
INVERSION AND REPRESENTATION THEOREMS FOR A

GENERALIZED LAPLACE INTEGRAL

K. M. SAKSENA

1Φ Varma [8] introduced a generalization of the Laplace integral

(1) jr(a?) = [~e-*'φ(t)dt
Jo

in the form

( 2 ) F(x) =

where φ(t)eL(0, oo), m > —1/2 and x > 0. This generalization is a
slight variant of an equivalent integral introduced earlier by Meijer [7]
and reduces to (1) when k + m = 1/2. In a recent paper [1] Erdelyi
has pointed out that the nucleus of (2) can be expressed as a fractional
integral of e~xt in terms of the operators of fractional integration in-
troduced by Kober [6]. In this note two theorems have been given-one
giving an inversion formula for the transform (2) and another giving
necessary and sufficient conditions for the representation of a function
as an intgral of the form (2) by considering its nucleus as a fractional
integral of e~xt.

2. The operators are defined as follows,

= — —
Γ(a)

Λ^(x)= X xζ[°°(u - xγ-h
Γ(a) JxΓ(a)

where ^(x)eLp(0y oo), 1/p + 1/q = 1 if 1 < p < oo, l/q = 0 if p = 1,
a> 0, -η > - 1/g, C > - lip.

The Mellin transform MtJ^{x) of a function ^~(x)eLp(0, oo) is
defined as

Ix {p — 1)
jo

and

index q fX

= l.i.m I ^~(x)xu-1/qdx (p > 1)
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The inverse Mellin transform M~ιφ{t) of a function φ(t) e Lq(— oo, c»)
is defined by

( 3 ) M~ιφ(t) = — I φ{t)χ-udt (q = 1)

and

1 index p Γ T

£fil T-* oo J —T

If the Mellin transform is applied to Kober's operators and the
orders of integration are interchanged we obtain, under certain con-
ditions,

r(η+~ -it)
V q ' M

and

But

Therefore

Γ^a + (c + -1 + «)]

Mt(e-χ) = [*e-χxu-1/qdx = r(— + it) if — > 0

Jo \p / p

q J \ p

and

+ * +iίW— + it)

By (3)
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Γ(η + 1 - it)r(± + it)

and

provided that 1/p > 0, 9 + 1/g > 0 and C + Vv > °
It has also been shown by Erdelyi [2] that if the integral in (4) is

evaluated by the calculus of residues then it can be expressed in terms
of a confluent hypergeometric function. In particular,

where x > 0, (1/2) - m - k > 0.

3. THEOREM 1. Assume φ(t) e Lp(0, oo), 1 ^ p < oo, x > 0. //
2m > — 1/g w^e^ (1/2) — m — fc > 0 and (1/2) + m — k> — 1/q when
(1/2) — m — A: > 0, £/&ew jKP^,(i/a)-B1-Λ[^'(a?)] e^isίs αncZ is equal to

- F(x)

where J^(x) and F{x) are given by (1) and (2) respectively.

Proof. Case I (1/2) - r a - & > 0 , l < p < c o .
If φ(t) e Lp(0, oo), 1 <; p < oo and x > 0 it is easy to see that

exists. Therefore

Γ((l/2)- m-k)

x

But from a theorem of Hardy [5] we know that if φ(t) e Lp(0, oo),
1 < p < oo then uλ-vp^{u) e L,,(0, oo) and therefore
(w — xYuβ^(u) 6 Lp(^, oo) provided that a + β = 1 — 2/p and αp > — 1.
Therefore the integral
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will exist if the expressions within the brackets in the integrand be-
long to Lp(x, oo) and Lq(x, oo) respectively. The conditions for these
are ( - (1/2) - m - k - ά)q > - 1, ( - 1 - 2m - a - β)q < - 1 and
a + β = 1 — 2/p, ap > — 1 which reduce to 2m > — 1/g and (1/2) — m —
& > 0. Hence under these conditions the integral converges absolutely
and we can change the order of integration. Therefore

x\[°e-'W)dt\dv - -j^rj^ 7-τ[
(Jo } Γ(( l/2) — m — A;) Jo

as Wk,.m(x)=Wk,m(x).
If p = 1, it is similarly seen that the change in the order of in-

tegration is justified if 2m > 0 and (1/2) — m — K > 0.

