The right hand side of (11.16) is equal to the left hand side of (11.17),
and so the combination of these two inequalities immediately yields the
desired conclusion (11.13).

(e) We consider now the expression of γn in terms of the a and
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β for general n; for the cases w = l, 2, 3, see (11.11). The procedure
that led us to (11.11) shows that γn is a polynomial in alf a2, , an,
βu β^9 '"jβn with rational coefficients. Obviously, by virtue of (11.10),
γn is symmetric in the a and β. If we substitute pz for z in (11.5) or,
which is the same, we change an into pnan and an into pnan, there re-
sults a change, see again (11.10), of cn into pncn and of γn into pnγn

therefore, γn must be an isobaric polynomial in the a of weight n.
Finally, γn must be of the form

where
p=zp(n) is the number of partitions of the integer rc,
A19 A2, , Ap are the products of powers of weight n of au a2,

αn, ordered lexicographically so that

(11.19) Aτ=an, Az=an^a19 Ap = a? .

Generally Afc is of the form

(11.20) Ak = φa}i. . o^n;

its weight l&1

Bu B2, ,j?p are analogously expressed in terms of /5T, /92, , /9W, and
$$ are rational numbers, jffi=j%p.

For example p(4) = 5 and, for π — 4:

the 5 are analogously defined and the matrix of the j[f results from

9 24 9 36 12
24 24 24 - 2 4 - 4 8

9 24 - 1 - 4 - 2 8
36 - 2 4 - 4 -136 128
12 - 4 8 - 2 8 128 - 6 4

if each of the 25 numbers displayed is divided by 90.
We cannot exhibit the law of the dependence of jffi on n in some

obviously useful manner, but we note here one property. If βn = l it is
easily seen from (11.9) that hn\hx — n and, therefore, by (11.10) ejc1 =
aja,! and so finally

for any choice of the an this must be compatible with (11.18) and so,
since Bχ=B2= ••• =BP = 1, by our choice of the β.
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0 for fc=2,3, . . . , p .

(f) The system of n complex numbers (alf α2, , Λ«), for which we
shall also use the more concise notation (α), determines a point in
2^-dimensional Euclidean space. A point (a) belongs to the coefficient-
domain if, and only if, it corresponds by virtue of (11.5) to the initial
terms of a power series of the class Σ. The most remarkable boundary
point of the coefficient domain is the ' ' Koebe-point'' which corresponds
to the function

Our aim is to show that, for any given n, Conjecture IV is true for two
interior points of the coefficient domain which are sufficiently close to
the Koebe-point.

Let us choose two arbitrary points (u) and (v) in the interior or the
coefficient domain. That is, (cf. under (6)) both Hermitian forms

(11.22) Σ Σ ^ - M , ΣΣ**-,s*5i

are positive definite. Let a, β and e denote positive numbers a and
β are arbitrary and ε so small that αε<l, βε<l. The coefficient domain
is convex. Therefore, if we set

(11.23) αv=(l—eα) + εαHv , βv=(l-εβ)+εβvv

for y = 0, ±1, ±2, ••-, ±n, the points (a) and (β) are in the interior of
the coefficient domain. If Ak is given by (11.20)

Ak = l+εaύk+O(ε2)

where

•• +kn(un — ΐ)

and O(ε2) denotes a quantity of order not exceeding ε2 when ε tends to
0. There is a similar expression for Bt and finally, by (11.21),

(11.24) rn
* - l Z - l

ϊ i l + 0 ( ε 2 )

By virtue of (11.24)
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+zn\*

and this Hermitian form is definite positive for sufficiently small ε, since
the forms (11.22) are definite positive. With this, we have proved ano-
ther infinitesimal part of Conjecture IV.
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