REMARKS ON THE MAXIMUM PRINCIPLE FOR PARABOLIC EQUATIONS AND ITS APPLICATIONS

Avner Friedman

Introduction. In [3] Nirenberg has proved maximum principles, both weak and strong, for parabolic equations. In § 1 of this paper we give a generalization of his strong maximum principle (Theorem 1). Hopf [2] and Olainik [4] have proved that if $L u \geqq 0$ and L is a linear elliptic operator of the second order, if the coefficient of u in L is nonpositive, and if u (\equiv const.) assumes its positive maximum at a point P^{\prime} (which necessarily belongs to the boundary) then $\partial u / \partial_{\nu}<0$, where ν is the inwardly directed normal. In $\S 2$ we extend this result to parabolic operators (Theorem 2). A further discussion of the assumptions made in Theorem 2 is given in §3. Application of Theorem 2 to the Neumann problem is given in §4. In §5 we apply the weak maximum principle to prove a uniqueness theorem for certain nonlinear parabolic equations with nonlinear boundary conditions, and thus extend the special case considered by Ficken [1]. An even more special case arises in the theory of diffusion (for references, see [1]).

1. Consider the operator

$$
\begin{equation*}
L u \equiv \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{n} a_{i}(x, t) \frac{\partial u}{\partial x_{i}}+a(x, t) u-\frac{\partial u}{\partial t} \tag{1}
\end{equation*}
$$

with $a(x, t) \leqq 0$. Here, $(x, t)=\left(x_{1}, \cdots, x_{n}, t\right)$ varies in the closure \bar{D} of a given $(n+1)$-dimensional domain D. Assume that L is parabolic in \bar{D}, that is, for every real vector $\lambda \neq 0$ and for every $(x, t) \in \bar{D}$ we have

$$
\sum a_{i j}(x, t) \lambda_{i} \lambda_{j}>0
$$

All the coefficients of L are assumed to be continuous in \bar{D} and u is assumed to be continuous in \bar{D} and to have a continuous t-derivative and continuous second x-derivatives in D. From [3; Th. 5] it follows that, under the above assumptions, if $L u \geqq 0$ and if u assumes its positive maximum at an interior point P^{0}, then $u \equiv$ const. in $S\left(P^{0}\right)$. Here, $S\left(P^{0}\right)$ denotes the set of all points Q in D which can be connected to P^{0} by a simple continuous curve in D along which the coordinate t is non-decreasing from Q to P^{0}. In the following theorem we consider the case

[^0]in which P^{0} is a boundary point of D. We may assume that P^{0} is the origin. Let $t=\varphi(x)$ be the equation of the boundary of D near P^{0}. Assume that $t=0$ is the tangent hyperplane to the boundary of D at P^{0}. Therefore $\partial \varphi\left|\partial x_{i}\right|_{P^{0}}=0$. Let D be on the side $t<\varphi(x)$.

Theorem 1. If $L u \geqq 0$ in D, if u assumes its positive maximum M at P^{0}, if

$$
\begin{equation*}
\lim _{P \rightarrow P 0} \frac{\partial u(P)}{\partial x_{i}}=0, \lambda \equiv \lim _{P \rightarrow P 0} \sum a_{i j}(P) \frac{\partial^{2} u(P)}{\partial x_{i} \partial x_{j}} \leqq 0 \quad P \in D \tag{2}
\end{equation*}
$$

and if

$$
\begin{equation*}
1+\left.\sum a_{i j} \frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}}\right|_{P^{0}}>0 \quad \varphi \in C^{\prime \prime} \tag{3}
\end{equation*}
$$

then $u \equiv M$ in $S\left(P^{0}\right)$.
Remark 1. Without making any use of (3) one can deduce the following :

Put $\mu \equiv \lim _{P \rightarrow P 0} \sup ^{\partial u(P)} \frac{\partial t}{\partial t}(P \in D)$, then $\mu \geqq 0$ since $\mu<0$ will contradict $u\left(P^{0}\right) \geqq u(P)$. Letting $P \rightarrow P^{0}$ in $L u(P) \geqq 0$ and using (2), we obtain $\lambda+$ $a\left(P^{0}\right) M-\mu \geqq 0$, from which it follows that $\lambda \geqq 0$. Since, by (2), $\lambda \leqq 0$, we conclude that $\lambda=0$. Hence $a\left(P^{v}\right) M-\mu \geqq 0$, from which it follows that $\mu \leqq 0$ and, therefore, (since $\mu \geqq 0$) $\mu=0$. We also get $a\left(P^{j}\right)=0$.