Case II. (1/2) - m - & < 0 , 1 <p < oo.
If α < 0 then the operator i f^^^"^)} is defined as the solution,

if any, of the integral equation ^~(x) = K-+otl,-«{g{%))- Now

(

x

Again from a result of Hardy [5] we know that if

F(x) = ['K(xy)φ{y)dy
JO

then

where

ψ{s) == [°°xs-ιK(x)dx
Jo

If
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then

,(s) = Γ(2m + s)Γ(β)

V 2

by Goldstein's formula [4]. Therefore

provided that 2m > - 1/g, or a?W2/p>F(α) 6 Lp(0, oo) if φ(?/) e Lp(0, oo)
(p > 1). Hence (% - ^)^βi^(^) e Lp(x, oo) if Λ + /9 = 1 - (2/p) and
α > - 1/p. Also (u - ^)-c^)+m+fc-^-2m-β 6 L ^ oo) if (_ (3/2) + m + k -

α)g + 1 > 0 and ( - (3/2) - m + k - a - β)q + 1 < 0. These four con-
ditions reduce to m + k - (1/2) > 0 and m - k + (1/2) > - 1/g. So the

integral I (u — ^)-(3/2)+m+fc^-2mi^(w)d^ exists under these conditions and
Jx

-fc, - (1/2)

foo

) JoΓ{ - (1/2) + m + k)

x [~(u - xT^-^^

on changing the order of integration which is permissible since the in-
tegral is absolutely convergent. But [4]

= Γ(k -

where k > λ and x is positive. Therefore

- [~e-xtφ{t)dt
Jo

under the conditions m + k - (1/2) > 0, m - k + (1/2) > - 1/g, a? > 0.
If p = 1, the change in the order of integration is justified if

m + K- (1/2) > 0 and (1/2) + m - k > 0.
Hence X("i/a)+,»-*,-α/^+m+fcE ί̂̂ )] = ^ 0 * 0 and the theorem is proved.

THEOREM 2. Under the conditions of Theorem 1 we have
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This is a consequence of Theorem 2 of Erdelyi [3] and is proved
similarly.

4. We are now in a position to give inversion and representation
theorems for the transform.

We have seen that, under certain conditions,

Also J^(x) has derivatives of all orders for x sufficiently large and
vanishes at infinity. So we can apply the Post-Widder operator LKu

defined by the relation

(where λ is a positive integer and u a real positive number) to
and obtain an inversion theorem.

LEMMA. / / φ(t) e Lp in (0 ^ t < oo) and

ψ(u) = [~\φ(ut) - φ{t)\pdt
Jo

then

uψ{u)
( i )

1 + u

and

(ii) ψ{u) -> 0 as u -> 1

w/^re llJ^llp denotes the norm of the function ^ ( ί ) e L p ( 0 , oo), ίλαέ is

Proof. We have

'\ψ(u)\ ^ [~\φ(ut)\*dt + h φ ( 0 N * = (l + -)[~\Φ(t)\pdt
Jo Jo V % / J o

which proves (i).
Also, by a change of variable,
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= \ \φ(ex+v) - 4>(ex)\*exdx .
J — oo

If a(x) = e(χ/p)φ(ex) then

5 \a(x)\pdx — \ \φ(ex)\pexdx =
J-oo

and so α(#)eL p( — oo, oo). Again

+ {a(x)e-(y/]» - α(a?)} | p ^

^ e-o//*)Q~ \a(x + y ) - a(x)\pdxJ/P

\a(x)\pdx\

by Minkowski's inequality. And I \a(x + y) — a(x)\pdx -> 0 as y -> 0
J — oo

if α(^)6L p(—co, CXD) and so does |e"1//p — 1|. Therefore ψ{ev) — o (1) as
y -> 0 or ^(^) -> 0 as % -> 1.

