INVERSION AND REPRESENTATION THEOREMS FOR A GENERALIZED LAPLACE INTEGRAL

K. M. Saksena

1. Varma [8] introduced a generalization of the Laplace integral

$$
\begin{equation*}
\mathscr{F}(x)=\int_{0}^{\infty} e^{-x t} \phi(t) d t \tag{1}
\end{equation*}
$$

in the form

$$
\begin{equation*}
F(x)=\int_{0}^{\infty}(x t)^{m-1 / 2} e^{-x t / 2} W_{k, m}(x t) \phi(t) d t \tag{2}
\end{equation*}
$$

where $\phi(t) \in L(0, \infty), m>-1 / 2$ and $x>0$. This generalization is a slight variant of an equivalent integral introduced earlier by Meijer [7] and reduces to (1) when $k+m=1 / 2$. In a recent paper [1] Erdélyi has pointed out that the nucleus of (2) can be expressed as a fractional integral of $e^{-x t}$ in terms of the operators of fractional integration introduced by Kober [6]. In this note two theorems have been given-one giving an inversion formula for the transform (2) and another giving necessary and sufficient conditions for the representation of a function as an intgral of the form (2) by considering its nucleus as a fractional integral of $e^{-x t}$.
2. The operators are defined as follows.

$$
\begin{aligned}
I_{\eta, \alpha}^{+} \mathscr{F}(x) & =\frac{1}{\Gamma(\alpha)} x^{-\eta-\alpha} \int_{0}^{x}(x-u)^{\alpha-1} u^{\eta} \mathscr{F}(u) d u \\
K_{\zeta, \alpha}^{-} \mathscr{F}(x) & =\frac{1}{\Gamma(\alpha)} x^{\zeta} \int_{x}^{\infty}(u-x)^{\alpha-1} u^{-\zeta-\alpha} \cdot \mathscr{F}(u) d u
\end{aligned}
$$

where $\mathscr{F}(x) \in L_{p}(0, \infty), 1 / p+1 / q=1$ if $1<p<\infty, 1 / q=0$ if $p=1$, $\alpha>0, \eta>-1 / q, \zeta>-1 / p$.

The Mellin transform $\bar{M}_{t} \mathscr{F}(x)$ of a function $\mathscr{F}(x) \in L_{p}(0, \infty)$ is defined as

$$
\bar{M}_{t} \mathscr{F}(x)=\int_{0}^{\infty} \mathscr{F}(x) x^{i t} d x \quad(p=1)
$$

and

$$
\begin{equation*}
=\lim _{X \rightarrow \infty}^{\operatorname{index} q} \int_{1 / X}^{x} \mathscr{F}(x) x^{i t-1 / q} d x \tag{p>1}
\end{equation*}
$$

Received May 8, 1958.

The inverse Mellin transform $\bar{M}^{-1} \phi(t)$ of a function $\phi(t) \in L_{q}(-\infty, \infty)$ is defined by

$$
\begin{equation*}
\bar{M}^{-1} \phi(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \phi(t) x^{-i t} d t \quad(q=1) \tag{3}
\end{equation*}
$$

and

$$
=\frac{1}{2 \pi} \lim _{T \rightarrow \infty}^{\operatorname{index} p} \int_{-T}^{T} \phi(t) x^{-i t-1 / p} d t \quad(q>1)
$$

If the Mellin transform is applied to Kober's operators and the orders of integration are interchanged we obtain, under certain conditions,

$$
\bar{M}_{t}\left\{I_{\eta, \alpha}^{+} \mathscr{F}(x)\right\}=\frac{\Gamma\left(\eta+\frac{1}{q}-i t\right)}{\Gamma\left[\alpha+\left(\eta+\frac{1}{q}-i t\right)\right]} \bar{M}_{t} \mathscr{F}(x)
$$

and

$$
\bar{M}_{t}\left\{K_{\zeta, \alpha}^{-} \mathscr{F}(x)\right\}=\frac{\Gamma\left(\zeta+\frac{1}{p}+i t\right)}{\Gamma\left[\alpha+\left(\zeta+\frac{1}{p}+i t\right)\right]} \bar{M}_{t} \mathscr{F}(x)
$$

But

$$
\bar{M}_{t}\left(e^{-x}\right)=\int_{0}^{\infty} e^{-x} x^{i t-1 / q} d x=\Gamma\left(\frac{1}{p}+i t\right) \text { if } \frac{1}{p}>0
$$