Remark 2. The assumptions (2) and (3) can be verified if we assume that $\varphi(x)=o\left(|x|^{2}\right)$ and that u belongs to $C^{\prime \prime}$ in the closure of the domain $V \cap\{t<0\}$, where V is some neighborhood of P^{0}. Indeed, by making an appropriate orthogonal transformation we can assume that $a_{i j}\left(P^{0}\right)=\delta_{i j}$. By the mean value theorem we have

$$
u(x, t)-u(0,0)=\sum x_{i} \frac{\partial}{\partial x_{i}} u(\tilde{x}, \tilde{t})+t \frac{\partial}{\partial t} u(\tilde{x}, \tilde{t})
$$

Taking ($x, t) \in \bar{D} \cap V \cap\{t<0\}$ such that $|t|=o(|x|)$ and noting that $u(x, t) \leqq$ $u(0,0)$, one can show that $\partial u\left(P^{0}\right) / \partial x_{i}=0$. Noting that $\varphi(x)=o\left(|x|^{2}\right)$ and expanding $[u(x, t)-u(0,0)]$ in terms of the first and second derivatives of u, one can show that $\partial^{2} u\left(P^{j}\right) / \partial x_{i}{ }^{2} \leqq 0$, and (2) is thereby proved. The proof of (3) is immediate.

Proof of Theorem 1. For simplicity we shall prove the theorem only in case $n=1$; the proof of the general case is analogous. $L u$ takes the form

$$
\begin{equation*}
L u \equiv A \frac{\partial^{2} u}{\partial x^{2}}+a \frac{\partial u}{\partial x}+c u-\frac{\partial u}{\partial t} \quad c \leqq 0, A>0 \tag{4}
\end{equation*}
$$

From the strong maximum principle [3; Th. 5] it follows that all we need to prove is that $u(P) \equiv M$ if $P \in V^{\prime} \cap S\left(P^{0}\right)$ where V^{\prime} is some neighborhood of P^{0}.

There are two possibilities: Either there exists a sequence $\left\{P^{k}\right\}$ such that $P^{k} \in S\left(P^{0}\right), P^{k} \rightarrow P^{0}, u\left(P^{k}\right)=M$, or there exists a neighborhood $V=\left\{x^{2}+t^{2}<R^{2}\right\}$ of P^{0} such that $u(P)<M$ for all $P \in V \cap S\left(P^{0}\right), P \neq P^{0}$. In the first case we can use [3; Th. 5] to conclude that $u(P) \equiv M$ if $P \in V^{\prime} \cap S\left(P^{0}\right)$ where V^{\prime} is some neighborhood of P^{0} (since $u(P)=M$ for all $P \in S\left(P^{k}\right)$).

It remains therefore to consider the case in which $u(P)<M$ for all $P \in V \cap S\left(P^{0}\right), P \neq P^{0}$. We shall prove that this case cannot occur by deriving a contradiction. Writing

$$
\varphi(x)=K x^{2}+o\left(x^{2}\right),
$$

we define a domain $D_{\delta}(\delta>0)$ as the intersection of $S\left(P^{0}\right)$ with the set of points (x, t) in V for which

$$
t<\tilde{\varphi}(x)=(K-\delta) x^{2}
$$

If $K<0$ then, because of (3), we can choose δ sufficiently small such that

$$
\begin{equation*}
1+\left.A \frac{\partial^{2}}{\partial x^{2}} \tilde{\varphi}(x)\right|_{x=0}>0 \tag{5}
\end{equation*}
$$

If $K \geqq 0$, we can obviously take δ such that $K-\delta<0$ and such that (5) holds.
We now can take R sufficiently small such that $\tilde{\varphi}(x)<\min (0, \varphi(x))$ for all (x, t) in $D_{\delta}, x \neq 0$. Consequently, $u(x, t)<M$ if $t=\tilde{\varphi}(x), x \neq 0$. The function $h(x, t)=-t+\tilde{\varphi}(x)$ vanishes on $t=\tilde{\varphi}(x)$ and is positive in D_{δ}. Therefore, if $\varepsilon>0$ is sufficiently small, then $v=u+\varepsilon h$ is smaller than M at all points on the boundary of D_{δ} with the exception of P^{0}, where $v\left(P^{0}\right)=M$. Noting that $\tilde{\varphi}^{\prime}(0)=0$ and using (5), we conclude that

$$
L h=1+A \tilde{\varphi}^{\prime \prime}(x)+a \tilde{\varphi}^{\prime}(x)+c h>0
$$

if R has been chosen sufficiently small. Hence, $L v=L a+\varepsilon L h>0$. It follows that v cannot assume its positive maximum at interior points of D_{δ} and, therefore, it assumes its maximum M at P^{0}. We thus obtain $\partial v / \partial t \geqq 0$ at P^{0} and, consequently,

$$
\frac{\partial u}{\partial t}=\frac{\partial v}{\partial t}-\varepsilon \frac{\partial h}{\partial t} \geqq \varepsilon>0
$$

