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Introduction. Wigner in [5] has defined a finite group & to be
simply reducible if (a) every conjugate class in ^ is self inverse and (b)
for each two irreducible representations L and M of & the Kronecker
product L(x)Λf is a direct sum of inequivalent irreducible representa-
tions. The principal result of [5] is a curious purely group theo-
retical characterization of simply reducible groups. For each x e ^ let
v(x) denote the number of elements of g^ which commute with x and
let ζ(x) denote the number of solutions of the equation y^—x. Then
g7 is simply reducible if and only if Σ*eGK#)2=Σ*eGC(#)3 As the
author has shown in [3] this result may be "explained" as follows.
Let gf 3 be the diagonal subgroup of ^ x 2^ x Ŝ% that is the set of all
x, y, z with x=y=z. Then it is easily seen that the number of g^3 : g^3

double cosets in & x g7 x & is equal to Σ^e^ί^)2 while the number of
self inverse gf 3 : g^3 double cosets in ^ x gf x gf is equal to Σ*eί?C(̂ )3

Thus Wigner's condition is equivalent to the condition that every g?3:
gf3 double coset be self inverse. On the other hand if iJis an arbitrary
subgroup of the finite group & and U1 is the corresponding permuta-
tion representation of <& one can prove that every H: H double coset
is self inverse if and only if each irreducible component Mj of Uτ

occurs with multiplicity one and is such that the intertwining operators

of Mj with Mj are symmetric. This result is a corollary of a general
theorem on anti-symmetric intertwining numbers for induced representa-
tions and certain elementary lemmas. It leads easily to Wigner's
theorem when applied to <& x g? x ^ and its diagonal subgroup.

Now of the two conditions in the definition of simple reducibility (b)
is much the more interesting. Moreover, as we shall see, there are
examples of groups which satisfy (6) and not (a). This suggests looking
for a generalization of Wigner's theorem in which (a) is dropped or
weakened. The way to such a generalization is suggested by the con-
siderations of [3] and a simple observation which plays a vital role in
Gelfand's work [1] on "spherical functions" on Lie groups. Slightly
generalized1 and then applied to finite groups this observation is the
following. Let x -> xa be an involutory anti-automorphism of the finite
group ^ . Let H be a subgroup of & such that the H:H double
cosets are invariant under x —• xa. Let s/n be the subalgebra of the
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group algebra of £/ consisting of all functions on gf which are constant
on each H:H double coset. Then s/H is commutative. Since S/H is
the commuting algebra of the permutation representation U1 of gf
defined by H, it follows that each irreducible component of U1 occurs
with multiplicity one. Confronting this result with the theorem from
[3] on U1 cited above, we are led at once to consider the possibility of
rewriting [3] with x~ι replaced in appropriate places by xa thus obtain-
ing the indicated generalization of Wigner's theorem as well as a con-
verse for the Gelfand observation.

It is the purpose of the present note to show that this rewriting can
be done. It turns out that the necessary arguments differ but little
from their counterparts in [3]. Accordingly the emphasis will be on
the formulation of definitions and results and insofar as possible the
reader will be referred to [3] for detailed proofs. We shall make no
attempt to generalize Theorems 1 and 2 or §§ 5 and 6 of [3].

l Symmetric and anti-symmetric intertwining numbers. Let & be
a finite group and let a denote a fixed involutory anti-automorphism of
S£\ Let x-*Ux be an arbitrary representation of g^ by linear transfor-
mations in a finite dimensional vector space SίfiJJ) over a field ^
whose characteristic is not two. Then x->(U α)* is a representation of gf

whose space is the dual <βί?(TJ) of Sίf{JJ\ We shall denote this representa-
tion by Ua. It is clear that Uaa~U, Let T be an intertwining operator

for Ua and U; that is a linear operator from <^{Va) = ΊmjT) to SίfiJJ)
such that TUa

x=UxT for all x in &. Then T*Ux* = (Ui)*T*=UχJΓ* for
alia;. Hence T*U *=UXT* for all x. Hence T* is also an intertwining

operator for Ua and U. Setting T=(T+T*)I2 + (T-T*)I2 we see that
every intertwining operator T for Ua and U is uniquely of the form
Tτ+T2 where Tx* = Tτ and T 2 * = - T 2 . Hence if we denote the dimension
of the space &(Ua, U) of all intertwining operators for Ua and U by
JΓψ ϋ) we have ^(TJ\ U) = MUa, U) +^{U\ U) where ^U\
U) is the dimension of the space of all intertwining operators T such
that T* — T and ^ζ(?7α, U) is the dimension of the space of all inter-
twining operators T such that T*=—T. These two dimensions will be
referred to respectively as the symmetric and anti-symmetric intertwin-
ing numbers of Ua with U. Their sum as usual will be call the inter-
twining number of Ua with U.