Therefore

$$
\bar{M}_{t}\left\{I_{\eta, \alpha}^{+}\left(e^{-x}\right)\right\}=\frac{\Gamma\left(\eta+\frac{1}{q}-i t\right) \Gamma\left(\frac{1}{p}+i t\right)}{\Gamma\left[\alpha+\left(\eta+\frac{1}{q}-i t\right)\right]}
$$

and

$$
\bar{M}_{t}\left\{K_{\zeta, \alpha}^{-}\left(e^{-x}\right)\right\}=\frac{\Gamma\left(\zeta+\frac{1}{p}+i t\right) \Gamma\left(\frac{1}{p}+i t\right)}{\Gamma\left[\alpha+\left(\zeta+\frac{1}{p}+i t\right)\right]}
$$

By (3)

$$
I_{\eta, \alpha}^{+}\left(e^{-x}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\Gamma\left(\eta+\frac{1}{q}-i t\right) \Gamma\left(\frac{1}{p}+i t\right)}{\Gamma\left[\alpha+\left(\eta+\frac{1}{q}-i t\right)\right]} x^{-i t-1 / p} d t
$$

and

$$
\begin{equation*}
K_{\zeta, \alpha}^{-}\left(e^{-x}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{\Gamma\left(\zeta+\frac{1}{p}+i t\right) \Gamma\left(\frac{1}{p}+i t\right)}{\Gamma\left[\alpha+\left(\zeta+\frac{1}{p}+i t\right)\right]} x^{-i t-1 / p} d t \tag{4}
\end{equation*}
$$

provided that $1 / p>0, \eta+1 / q>0$ and $\zeta+1 / p>0$.
It has also been shown by Erdélyi [2] that if the integral in (4) is evaluated by the calculus of residues then it can be expressed in terms of a confluent hypergeometric function. In particular,

$$
K_{2 m,(1 / 2)-m-k}^{-}\left(e^{-x}\right)=x^{m-1 / 2} e^{-x / 2} W_{k, m}(x)
$$

where $x>0,(1 / 2)-m-k>0$.
3. Theorem 1. Assume $\phi(t) \in L_{p}(0, \infty), 1 \leqq p<\infty, x>0$. If $2 m>-1 / q$ when $(1 / 2)-m-k>0$ and $(1 / 2)+m-k>-1 / q$ when $(1 / 2)-m-k>0$, then $K_{2 m,(1 / 2)-m-k}^{-}[\mathscr{F}(x)]$ exists and is equal to

$$
\int_{0}^{\infty} K_{2 m,(1 / 2)-m-k}^{-}\left(e^{-x t}\right) \phi(t) d t=F(x)
$$

where $\mathscr{F}(x)$ and $F(x)$ are given by (1) and (2) respectively.
Proof. Case I (1/2) $-m-k>0,1<p<\infty$.
If $\phi(t) \in L_{p}(0, \infty), 1 \leqq p<\infty$ and $x>0$ it is easy to see that $\mathscr{F}^{-}(x)$ exists. Therefore

$$
\begin{aligned}
& K_{2 m,(1 / 2)-m-k}^{-}[\mathscr{F}(x)]=\frac{x^{2 m}}{\Gamma((1 / 2)-m-k)} \\
& \quad \times \int_{x}^{\infty}(u-x)^{-(1 / 2)-m-k} u^{-(1 / 2)-m+k}\left\{\int_{0}^{\infty} e^{-u t} \phi(t) d t\right\} d u
\end{aligned}
$$

But from a theorem of Hardy [5] we know that if $\phi(t) \in L_{p}(0, \infty)$, $1<p<\infty$ then $u^{1-2 / p} \mathscr{F}(u) \in L_{p}(0, \infty)$ and therefore $(u-x)^{\alpha} u^{\beta} \mathscr{F}(u) \in L_{p}(x, \infty)$ provided that $\alpha+\beta=1-2 / p$ and $\alpha p>-1$. Therefore the integral

$$
\begin{aligned}
& \int_{x}^{\infty}(u-x)^{-(1 / 2)-m-K} u^{-(1 / 2)-m+K} \mathscr{F}(u) d u \\
& \quad=\int_{x}^{\infty}\left\{(u-x)^{-(1 / 2)-m-k-\alpha} u^{-(1 / 2)-m+k-\beta}\right\}\left\{(u-x)^{\alpha} u^{\beta} \mathscr{F}(u)\right\} d u
\end{aligned}
$$