(Here

$$
\frac{\partial g}{\partial t}=\liminf _{t \rightarrow 0} \frac{g(0,0)-g(0, t)}{-t}
$$

On the other hand, letting in (4) $P \rightarrow P^{0}$ in an appropriate way and using (2) and the inequality $L u(P) \geqq 0$, we get

$$
\begin{aligned}
0 \leqq & \lim A(P) \frac{\partial^{2} u(P)}{\partial x^{2}}+\lim a(P) \frac{\partial u(P)}{\partial x}+C\left(P^{0}\right) M-\lim \sup \frac{\partial u(P)}{\partial t} \leqq \\
& \quad-\lim \sup \frac{\partial u(P)}{\partial t}
\end{aligned}
$$

We have thus obtained

$$
\limsup _{P \rightarrow P^{0}} \partial u(P) / \partial t \leqq 0<\varepsilon \leqq \partial u / \partial t
$$

This is however a contradiction (since

$$
\frac{\partial u}{\partial t}=\lim _{t_{k} \rightarrow 0} \frac{\partial u\left(0, t_{k}\right)}{\partial t} \leqq \limsup _{P \rightarrow F^{0}} \frac{\partial u(P)}{\partial t}
$$

for an appropriate sequence $\left\{t_{k}\right\}$), and the proof is completed.
Remark (a) Consider the following example : $n=1, P^{0}=(0,0)$ and D defined by

$$
x^{2}+t^{2}<R, t<\gamma_{1} x, t<\gamma_{2} x \quad \quad \gamma_{1}>0>\gamma_{2} .
$$

The function $u(x, t)=\left(t-\gamma_{1} x\right)\left(\gamma_{2} x-t\right)$ satisfies the following properties: $u<0$ in $D, u=0$ at P^{0}, and

$$
L u \equiv A \frac{\partial^{2} u}{\partial x^{2}}+a \frac{\partial u}{\partial x}-\frac{\partial u}{\partial t}=-2 A \gamma_{1} \gamma_{2}+0(|x|+|t|) \geqq 0
$$

provided R is sufficiently small. Consequently, (3) and the second assumption in (2) are not satisfied and also the assertion of Theorem 1 is false.

Remark (b). Consider now the case in which the tangent hyperplane at P^{0} is not of the form $t=$ const.. We shall prove that in this case Theorem 1 is false. Take $n=1$ and consider first the case in which D is defined by

$$
x>0, x^{2}+t^{2}<R^{2}
$$

If $L u \equiv \partial^{2} u / \partial x^{2}-\partial u / \partial t$, then the function $u(x, t)=-x$ takes its maximum in \bar{D} at $P^{0}=(0,0), L u=0$, but $u \neq 0$ in $S\left(P^{0}\right)$.

Consider next the case in which \bar{D} is defined by

$$
x>\alpha t, x^{2}+t^{2}<R^{2}
$$

and take $L u=\partial^{2} u / \partial x^{2}-\alpha \partial u / \partial x-\partial u / \partial t$.

The transformation $t^{\prime}=t, x^{\prime}=x-\alpha t$ carries the present case into the previous one.

Note that if the tangent hyperplane H at P^{0} is not the plane $t=0$ and the axes are rotated so as to give H the equation $t^{\prime}=0$ (in new x^{\prime}, t^{\prime} coordinate), then $L u$ loses the form (1), for $u_{x^{\prime} t^{\prime}}$ and $u_{t^{\prime} t^{\prime}}$ will appear in it.

Remark (c). If in Theorem 1 the domain D is on the side $t>\varphi(x)$, then the theorem is false. Indeed, as a counter-example take $u=-t$, and D bounded from below by $t=0$.

2. Consider the linear operator

$$
\begin{array}{rlr}
L^{\prime} u \equiv & \sum_{i, j=1}^{n} a_{i j}(x, t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i, j=1}^{m} b_{i j}(x, t) \frac{\partial^{2} u}{\partial t_{i} \partial t_{j}}+\sum_{i=1}^{n} a_{i}(x, t) \frac{\partial u}{\partial x_{i}} \tag{6}\\
& +\sum_{i=1}^{m} b_{i}(x, t) \frac{\partial u}{\partial t_{i}}+a(x, t) u & a(x, t) \leqq 0
\end{array}
$$

where $x=\left(x_{1}, \cdots, x_{n}\right)$ and $t=\left(t_{1}, \cdots, t_{m}\right)$ vary in the closure of a given $(n+m)$-dimensional domain D. We assume that L^{\prime} is elliptic in the variables x and parabolic in the variables t, that is, for every real vector $\lambda \neq 0$,

$$
\begin{equation*}
\sum a_{i j} \lambda_{i} \lambda_{j}>0, \quad \sum b_{i j} \lambda_{i} \lambda_{j} \geqq 0 \tag{7}
\end{equation*}
$$