THEOREM 3. Assume φ(t) e Lp (1 ^ p < oo) in 0 <^ t ^ R for every
positive R. If the integral J^~(x) converges for x > 0 and 2m > — ljq
when (1/2) — m — k > 0; (1/2) + m — k>—ljq when (1/2) — m — ft < 0,

%, for almost all positive t,
index p

l.i.m
λ->oo

Proo/. We have seen in the proof of Theorem 1 that, under the
conditions of the theorem,

Therefore

= Λ (±\ \ e
λ\\t/ Jo

by simple computation and

\Lλ,t - φ(t)\ g MλyVe-W'WΦiu) - φ(t)\du
λ ! \ t / Jo

- φ(t)\dv .
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Therefore

λ ! Jo

A— e-λυvλ\φ(vt) - φ(t)\pdv ^ — e~λvvλdv
- λ! Jo J L Λ ! Jo J

~-(YλViφ(!rt) - φ(t)\pdv .
λ ! Jo

Hence

M - φ(t)\*dt £ ΏdίfY λ V|φ(vί) - φ{t)Hv
λ ! Jo Jo

In changing the order of integration, this becomes

(6) Λevφ(v)dv
λ ! Jo

where ψ(v) is defined as in the lemma. From the lemma it is easily
seen that

f°°Therefore I e~λvvλψ{v)dv converges for λ ^ 1 and the inversion of the
Jo

order of integration is justified by Fubini's theorem. By a familiar re-
sult [9, Theorem 3c, p. 283] the integral (6) approaches ^(1) as λ-+ oo.
But, by the lemma, ψ(u) = o(l) as u —> 1. Therefore L λ ί converges in
mean to φ(t) with index p on 0 ^ t < oo and the result is proved.

THEOREM 4. 7%0 necessary and sufficient conditions for a function
F(x) to have the representation (2) with φ(t) e Lp(0, oo), p ^ 1, x > 1,
and with 2m > — 1/g w/&ew 1/2 — m — If > 0 αwd m — k + 1/2 > — 1/g

wAew 1/2 — m — /b < 0 a re

(i) -K^+m-ir.-i^+m+iri^^)} = G(^) exists, has derivatives of all orders
in 0 < x < oo a%d vanishes at infinity and

(ii) £/fc0re eicisi constants M and p (p ^ 1)

Proof. First let .F(#) have the representation (2). Then, from
Theorem 1,
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G(x) ΞΞ JBΓr/a+BI-fci-1/a+m+Jb{F(a?)} = J ^ »

and as in the proof of Widder [9, Theorem 15a, pp. 313-14] we see
that the conditions are satisfied.

Conversely, let the conditions be satisfied. Then again, as in the
proof of Widder's theorem referred to before, we see that

G(x) = [~e-"φ(t)dt = j ^ » .
Jo

Therefore [3, p. 300]

F{X) = (ΛΓα/2)+in-fc,-(l/2)+m+fc)

Jo

by Theorem 1 and the theorem is proved.

COROLLARY. If the fractional derivatives or integrals

* M i / 2 ) + r o - f c + r , - (

exist for r = 0 and every positive integer, then the integral in the con-
dition (ii) of Theorem 4 can be replaced by

Σ

where

A r = λ C r ( m - Λ; + ( l / 2 ) ) ( m - k - (1/2)) . . ( m - A; - + (3/2) + r)

For [6]

Therefore

and
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By Leibnitz's theorem this becomes

- xCrζ(ζ - 1) (C - i +

+ ••• + (- l

Therefore

where

Λ = λC,.C(C - 1) (C - λ+ r + 1)

Λ = l, (r = 0,l, . . - , ; - 1 ) ,

and

Putting ζ — m — k + 1/2 and a = m + k — 1/2 we have the re-
quired result.

THEOREM 5a. Jf F(x) has representation (2) with the conditions of
Theorem 4 on φ(t), x, k and m satisfied and if the fractional derivatives
or integrals K^ι2)+m-k+rt-(ll2)+7lι+]c-r{F(x)} exist forr — 0 and every positive
integer, than

lim£ So ̂  (!) S (- 1H P

where the Ar 's have values as in the Corollary to Theorem 4.

Proof. The proof is similar to that of Widder [9, Theorem 15b,
p. 314]

THEOREM 5b. If the function F(x) has representation (2) with the
conditions of Theorem 4 on φ(t), x, k and m satisfied, then

lim \°°\LKt{F(x)}pdt =f°β |72^ o/a)-w-*{Φ(ί)}|pdί .
λ->°° Jo Jo

Proof. If F(x) has the representation (2), then, by Theorem 2 we have
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F(x) =

Also if φ(t)εLp(0,^) so does LLχnύ-m-ΛΦ(t)} provided that 2m > — 1/g.

Therefore, as in Widder [9, Theorem 15b, p. 314], we can prove again
that

lim\~\Lλtt{F(x)}\pdt =
λ->oo JO

I am deeply grateful to Professor A. Erdelyi for many helpful sug-
gestions.
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