will exist if the expressions within the brackets in the integrand belong to $L_{p}(x, \infty)$ and $L_{q}(x, \infty)$ respectively. The conditions for these are $\quad(-(1 / 2)-m-k-\alpha) q>-1, \quad(-1-2 m-\alpha-\beta) q<-1$ and $\alpha+\beta=1-2 / p, \alpha p>-1$ which reduce to $2 m>-1 / q$ and (1/2)-m$k>0$. Hence under these conditions the integral converges absolutely and we can change the order of integration. Therefore

$$
\begin{aligned}
& K_{2 m,(1 / 2)-m-K}^{-}[\mathscr{F}(x)]=\frac{x^{2 m}}{\Gamma((1 / 2)-m-k)} \int_{0}^{\infty} v^{-(1 / 2)-m-k}(x+v)^{-(1 / 2)-m+k} e^{-v t} \\
& \quad \times\left\{\int_{0}^{\infty} e^{-x t} \phi(t) d t\right\} d v=\frac{x^{2 m}}{\Gamma((1 / 2)-m-k)} \int_{0}^{\infty} e^{-x t} \phi(t) \\
& \quad \times\left\{\int_{0}^{\infty} v^{-(1 / 2)-m-k}(x+v)^{-(1 / 2)-m+k} e^{-v t} d v\right\} d t \\
& \quad=\int_{0}^{\infty}(x t)^{m-(1 / 2)} e^{-(1 / 2) x t} W_{k,-m}(x t) \phi(t) d t=F(x)
\end{aligned}
$$

as $W_{k,-m}(x)=W_{k, m}(x)$.
If $p=1$, it is similarly seen that the change in the order of integration is justified if $2 m>0$ and $(1 / 2)-m-K>0$.

Case II. (1/2) $-m-k<0,1<p<\infty$.
If $\alpha<0$ then the operator $K_{\eta, \alpha}^{-}\{\mathscr{F}(x)\}$ is defined as the solution, if any, of the integral equation $\mathscr{F}(x)=K_{\eta+\alpha,-\alpha}^{-}\{g(x)\}$. Now

$$
\begin{aligned}
& K_{(\overline{(1 / 2)+m-k,-(1 / 2)+m+k}}[F(x)] \\
& \quad=\frac{x^{(1 / 2)+m-k}}{\Gamma(-(1 / 2)+m+k)} \int_{0}^{\infty}(u-x)^{-(3 / 2)+m+k} u^{-2 m} \\
& \quad \times\left\{\int_{0}^{\infty}(u t)^{m-(1 / 2)} e^{-(1 / 2) u t} W_{K, m}(u t) \phi(t) d t\right\} d u .
\end{aligned}
$$

Again from a result of Hardy [5] we know that if

$$
F(x)=\int_{0}^{\infty} K(x y) \phi(y) d y
$$

then

$$
\int_{0}^{\infty} x^{p-2}\{F(x)\}^{p} d x<\left\{\psi\left(\frac{1}{q}\right)\right\}^{p} \int_{0}^{\infty}\{\phi(y)\}^{p} d y
$$

where

$$
\psi(s)=\int_{0}^{\infty} x^{s-1} K(x) d x
$$

$$
K(x)=\left|x^{m-(1 / 2)} e^{-(1 / 2) x} W_{k, m}(x)\right|
$$

then

$$
\psi(s)=\frac{\Gamma(2 m+s) \Gamma(s)}{\Gamma\left(m-k+\frac{1}{2}+s\right)}
$$

by Goldstein's formula [4]. Therefore

$$
\int_{0}^{\infty} x^{p-2}\{F(x)\}^{n} d x<\left\{\frac{\Gamma\left(2 m+\frac{1}{q}\right) \Gamma\left(\frac{1}{q}\right)}{\Gamma\left(m-k+\frac{1}{2}+\frac{1}{q}\right)}\right\}^{p} \int_{0}^{\infty}\{\phi(y)\}^{p} d y
$$