All the coefficients appearing in (6) are assumed to be continuous in \bar{D} and u is assumed to be continuous in \bar{D} and to have a continuous t derivative and continuous second x-derivatives in D. Under these assumptions, Nirenberg [3; Th. 2] has proved a weak maximum principle from which it follows that, if $L^{\prime} u \geqq 0$ in D then u must assume its positive maximum on the boundary.

Let $P^{0}=\left(x^{0}, t^{0}\right)$ be a point on the boundary of D such that $u\left(P^{0}\right)=$ $M>0$ is the maximum of u in \bar{D}. Assume that there exists a neighborhood $V:\left|x-x^{0}\right|^{2}+\left|t-t^{0}\right|^{2}<R_{0}^{2}$ of P^{0} such that $u(x, t)<M$ in $V \cap D$. We then can prove the following theorem.

Theorem 2. If there exists a sphere $S:\left|x-x^{\prime}\right|^{2}+\left|t-t^{\prime}\right|^{2}<R^{2}$ passing through P^{0} and contained in \bar{D}, and if $x^{0} \neq x^{\prime}$ then, under the assumptions made above (in particular, L'u $\geqq 0, u(x, t)<M$ in $V \cap D$), every nontangential derivative $\partial u / \partial \tau$ at $\left(x^{0}, t^{0}\right)$, understood as the limit inferior of $\Delta u: \Delta \tau$ along a non-tangential direction τ, is negative.

By a non-tangential direction we mean a direction from P^{0} into the interior of the sphere S.

Remark (a). If $a(x, t) \equiv 0$ then the assumption $M>0$ is superflous.
Remark (b). In $\S 3$ we shall show that the assumption $x^{0} \neq x^{\prime}$ is essential. We shall also discuss the case in which $u(x, t)$ is not smaller than M at all the points of $V \cap D$.

Proof. For simplicity we give the proof in the case $m=n=1$, so that

$$
\begin{equation*}
L^{\prime} u \equiv A \frac{\partial^{2} u}{\partial x^{2}}+B \frac{\partial^{2} u}{\partial t^{2}}+a \frac{\partial u}{\partial x}+b \frac{\partial u}{\partial t}+c u \quad A>0, B \geqq 0, c \leqq 0 ; \tag{8}
\end{equation*}
$$

the proof of the general case is quite similar. Without loss of generality we can take $\left(x^{\prime}, t^{\prime}\right)=(0,0)$ and $x^{0}>0$. Furthermore, we may assume that, with the exception of P^{0}, S lies in $V \cap D$, so that $u(x, t)<M$ in $S-P^{0}$. Denote by C the intersection of S with the plane $x>\delta$, where $0<\delta<x^{0}$. The function

$$
h(x, t)=\exp \left(-\alpha\left(x^{2}+t^{2}\right)\right)-\exp \left(-\alpha R^{2}\right)
$$

satisfies the following properties: $h=0$ on the boundary of $S, h \geqq 0$ in C; if α is large enough, then

$$
\begin{aligned}
L^{\prime} h= & \exp \left(-\alpha\left(x^{2}+t^{2}\right)\right)\left[4 \alpha^{2}\left(A x^{2}+B t^{2}\right)-2 \alpha(A+B+a x+b t)+c\right] \\
& -c \exp \left(-\alpha R^{2}\right)>0
\end{aligned}
$$

(Here we used $x>\delta>0, c \leqq 0$.)
If ε is sufficiently small, then the function $v=u+\varepsilon h$ is smaller than M at all points of the boundary of C with the exception of P^{0}, where $v\left(P^{0}\right)=M$. Since $L^{\prime} v=L^{\prime} u+\varepsilon L^{\prime} h>0, v$ cannot assume its positive maximum in \bar{C} at the interior of C (since, otherwise, at such interior points $L^{\prime} v$ would be non-positive). Hence, v assumes its maximum at P^{0} and, consequently, $\partial v / \partial \tau=\lim \inf (\Delta v / \Delta \tau) \leqq 0$. Since along the normal ν (i. e., along the radius through $\left.P^{0}\right) \partial h / \partial \nu>0$ and since along the tangential direction $\sigma \partial h / \partial \sigma=0$, it follows that $\partial h / \partial \tau>0$. Using the definition of v, we conclude that $\partial u / \partial \tau=\partial v / \partial \tau-\varepsilon \partial h / \partial \tau<0$, and the proof is completed.