LEMMA 1. If U and V are representations of %7 and U+V denotes
their direct sum, then

v)
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Proof* The corresponding proof in [3] proceeds through symmetric
and anti-symmetric Kronecker products and hence does not apply here.
However, it is readily converted into a direct proof which generalizes
immediately to the situation at hand.

COROLLARY. // C^U^^U", U)-^A(Ua

f U), then Ca(U+V) =
Ca(U) + Ca(V).

LEMMA 2. Let JF~ be algebraically closed and let g^ = ̂ Ί x g^2 where
(^iXe)α=2^iXe, (exgf 2 ) α =eχ^ 2 , Let U and V be irreducible repre-
sentations of S î and g^2 respectively. Then Ca(LχM) = Ca(L)Ca(M).

Proof See proof of Lemma 2 of [3].

COROLLARY. The conclusion continues to hold if U and V are direct
sums of irreducible representations.

LEMMA 3. Let ^ be algebraically closed, let U be a direct sum of
irreducible representations, and let b denote an involutory anti-automor-
phism of Sf which commutes with a. Then Ca(Ub) = Ca(U).

Proof. Clearly we need only consider the case in which U is ir-
reducible. If U and Ua are not equivalent then Ub and Uab—Uba are
not equivalent. Hence Cα(ϊ7) = 0 and C%Ub)=0. If U and Ua are
equivalent let T set up the equivalence. Then TUx — Ua

xT for all x.
Hence for all x we have

U%T*^T*Uaf or UϊtT* = T*U? = T*U* .
X X

Thus T7* sets up the equivalence between Ub and Uba. Since T= ± Γ*
if and only if ( T * ) * = ± Γ * the truth of the lemma follows at once.

LEMMA 4. Let ^ be algebraically closed and let G be a subgroup
of & such that Ga — G. Let L be an irreducible representation of & and
suppose that the restriction M of L to G is a direct sum of inequivalent
representations M5. Then Cα(Λf,)=Cα(L) for all j .

Proof. See proof of Lemma 4 of [3].

2. Multiplicity-free permutation representations. Let / be the one-
dimensional identity representation of the subgroup G of the finite
group g^. As in [3] we shall denote by U1 the representation of g^
induced by /, that is, the permutation representation of ^ defined by G.



506 GEORGE W. MACKEY

LEMMA 5. Let I and G be as just described. Let nx denote the
number of G: Ga double cosets which are invariant under a. Let n2

denote the number of G: Ga double cosets which are not invariant under
a. Then^{UIfUI)^n1+^n, an

Proof. The proof is an obvious adaptation of the proof of Theorem
2' of [3].

LEMMA 6. Let Λf=Λfi + M3H Mn where the M3 are irreducible
representations of &. Then ^/A{Ma

yM) — Q if and only if for each j
one of the two following conditions holds.

(a) Cα(Λf,) = l and M3 is not equivalent to Mk for any kφj.
(b) Ca(Mj)=0 and Mj is not equivalent to any Mk.

Proof. See proof of Lemma 5 of [3].

We shall suppose henceforth that J?~ is algebraically closed and
that the characteristic of ^ does not divide the order of gf. Hence
in particular every representation U of 5f will be a direct sum of
irreducible representations. When these irreducible components are
mutually inequivalent, we shall say that U is multiplicity-free.

THEOREM 1. Let G be a subgroup of & such that G2=G. Let I be
the identity representation of G. Then the following statements are
equivalent:

(a) ^AW)\ U*) = 0.
(b) Every G: G double coset is invariant under a.
(c) U1 is multiplicity-free and each irreducible component M of U1

is such that Ca(M)=l.

Proof. The equivalence of (a) and (b) follows at once from Lemma
5. On the other hand, it is easy to verify that U1 and (UI)a are
equivalent. Hence, when we apply Lemma 6 to Z7J, alternative (b) is
impossible, and the equivalence of (a) and (c) follows at once.