provided that $2 m>-1 / q$, or $x^{1-(2 / p)} F(x) \in L_{p}(0, \infty)$ if $\phi(y) \in L_{p}(0, \infty)$ ($p>1$). Hence $(u-x)^{\alpha} u^{\beta} F(u) \in L_{p}(x, \infty)$ if $\alpha+\beta=1-(2 / p)$ and $\alpha>-1 / p$. Also $(u-x)^{-(3 / 2)+m+k-\alpha} u^{-2 m-\beta} \in L_{q}(x, \infty)$ if $(-(3 / 2)+m+k-$ $\alpha) q+1>0$ and $(-(3 / 2)-m+k-\alpha-\beta) q+1<0$. These four conditions reduce to $m+k-(1 / 2)>0$ and $m-k+(1 / 2)>-1 / q$. So the integral $\int_{x}^{\infty}(u-x)^{-(3 / 2)+m+k} u^{-2 m} F(u) d u$ exists under these conditions and

$$
\begin{aligned}
& K_{(1 / 2)+m-k,-(1 / 2)+m+k}^{-}[F(x)] \\
& \quad=\frac{x^{(1 / 2)+m-K}}{I^{\prime}(-(1 / 2)+m+k)} \int_{0}^{\infty} t^{m-(1 / 2)} \phi(t) d t \\
& \quad \times \int_{x}^{\infty}(u-x)^{m+k-(3 / 2)} u^{-m-(1 / 2)} e^{-(1 / 2) u t} W_{k, m}(u t) d u
\end{aligned}
$$

on changing the order of integration which is permissible since the integral is absolutely convergent. But [4]

$$
\int_{x}^{\infty} u^{\lambda-1}(u-x)^{k-\lambda-1} e^{-u / 2} W_{k, m}(u) d u=\Gamma(k-\lambda) x^{k-1} e^{-x / 2} W_{\lambda, m}(x)
$$

where $k>\lambda$ and x is positive. Therefore

$$
\begin{aligned}
K_{(1 / 2)+m-k,-(1 / 2)+m+k}^{-}[F(x)] & =\int_{0}^{\infty}(x t)^{m-(1 / 2)} e^{-(x t / 2)} W_{-m+(1 / 2), m}(x t) \phi(t) d t \\
& =\int_{0}^{\infty} e^{-x t} \phi(t) d t
\end{aligned}
$$

under the conditions $m+k-(1 / 2)>0, m-k+(1 / 2)>-1 / q, x>0$.
If $p=1$, the change in the order of integration is justified if $m+K-(1 / 2)>0$ and $(1 / 2)+m-k>0$.
Hence $K_{(1,2)+m-k,-(1 / 2)+m+k}^{-}[F(x)]=\mathscr{F}(x)$ and the theorem is proved.
Theorem 2. Under the conditions of Theorem 1 we have

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x t} I_{2 m,(1 / 2)-m-K}^{+}\{\phi(t)\} d t=\int_{0}^{\infty} K_{2 m,(1 / 2)-m-K}^{-K}\left(e^{-x t}\right) \phi(t) d t \tag{5}
\end{equation*}
$$

This is a consequence of Theorem 2 of Erdélyi [3] and is proved similarly.
4. We are now in a position to give inversion and representation theorems for the transform.

We have seen that, under certain conditions,

$$
K_{(1 / 2)+m-k,-(1 / 2)+m+k}[F(x)]=\mathscr{F}(x) .
$$

Also $\mathscr{F}(x)$ has derivatives of all orders for x sufficiently large and vanishes at infinity. So we can apply the Post-Widder operator $L_{\lambda, u}$ defined by the relation

$$
L_{\lambda, u}[\mathscr{F}(x)]=\frac{(-1)^{\lambda}}{\lambda!} \mathscr{F}(\lambda)\left(\frac{\lambda}{u}\right)\left(\frac{\lambda}{u}\right)^{\lambda+1}
$$

(where λ is a positive integer and u a real positive number) to $\mathscr{F}(x)$ and obtain an inversion theorem.

Lemma. If $\phi(t) \in L_{p}$ in $(0 \leqq t<\infty)$ and

$$
\psi(u)=\int_{0}^{\infty}|\phi(u t)-\phi(t)|^{p} d t
$$

then

$$
\begin{equation*}
\left|\frac{u \psi(u)}{1+u}\right| \leqq\|\phi\|_{p}^{p} \text { for } u \geqq 0 \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(u) \rightarrow 0 \text { as } u \rightarrow 1 \tag{ii}
\end{equation*}
$$

where $\|\mathscr{F}\|_{p}$ denotes the norm of the function $\mathscr{F}(t) \in L_{p}(0, \infty)$, that is

$$
\|\mathscr{F}\|_{p}=\left\{\int_{0}^{\infty}|\mathscr{F}(t)|^{p} d t\right\}^{(1 / p)} .
$$