Added in proof. Theorem 2 was recently and independently proved also by R. Viborni, On properties of solutions of some boundary value problems for equations of parabolic type, Doklody Akad. Nauk SSSR, 117 (1957), 563-565.
3. From now on we shall consider only parabolic operators of the form (1). Suppose the assumption $u<M$ in $V \cap D$, made in Theorem 2, is replaced by $u \leqq M$. If there exists a sequence of points $\left\{P^{k}\right\}$ such
that $P^{k} \rightarrow P^{0}, P^{k} \in D, P^{k}=\left(x^{k}, t^{k}\right)$ and $t^{k} \geqq t^{0}, u\left(P^{k}\right)=M$, then, by [3; Th. 5], $u \equiv M$ in $S\left(P^{k}\right)$. Hence, if the boundary of D near P^{0} is sufficiently smooth, $u \equiv M$ in some set $V^{\prime} \cap D$ where V^{\prime} is some neighborhood of P^{0}. Consequently $\partial u / \partial \tau=0$ for every τ.

If $u(P) \leqq M$ for all $P \in V \cap D$, if $u(P)$ is not strictly smaller than M for all $P \in V \cap D, P \neq P^{0}$, and if the previous situation does not arise, then one and only one of the following cases must occur :
(i) $u<M$ at all points (x, t) in $V \cap D$ with $t \geqq t^{0}$. Using [3; Th. 5] one can easily conclude that there exists a neighborhood V^{\prime} of P such that $u<M$ in $V^{\prime} \cap D$, and Theorem 2 remains true.
(ii) $u<M$ at all points (x, t) in $V \cap D$ with $t>t_{0}$ and $u \equiv M$ at all points (x, t) in $V \cap D$ with $t \geqq t_{0}$. We then consider only those directions τ along which $u<M$. We claim that Theorem 2 is not true for the present situation. To prove this, consider the following simple counterexample :

$$
P^{0}=(0,0), M=0, L u=\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial u}{\partial t}, u(x, t)=\left\{\begin{array}{cl}
-t^{2} & \text { if } t>0 \\
0 & \text { if } t<0 .
\end{array}\right.
$$

u satisfies $L u \geqq 0$ and assumes its maximum 0 for $t \leqq 0$. But, the derivative $\partial u / \partial \tau$ at $P^{0}=(0,0)$, along any direction τ, is zero.

As another counter-example (with $L u=0$) one can take a fundamental solution of the heat equation.

Note that the preceding counter-examples are valid without any assumptions on the behavior of the boundary of D near P^{0}.

We shall now consider the case $\boldsymbol{x}^{1}=\boldsymbol{x}^{0}$ which was excluded by the assumptions of Theorem 2. We shall assume that at $P^{0}=(0,0)$ there passes a tangent hyperplane $t=0$. If D is above this hyperplane, then the preceding counter-examples show that Theorem 2 is not true. It remains to consider the case in which D is "essentially" below $t=0$, that is, if we denote by $t=\varphi(x)$ the equation of the boundary of D near P^{0}, then D is on the side $t<\varphi(x)$. In this case, however, Theorem 1 tells us that in general we cannot assume both $u\left(P^{0}\right)=\max u(P)>0$ $(P \in \bar{D})$ and $u<u\left(P^{0}\right)$ in $V \cap D$.

The example in §1 Remark (a) can also serve as a counter-example to Theorem 2 in case P^{0} is a vertex-point. Indeed, along the t-direction

$$
\left.\frac{\partial u}{\partial t}\right|_{P^{0}}=\left.\frac{\partial}{\partial t}\left[\left(t-\gamma_{1} x\right)\left(\gamma_{2} x-t\right)\right]\right|_{x=0, t=0}=0
$$

By a small modification of this counter-example one can get a counter-example to the analogue of Theorem 2 for elliptic operators [2] [4] in case P^{0} is a vertex. Indeed, define D by

$$
x^{2}+y^{2}<R^{2}, y<\gamma_{1} x, y>\gamma_{2} x \quad \gamma_{1}>0>\gamma_{2},
$$