COROLLARY (of proof). The theorem remains true if the hypothesis
that G°=G is replaced by the hypothesis that (Ur)a and U1 are equivalent
and in (b) G: G is replaced by G: Ga.

THEOREM 2. Let 5^3 denote the subgroup of & x ^ x & consisting
of all x, y, z, with x—y—z. Then the following two statements are equiva-
lent :

(a) For each pair L, M of irreducible representations of & the
Kronecker product L®M is multiplicity-free and La and L are
equivalent.
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(b) Every g^3: 5^3 double coset in <& x *& x g^ is invariant under a.

Proof. We apply Theorem 1 with gf x Z? x g? playing the role of
gf and ^ 3 that of G. Then condition (b) of the present theorem
becomes exactly condition (b) of Theorem 1. Now the most general
irreducible representation of gf x 2^ x %? is LxMxN where L,M, and
N are irreducible representations of g?\ Moreover by the Frobenius
reciprocity theorem £7f contains LxMxN just as often as L®M(>ξ)N

contains the identity that is, just as often as L(x)M contains N. (N
is Nb where b(x) = x~1). Thus U1 is multiplicity-free if and only if each
L(x)ikf is multiplicity-free. In other words the first part of condition
(c) of Theorem 1 is equivalent to the first part of condition (a) of the
present theorem. On the other hand, Ca(LxMxN)=Ca(L)Ca(M)Ca(N)
by Lemma 2. Thus the second part of condition (c) is equivalent to

the condition that Ca(L)Ca(M)Ca(N) = l whenever N is a component of
L(x)M. But if the first part of the condition is satisfied, then, by

Lemma 4, Ca(L)Ca(M) = Ca{LxM) = Ca(N) for all N in the decomposition

of L0M. Moreover, by Lemma 3, Ca(N) = Ca(N). Thus, in the presence
of the first part, the second part of condition (c) is equivalent to the
condition that Ca{NY — l for all N occurring in the decomposition of
L(g)M. But Ca(Nf=l if and only if C α ( iV)=±l that is, if and only
if N=Na. The truth of Theorem 2 follows at once.

3. Generalizations of Wigner's condition. We define v(x) for
xe&, just as in [3], [5] and the introduction to the present paper.
We replace the function ζ however by a function ζa which we define
as follows. For each xe %?, ζa(x) is the number of elements z in g^
for which z(za)'1 = x. Theorem 5 of [3] relating Σ v(x)n to the number

of g^n+i: S^n+L double cosets in S^n+1 can be used just as it stands but

we need a generalization of Theorem 6 giving us information about

Σ*e5^Cα0ε)w+1. H e r e S?n+ι is the direct product of 2^ with itself n+1

times and §sn+i is the "d iagonal " subgroup of g^w+1.

THEOREM 3. Let gf be of order h and let &n+ι, 5TW+1 and ζa be
defined as above. Then the following three numbers are all equal.

(a) (l/λ)ΣCα(α)"+1

(b) The number of 5f n + i : ^n+i double cosets in g?'n+1 which are
invariant under a.

(c) The number of a invariant orbits in &n under the group of inner

automorphisms defined by members of gf w.
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Proof. We verify at once that if x19 x2, , xn+1 and y19 y.z, , yn+1

are in the same &n+ί: %?n+i double coset then xxxni\9 #»#»+}, and yλynlXf

* * 9 ynVn+i are in the same orbit in gf „. The mapping so defined is
easily seen to be one-to-one and onto from double cosets to orbits and
to carry the a invariant double cosets onto the a invariant orbits.
Thus (b) and (c) are equal. We now apply Lemma 6 of [2] with
2f = SΓ«, y(xl9 x%9 - , xn) = y'%y, V^xfl, , V'ιx^, and T(xλ xi9 , αn) =
#Λ %*t i #w

α. (In the statement of the lemma, it is assumed that Γ
commutes with y for all 2/ and this condition does not hold here.
However, the proof continues to hold under the weaker hypothesis that
T takes each orbit in S into itself and that condition does hold here.
We remark that the proof in question contains a typographical error.
In the second line from the bottom on page 399, T(s) should be followed
by " i s n o t " rather than " i s " . ) Here p(y) is the number of xl9xi9