Proof. We have

$$
|\psi(u)| \leqq \int_{0}^{\infty}|\phi(u t)|^{p} d t+\int_{0}^{\infty}|\phi(t)|^{p} d t=\left(1+\frac{1}{u}\right) \int_{0}^{\infty}|\phi(t)|^{p} d t
$$

which proves (i).
Also, by a change of variable,

$$
\psi\left(e^{y}\right)=\int_{-\infty}^{\infty}\left|\phi\left(e^{x+y}\right)-\phi\left(e^{x}\right)\right|^{p} e^{x} d x
$$

If $\alpha(x)=e^{(x / p)} \phi\left(e^{x}\right)$ then

$$
\int_{-\infty}^{\infty}|\alpha(x)|^{p} d x=\int_{-\infty}^{\infty}\left|\phi\left(e^{x}\right)\right|^{p} e^{x} d x=\|\phi\|_{p}^{p}
$$

and so $\alpha(x) \in L_{p}(-\infty, \infty)$. Again

$$
\begin{aligned}
\left\{\psi\left(e^{y}\right)\right\}^{1 / p} & =\left[\int_{-\infty}^{\infty} \mid\left\{\alpha(x+y) e^{-(y / p)}-\alpha(x) e^{-(y / p)}\right\}\right. \\
& \left.+\left.\left\{\alpha(x) e^{-(y / p)}-\alpha(x)\right\}\right|^{p} d x\right]^{1 / p} \\
& \leqq e^{-(y / p)}\left[\int_{-\infty}^{\infty}|\alpha(x+y)-\alpha(x)|^{p} d x\right]^{1 / p} \\
& +\left|e^{-(y / p)}-1\right|\left[\int_{-\infty}^{\infty}|\alpha(x)|^{p} d x\right]^{1 / p}
\end{aligned}
$$

by Minkowski's inequality. And $\int_{-\infty}^{\infty}|\alpha(x+y)-\alpha(x)|^{p} d x \rightarrow 0$ as $y \rightarrow 0$ if $\alpha(x) \in L_{p}(-\infty, \infty)$ and so does $\left|e^{-y \mid p}-1\right|$. Therefore $\psi\left(e^{y}\right)=o$ (1) as $y \rightarrow 0$ or $\psi(u) \rightarrow 0$ as $u \rightarrow 1$.

Theorem 3. Assume $\phi(t) \in L_{p}(1 \leqq p<\infty)$ in $0 \leqq t \leqq R$ for every positive R. If the integral $\mathscr{F}(x)$ converges for $x>0$ and $2 m>-1 / q$ when $(1 / 2)-m-k>0 ;(1 / 2)+m-k>-1 / q$ when $(1 / 2)-m-k<0$, then, for almost all positive t,

Proof. We have seen in the proof of Theorem 1 that, under the conditions of the theorem,

$$
K_{(1 / 2)+m-k,-(1 / 2)+m+k}^{-}\{F(x)\}=\mathscr{F}(x) .
$$

Therefore

$$
\begin{aligned}
L_{\lambda, t} & \equiv L_{\lambda, t}\left[K_{(1 / 2)+m-k,-(1 / 2)+m+k}^{-}\{F(x)\}\right] \\
& =\frac{1}{\lambda!}\left(\frac{\lambda}{t}\right)^{\lambda+1} \int_{0}^{\infty} e^{-(\lambda u / t)} u^{\lambda} \phi(u) d u
\end{aligned}
$$