and take $L u=\partial^{2} u / \partial x^{2}+A \partial^{2} u / \partial y^{2}$, where $A>\left|\gamma_{1} \gamma_{2}\right|$. The function $u(x, y)=$ $\left(y-\gamma_{1} x\right)\left(y-\gamma_{2} x\right)$ satisfies : $u<0$ in $D, u=0$ at the origin, $L u=2 \gamma_{1} \gamma_{2}+2 A>0$. But along any direction τ within $D, \partial u|\partial \tau|_{x=0, y=0}=0$.
4. Let \boldsymbol{D} be a domain bounded by the two hyperplanes $t=0, t=$ $T>0$ and a surface B between them. Assume that the intersection $\{t=T\} \cap \bar{D}$ is the closure of an open set on $t=T$, and denote by A the boundary of D on $t=0$. The Neumann problem for the parabolic equation $L u=0$ consists in finding a solution to the equation $L u=0$ which satisfies the following initial and boundary conditions :

$$
u=f \text { on } A, \frac{\partial u}{\partial \nu}=g \text { on } B
$$

(f, g are given functions).
From Theorem 2 and from the strong maximum principle [3; Th. 5] we conclude: If. for every point $P^{0}=\left(x^{0}, t^{0}\right)$ of $B(i)$ there exists a sphere with center (x^{\prime}, t^{\prime}), $x^{\prime} \neq x^{0}$, passing through P^{0} and contained in \bar{D}, and (ii) $\overline{S\left(P^{0}\right)}$ contains interior points of A, then the Neumann problem has at most one solution. Clearly, this uniqueness property holds also for the more general problem where $\partial u / \partial \nu$ is replaced by $\partial u / \partial \tau$ and τ is a nontangential direction which varies on B.

As another application to Theorem 2, one can deduce the positivity of $\partial G / \partial \nu$, where G is the Green's function of $L u=0$.
5. Let \boldsymbol{D} be a domain bounded by $t=0, t=T(0<T \leqq \infty)$ and surfaces $\Gamma_{k}, 0 \leqq k \leqq m, \Gamma_{0}$ being the outer boundary. Suppose further that the intersection of each Γ_{k} with $t=t_{0}\left(0 \leqq t_{0}<T\right)$ is a simple closed curve $\gamma_{k}\left(t_{j}\right)$ which belongs to $C^{(3)}$ and does not reduce to a single point. Write $u_{x_{i}}=\partial u / \partial x_{i}, u_{t}=\partial u / \partial t$. We shall consider the following problem P :

$$
\begin{equation*}
\sum_{i, j=1}^{n} a_{i j}(x, t) u_{x_{i} x_{j}}-u_{t}=c(x, t, u, \nabla u) \tag{9}
\end{equation*}
$$

(where ∇u denotes the vector $\partial u / \partial x_{i}$),

$$
\begin{array}{cc}
\frac{\partial u}{\partial \tau} \equiv \sum_{i=1}^{n} \alpha_{i}(x, t) u_{x_{i}}+\alpha(x, t) u_{t}=\varphi(x, t, u) & (x, t) \in \Gamma=\sum_{k=0}^{m} \Gamma_{k} \\
u(x, 0)=\psi(x) \text { on } A & A=\bar{D} \cap\{t=0\} \tag{11}
\end{array}
$$

We make the following assumptions:
(a) $a_{i j}(x, t)$ is continuous in $\bar{D} ; c(x, t, u, \nabla u)$ and it first derivatives with respect to $u, \nabla u$ are continuous for $(x, t) \in \bar{D}$ and for all values of $u, \nabla u$.
(b) φ and $\partial \varphi / \partial u$ are continuous for all $(x, t) \in \Gamma$ and for all u.
(c) $\alpha_{i}(x, t), \alpha(x, t)$ are continuous for $(x, t) \in \Gamma ; \psi(x)$ is continuous in A.
(d) (9) is parabolic in \bar{D}, that is, there exists a positive constant δ such that

$$
\begin{equation*}
\sum a_{i j}(x, t) \xi_{i} \xi_{j} \geqq \delta \sum \xi_{i}^{2} \tag{12}
\end{equation*}
$$

holds for all real ξ and for all $(x, t) \in \bar{D}$.
(e) On each surface $\Gamma_{k}(k=0,1, \cdots, m)$ either all the directions $\tau=\left(\alpha_{i}\right.$, α) are exterior or all are interior, and in the exterior case $\alpha \geqq 0$ and the directions $\left(\alpha_{i}, 0\right)$ are exterior while in the interior case $\alpha \leqq 0$ and the directions $\left(\alpha_{i}, 0\right)$ are interior.
Denote by Σ the class of functions $u(x, t)$ defined and continuous in \bar{D} and satisfying the following conditions:
(α) $\partial u / \partial t, \partial u / \partial x_{i}, \partial^{2} u / \partial x_{i} \partial x_{j}$ are continuous in D;
(β) For every $R>0, \partial u / \partial x_{i}$ is bounded in $D \cap\left\{|x|^{2}+t^{2}<R^{2}\right\}$.
Theorem 3. Under the assumptions (a)-(e) the problem P cannot have two different solutions in the class \sum.