by simple computation and

$$
\begin{aligned}
\left|L_{\lambda, t}-\phi(t)\right| & \leqq \frac{1}{\lambda!}\left(\frac{\lambda}{t}\right)^{\lambda+1} \int_{0}^{\infty} e^{-(\lambda u / t)} u^{\lambda}|\phi(u)-\phi(t)| d u \\
& =\frac{1}{\lambda!} \lambda^{\lambda+1} \int_{0}^{\infty} e^{-\lambda v} v^{\lambda}|\phi(v t)-\phi(t)| d v
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left|L_{\lambda, t}-\phi(t)\right|^{p} \leqq & \left|\frac{\lambda^{\lambda+1}}{\lambda!} \int_{0}^{\infty} e^{-\lambda v} v^{\lambda}\right| \phi(v t)-\phi(t)|d v|^{p} \\
\leqq & {\left[\frac{\lambda^{\lambda+1}}{\lambda!} \int_{0}^{\infty} e^{-\lambda v} v^{\lambda}|\phi(v t)-\phi(t)|^{p} d v\right]\left[\frac{\lambda^{\lambda+1}}{\lambda!} \int_{0}^{\infty} e^{-\lambda v} v^{\lambda} d v\right]^{p / q} } \\
& \frac{\lambda^{\lambda+1}}{\lambda!} \int_{0}^{\infty} e^{-\lambda v} v^{\lambda}|\phi(v t)-\phi(t)|^{p} d v .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\int_{0}^{\infty}\left|L_{\lambda, t}-\phi(t)\right|^{p} d t & \leqq \frac{\lambda^{\lambda+1}}{\lambda!} \int_{0}^{\infty} d t \int_{0}^{\infty} e^{-\lambda v} v^{\lambda}|\phi(v t)-\phi(t)|^{p} d v \\
& =\frac{\lambda^{\lambda+1}}{\lambda!} \int_{0}^{\infty} e^{-\lambda v} v^{\lambda} d v\left\{\int_{0}^{\infty}|\phi(v t)-\phi(t)|^{p} d t\right\}
\end{aligned}
$$

In changing the order of integration, this becomes

$$
\begin{equation*}
\frac{\lambda^{\lambda+1}}{\lambda!} \int_{0}^{\infty} e^{-\lambda v} v^{\lambda} \psi(v) d v \tag{6}
\end{equation*}
$$

where $\psi(v)$ is defined as in the lemma. From the lemma it is easily seen that

$$
\begin{aligned}
\psi(u) & =0(1) & & (u \rightarrow \infty) \\
& =0\left(u^{-1}\right) & & (u \rightarrow 0+)
\end{aligned}
$$

Therefore $\int_{0}^{\infty} e^{-\lambda v} v^{\lambda} \psi(v) d v$ converges for $\lambda \geqq 1$ and the inversion of the order of integration is justified by Fubini's theorem. By a familiar result [9, Theorem 3c, p. 283] the integral (6) approaches $\psi(1)$ as $\lambda \rightarrow \infty$. But, by the lemma, $\psi(u)=o(1)$ as $u \rightarrow 1$. Therefore $L_{\lambda, t}$ converges in mean to $\phi(t)$ with index p on $0 \leqq t<\infty$ and the result is proved.

Theorem 4. The necessary and sufficient conditions for a function $F(x)$ to have the representation (2) with $\phi(t) \in L_{p}(0, \infty), p \geqq 1, x>1$, and with $2 m>-1 / q$ when $1 / 2-m-K>0$ and $m-k+1 / 2>-1 / q$ when $1 / 2-m-k<0$ are
(i) $K_{1 / 2+m-K,-1 / 2+m+K}^{-}\{F(x)\} \equiv G(x)$ exists, has derivatives of all orders in $0<x<\infty$ and vanishes at infinity and
(ii) there exist constants M and $p(p \geqq 1)$ such that

$$
\int_{0}^{\infty}\left|L_{\lambda, t}[G(x)]\right|^{p} d t<M \quad(\lambda=1,2, \cdots)
$$

Proof. First let $F(x)$ have the representation (2). Then, from Theorem 1,

$$
G(x) \equiv K_{1 / 2+m-k,-1 / 2+m+k}^{-}\{F(x)\}=\mathscr{F}(x)
$$

and as in the proof of Widder [9, Theorem 15a, pp. 313-14] we see that the conditions are satisfied.

Conversely, let the conditions be satisfied. Then again, as in the proof of Widder's theorem referred to before, we see that

$$
G(x)=\int_{0}^{\infty} e^{-x t} \phi(t) d t=\mathscr{F}(x)
$$

Therefore [3, p. 300]

$$
\begin{aligned}
F(x) & =\left(K_{(1 / 2)+m-k,-(1 / 2)+m+k}^{-}\right)^{-1} \mathscr{F}(x)=K_{2 m, 1 / 2-m-k}^{-}\{\mathscr{F}(x)\} \\
& =\int_{0}^{\infty}(x t)^{m-1 / 2} e^{-x t / 2} W_{K, m}(x t) \phi(t) d t
\end{aligned}
$$

by Theorem 1; and the theorem is proved.
Corollary. If the fractional derivatives or integrals