We shall need the following lemma.
Lemma. There exists a function $\zeta(x)$ defined in A and having the following properties: (i) ζ has continuous first derivatives in A and continuous second derivatives in the interior of A; (ii) $\partial \zeta / \partial \nu=-1$ and $\partial \zeta / \partial \mu=0$ on $\gamma_{0}(0), \cdots, \gamma_{m}(0)$, where $\partial / \partial \nu$ and $\partial / \partial \mu$ denote the derivatives with respect to the interior normal and to any tangential direction, respectively.

Proof of the Lemma. It will be enough to construct a function $\chi_{0}(x)$ which is $C^{\prime \prime}$ in A, which vanishes in a neighborhood of $\gamma_{i}(0)(i=1$, $\cdots, m)$ and for which $\partial \chi_{0} / \partial \nu=-1, \quad \partial \chi_{0} / \partial \mu=0$ along $\gamma_{0}(0)$; constructing $\gamma_{1}(x)$ in a similar manher, we can then take $\zeta(x)=\sum \chi_{1}(x)$. Since $\gamma_{0}(0)$ belongs to $C^{(3)}$, the normals issuing from $\gamma_{0}(0)$ and inwardly directed cover in a one-to-one manner a small inner neighborhood of $\gamma_{0}(0)$, call it A_{0}. To each point x in A_{0} there corresponds a unique point $x^{\text {p }}$ on the boundary of $\gamma_{0}(0)$, such that x lies on the normal through x^{3}. Denote by $\sigma(x)$ the distance $\left|x-x^{0}\right|$. It is elementary to show that $\sigma(x)$ has continuous second derivatives in A_{0}. Denote by A_{1} the domain $0 \leqq \sigma \leqq \varepsilon_{0}$, where $\varepsilon_{0}>0$ is small enough so that $A_{1} \subset A_{0}$. The function

$$
\chi_{0}(x)=\left\{\begin{array}{cc}
\frac{1}{3 \varepsilon_{0}{ }^{2}}\left(\varepsilon_{0}-\sigma(x)\right)^{3} & \text { if } x \in \bar{A}_{1} \\
0 & \text { if } x \in A-A_{1}
\end{array}\right.
$$

belongs to $C^{\prime \prime}$ in A and satisfies: $\partial \chi_{0} / \partial \nu=\partial \chi_{0} / \partial \sigma=-1$ and $\partial \chi_{0} / \partial \nu=0$ on $\gamma_{0}(0)$, and χ_{0} vanishes near $\gamma_{k}(0),(1 \leqq k \leqq m)$; the proof is completed.

Proof of Theorem 3. We first consider the case $n>1$. We may suppose that the vectors (α_{i}, α) are exterior directions on $\Gamma_{0}, \cdots, \Gamma_{q}$ and that $\left(\alpha_{i}, \alpha\right)$ are interior directions on $\Gamma_{q+1}, \cdots, \Gamma_{m}$. Suppose now that u and v are two solutions in \sum of the problem P, and define $w=v-u$. Writing

$$
\begin{aligned}
C(x, t, u, v) & =\int_{0}^{1} \frac{\partial}{\partial u} c(x, t, u+\lambda w, \nabla u+\lambda \nabla w) d \lambda \\
C_{i}(x, t, u, v) & =\int_{0}^{1} \frac{\partial}{\partial u_{x_{i}}} c(x, t, u+\lambda w, \nabla u+\lambda \nabla w) d \lambda \\
\Phi(x, t, u, v) & =\int_{0}^{1} \frac{\partial}{\partial u} \varphi(x, t, u+\lambda w) d \lambda
\end{aligned}
$$

and using (9), (10) and (11), we obtain for w the following system :

$$
\begin{gather*}
\sum \alpha_{i j} w_{x_{i} x_{j}}-w_{t}=C w+\sum C_{i} w_{x_{i}} \tag{13}\\
\frac{\partial w}{\partial \tau}=\sum \alpha_{i} w_{x_{t}}+\alpha w_{t}=\Phi w \tag{14}\\
w(x, 0)=0 . \tag{15}
\end{gather*}
$$