$$
K_{(1 / 2)+m-k+r,-(1 / 2)+m+k-r}^{-}\{F(x)\}
$$

exist for $r=0$ and every positive integer, then the integral in the condition (ii) of Theorem 4 can be replaced by

$$
\int_{0}^{\infty} \left\lvert\, \frac{(-1)^{\lambda}}{\lambda!}\left(\frac{\lambda}{t}\right) \sum_{r=0}^{\lambda}(-1)^{r} A_{r} K_{(1 / 2)+m-k+r,(1 / 2)+m+k-r}^{-}\left\{F\left(\frac{\lambda}{t}\right)\right\}^{p} d t\right.
$$

where

$$
\begin{aligned}
A_{r}={ }^{\lambda} & C_{r}(m-k+(1 / 2))(m-k-(1 / 2)) \cdots(m-k-\lambda+(3 / 2)+r) \\
& (r=0,1, \cdots, \lambda-1), \quad A_{\lambda}=1 .
\end{aligned}
$$

For [6]

$$
t^{a} K_{\bar{\zeta}, \alpha}\{\mathscr{F}(t)\}=K_{\zeta+a \alpha}^{-}\left\{t^{a} \mathscr{F}(t) .\right.
$$

Therefore

$$
K_{\zeta, \alpha}^{-}\{F(x)\}=x^{\zeta} K_{0, \alpha}^{-}\left\{x^{-\zeta} F(x)\right\}
$$

and

$$
\begin{aligned}
& \frac{d^{\lambda}}{d x^{\lambda}}\left[K_{\zeta, \alpha}^{-}\{F(x)\}\right]=\frac{d^{\lambda}}{d x^{\lambda}}\left(x^{\zeta}\right)\left[K_{0, \alpha}^{-}\left\{x^{-\zeta} F(x)\right\}\right] \\
& \quad+{ }^{\lambda} C_{1} \frac{d^{\lambda-1}}{d x^{\lambda-1}}\left(x^{\zeta}\right) \frac{d}{d x}\left[K_{0, \alpha}^{-}\left\{x^{-\zeta} F(x)\right\}\right]+\cdots \\
& \quad+{ }^{\lambda} C_{\lambda-1} \frac{d}{d x}\left(x^{\zeta}\right) \frac{d^{\lambda-1}}{d x^{\lambda-1}}\left[K_{0, \alpha}^{-}\left\{x^{-\zeta} F(x)\right\}\right] \\
& \quad+x^{\zeta} \frac{d^{\lambda}}{d x^{\lambda}}\left[K_{0, \alpha}^{-}\left\{x^{-\zeta} F(x)\right\}\right] .
\end{aligned}
$$

By Leibnitz's theorem this becomes

$$
\begin{aligned}
& =\zeta(\zeta-1) \cdots(\zeta-\lambda+1) x^{\zeta-\lambda}\left[K_{0, \alpha}^{-}\left\{x^{-\zeta} F(x)\right\}\right] \\
& -{ }^{\lambda} C_{1} \zeta(\zeta-1) \cdots(\zeta-\lambda+2) x^{\zeta-\lambda+1}\left[K_{0, \alpha-1}^{-}\left\{x^{-\zeta-1} F(x)\right\}\right] \\
& +\cdots+(-1)^{\lambda} x^{\zeta}\left[K_{0, \alpha-\lambda}^{-}\left\{x^{-\zeta-\lambda} F(x)\right] .\right.
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \frac{(-1)^{\lambda}}{\lambda^{1}} x^{\lambda+1} \frac{d^{\lambda}}{d x^{\lambda}}\left[K_{\zeta, \alpha}^{-}\{F(x)\}\right] \\
& \quad=\frac{(-1)^{\lambda}}{\lambda!} \sum_{r=0}^{\lambda}(-1)^{r} A_{r} x^{\zeta+r+1}\left[K_{0, \alpha-r}^{-}\left\{x^{-\zeta-r} F(x)\right\}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{r}={ }^{\lambda} C_{r} \zeta(\zeta-1) \cdots(\zeta-\lambda+r+1) \\
& A_{\lambda}=1, \quad(r=0,1, \cdots, \lambda-1),
\end{aligned}
$$

and

$$
\begin{aligned}
L_{\lambda, t}\left[K_{\zeta, \alpha}^{-}\{F(x)\}\right] & =\frac{(-1)^{\lambda}}{\lambda!} \sum_{r=0}^{\lambda}(-1)^{r} A_{r}\left(\frac{\lambda}{t}\right)^{\zeta+r+1}\left[K_{0, \alpha-r}^{-}\left\{\left(\frac{\lambda}{t}\right)^{-\zeta-r} F\left(\frac{\lambda}{t}\right)\right\}\right] \\
& =\frac{(-1)^{\lambda}}{\lambda!}\left(\frac{\lambda}{t}\right) \sum_{r=0}^{\lambda}(-1)^{r} A_{r}\left[K_{\bar{\zeta}+r, \alpha-r}^{-}\left\{F\left(\frac{\lambda}{t}\right)\right\}\right] .
\end{aligned}
$$