Substituting $w(x, t)=z(x, t) \exp (K t+M \zeta(x))$, where $\zeta(x)$ is the function constructed in the lemma and K, M are constant to be determined later, we get for z the following system :

$$
\begin{gather*}
\sum a_{i j} z_{x_{i} x_{j}}-z_{t}=-M \sum a_{i j} \zeta_{x_{i} x_{j}} z-M^{2} \sum a_{i j} \zeta_{x_{i}} \zeta_{x_{j}} z \\
-2 M \sum a_{i j} \zeta_{x_{i}} z_{x_{j}}+K z+C z+M \sum C_{i} \zeta_{x_{i}} z+\sum C_{i} z_{x_{i}} \\
\frac{\partial z}{\partial \tau} \equiv \sum \alpha_{i} z_{x_{i}}+\alpha z_{t}=-M \sum \alpha_{i} \zeta_{x_{i}} z-\alpha K z+\Phi z \tag{14}\\
z(x, 0)=0 .
\end{gather*}
$$

If $0 \leqq k \leqq q, \alpha \geqq 0$ and $\sum \alpha_{i}(x, 0) \zeta_{x_{i}}(x)>0$ on $\gamma_{k}(0)$, since the angle between the vectors $\left(\alpha_{i}\right)$ and grad ζ is $<\pi / 2$. By continuity we get $\sum \alpha_{i}(x, t) \zeta_{x_{i}}(x) \geqq$ $\eta>0$ on $\gamma_{k}(t)$, provided $0 \leqq t \leqq T^{\prime}$ and T^{\prime} is sufficiently small. Hence, we can choose M sufficiently large such that

$$
\begin{equation*}
-M \sum \alpha_{i} \zeta_{x_{i}}-\alpha K+\Phi<0 \tag{16}
\end{equation*}
$$

holds on $\gamma_{k}(t)$, provided $K \geqq 0$ and $0 \leqq t \leqq T^{\prime}$.
If $q+1 \leqq k \leqq m, \alpha \leqq 0$ and $\sum \alpha_{i}(x, 0) \zeta_{x_{i}}(x)<0$, since the angle between $\left(\alpha_{i}\right)$ and - grad ζ is $<\pi / 2$. Again, if $K \geqq 0$ and M is sufficiently large, then

$$
\begin{equation*}
-M \sum \alpha_{i} \zeta_{x_{i}}-\alpha K+\Phi>_{0} \tag{17}
\end{equation*}
$$

on $\gamma_{k}(t), \quad 0 \leqq t \leqq T^{\prime}$.
Having fixed M, we now choose K sufficiently large so that the coefficient of z on the right side of (13^{\prime}) becomes positive in the domain $D_{T^{\prime}}=D \cup\left\{0<t<T^{\prime}\right\}$. We claim that $z \equiv 0$ in $D_{T^{\prime}}$. Indeed, if this is not the case then, using (15') and the weak maximum principle [3; Th. 2] we conclude that z assumes either its positive maximum or its negative minimum on the boundary $\sum_{k=0}^{m} \gamma_{k}(t), 0 \leqq t \leqq T^{\prime}$, of $D_{T^{\prime}}$. It will be enough to consider the case in which z assumes its positive maximum at a point P^{0} on $\gamma_{k}(t)$. If $0 \leqq k \leqq q$, then $\partial z / \partial \tau \geqq 0$ since τ is outwardly directed. On the other hand, using (14') and (16) we get $\partial z / \partial \tau<0$, which is a contradiction. If $q+1 \leqq k \leqq m$, then $\partial z / \partial \tau \leqq 0$ since τ is inwardly directed. On the other hand, using (14') and (17) we get $\partial z / \partial \tau>0$ which is a contradiction. We have thus proved that $z \equiv w \equiv 0$ in $D_{T^{\prime}}$. We can now apply a classical procedure of continuation and thus complete the proof of the theorem for the case $n>1$.

In the case $n=1, \Gamma=\Gamma_{0}$ is composed of two curves Γ_{01} aud Γ_{02}. Suppose $\Gamma_{0 k}$ intersects $t=0$ at $a_{k}, a_{1}<a_{2}$. The function

$$
\zeta(x)=\frac{\left(x-a_{1}\right)\left(x-a_{2}\right)}{a_{2}-a_{1}}
$$

can be used in the preceding proof. Note that it is not necessary to make any assumptions on the smoothness of the curves $\Gamma_{0 k}$.

References

1. F. A. Ficken, Uniqueness theorems for certain parabolic equations, J. Rational Mechanics and Analysis, 1 (1952), 573-578.
2. E. Hopf, A remark on linear elliptic differential equations of second order, Proc. Amer. Math. Soc., 3 (1952), 791-793.
3. L. Nirenberg, A strong maximum principle for parabolic equations, Comm. Pure and Appl. Math., 6 (1953), 167-177.
4. O. A. Olainik, On properties of some boundary problems for equations of elliptic type, Mat. Sb. (N.S.), 30 (72) (1952), 695-702.

Indiana University

[^0]: Received October 29, 1957. Prepared under ONR Contract Nonr-908 (09), NR 041037 with Indiana University.