Putting $\zeta=m-k+1 / 2$ and $\alpha=m+k-1 / 2$ we have the required result.

Theorem 5a. If $F(x)$ has representation (2) with the conditions of Theorem 4 on $\phi(t), x, k$ and m satisfied and if the fractional derivatives or integrals $K_{(1 / 2)+m-k+r,-(1 / 2)+m+k-r}^{-}\{F(x)\}$ exist for $r=0$ and every positive integer, than

$$
\lim _{\lambda \rightarrow \infty} \int_{0}^{\infty}\left|\frac{(-1)^{\lambda}}{\lambda!}\left(\frac{\lambda}{t}\right) \sum_{r=0}^{\lambda}(-1)^{r} A_{r}\left[K_{(1 / 2)+m-k+r,(-1 / 2)+m+k-r}^{-}\left\{F\left(\frac{\lambda}{t}\right)\right\}\right]\right|^{p} d t=\|\phi\|_{p}^{p}
$$

where the A_{r} 's have values as in the Corollary to Theorem 4.
Proof. The proof is similar to that of Widder [9, Theorem 15b, p. 314]

Theorem 5b. If the function $F(x)$ has representation (2) with the conditions of Theorem 4 on $\phi(t), x, k$ and m satisfied, then

$$
\left.\lim _{\lambda \rightarrow \infty} \int_{0}^{\infty}\left|L_{\lambda, t}\{F(x)\}^{p} d t=\int_{0}^{\infty}\right| I_{2 m,(1 / 2)-m-k}^{+}\{\phi(t)\}\right|^{p} d t .
$$

Proof. If $F(x)$ has the representation (2), then, by Theorem 2 we have

$$
F(x)=\int_{0}^{\infty} e^{-x t} I_{2 m,(1 / 2)-m-k}^{+}\{\phi(t)\} d t
$$

Also if $\phi(t) \varepsilon L_{p}(0, \infty)$ so does $I_{2 m,(1 / 2)-m-k}^{+}\{\phi(t)\}$ provided that $2 m>-1 / q$. Therefore, as in Widder [9, Theorem 15b, p. 314], we can prove again that

$$
\lim _{\lambda \rightarrow \infty} \int_{0}^{\infty}\left|L_{\lambda, t}\{F(x)\}\right|^{p} d t=\int^{\infty} \mid I_{2 m,(1 / 2)-m-k}^{+}\{\phi(t)\}^{p} d t
$$

I am deeply grateful to Professor A. Erdélyi for many helpful suggestions.

References

1. A. Erdélyi, On a generalization of the Laplace transformation, Proc. Edin. Math. Soc., Ser. (2) 10 (1951), 53-55.
2. _---, On some functional transformations, Rend. del Semin. Mat. 10 (1950-51) 217-234.
3. - On fractional integration and its application to the theory of Hankel transforms, Quart. J. Math. 11, (1940), 293-303.
4. S. Goldstein, Operational representations of Whittaker's confluent hypergeometric function and Weber's parabolic cylinder function, Proc. Lond. Math. Soc., (2) 34 (1932), 103-125.
5. G. H. Hardy, The constants of certain inequalities, J. Lond. Math.Soc., 8, (1933), 114-211.
6. H. Kober, On fractional integrals and derivatives, Quart. Jour. Math., 11, (1940), 193-211.
7. C. S. Meijer, Eine neue Erweiterung der Laplace Transformation, I, Proc, Sect, Sci., Amsterdam Akad. Wet. 44, (1941), 727-737.
8. R. S. Varma, On a generalization of Laplace integral, Proc. Nat. Acad. Sci. (India), A 20, (1951), 209-216.
9. D. V. Widder, The Laplace transform, 1941.

California Institute of Technology
D. S. B. Government College, Naini Tai, India.