• , xn such that y^xflj—otfj for j = l, 2, , n. Hence p(y)—p1(y)n where
Pι(y) is the number of x in & with yιxy—xa. But y~ιxy—xa if and
only if xy((xy)aYl—y{ya)~1. Moreover for fixed y the number of x such
that xy{{xy)aYι—y{a)~ι is equal to the number of z such that z(zf*)~1 =
y(ya)-\ Thus p1(y)=ζa{y{yΎλ) and p(y) = ζa(y(ya)~ιY Hence (c) is equal
to

. of y with y(yTYι=z)

Thus (a) = (c) and the theorem is proved.
As an immediate consequence of the theorem just proved and

Theorem 5 of [3], we obtain the following.

THEOREM 4. Let g^, a, υ9 ζa9 &n9 %?n be as above. Then for all
x—1, 2, •• , we have

Equality holds if and only if every &n+1: §?n+λ double coset in ^ w + 1 is
invariant under a.

COROLLARY. Condition (a) of Theorem 2 is satisfied if and only if
xf — Σ ^ ) 2 - Theorem 2 of Wigner's paper [5] is this corollary with

xa=χ-1. If we take n—\ in Theorem 3 we conclude that l/^ΣCα(^)2 is

the number of conjugate classes in <& which are invariant under a. When
xa=χ-1

f this reduces to Theorem 1 of [5].
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Obvious adaptations of the proofs of Theorems 8 and 9 of [3] yield
proofs of the two following theorems.

THEOREM 5. If &, a, ζa, and v are as above, then the following
conditions are equivalent.

(a) ΣCα(*)2 = ΣΦ0
xe g f xe g f

(b) Every class in 2? is invariant under x~>xa.
(c) For every representation L of %?, L and La are equivalent.

THEOREM 6. If gf, α, ζa, and v are as above, then the following
conditions are equivalent.

(a) For some integer n>3, ΣCαOΓ+ 1 = Σ Φ O ^

(b) For every positive integer n, ΣCα(^)w+L = Σ Φ ) n

aeg? *egf

(c) g^ is commutative and a is the identity.

4. Some examples. If g 7 is abelian and not every element is of
order two, then the Kronecker products of irreducible representations
of & are trivially multiplicity-free but Wigner's theorem does not apply
since the classes in g^ are not self inverse. On the other hand, taking
a to be the identity we find that Corollary 2 of Theorem 4 of the
present paper does apply. A slightly less trivial example may be con-
structed by letting & be the direct product HxK where H is abelian,
K is a group for which the equivalent conditions of Wigner's theorem
are satisfied, and (£, x)a—ξf x'1. Still less trivial examples may be found
by applying the following theorem :

THEOREM 7. Let %? have a commutative normal subgroup N such
that %?IN is of order 2. Then the Kronecker product of any two irreduci-
ble representations of ^ is multiplicity-free.

Proof. The regular representation of gf is a direct sum of the
representations Ux where Uχ denote the representation of ^ induced
by the character χ of N. Since the £7X are all two-dimensional, every
irreducible representation of gf is either a Uχ or is one-dimensional.

Thus to prove the theorem it will suffice to show that £7Xl(x)£/2 is multi-

plicity-free whenever UXι and U%t are irreducible. Let β denote the

unique involutory automorphism of N such that β(x)=yxy1 for allxeN

and all ye%?—N. Let a denote the involutory automorphism of the

character group N of N defined by β. Then (see [2]) the intertwining

of U*L and if2 is equal to one, zero, or two, according as χx is equal
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to one, neither, or both of χ2 and <x(χ2). Thus U% is irreducible if and

only if χφoc(χ) and when U% is reducible, it is multiplicity-free. More-

over if If1 and U*2 are both reducible, then U%1+UH is multiplicity-free

whenever χλψχ%. Again by a result of [2], u%ι®UH~U%ι%*+U%1<^\

But if U*1 and ΌH are irreducible, then χλφa(χ^), X^Φa(χ2). Hence
and X,χ2Φ^(xMχ2))=a(χ1)χ2. Hence by the foregoing,

is multiplicity-free and the proof is complete.
Let ^ be the semi-direct product of a cyclic group N of order n

and a cyclic group K of order 2 where xξx^ — ξ'1 for 6 e N and # the non
identity element of K that is, let ^ be the dihedral group of order
2n. It is readily verified that the classes in gf are all self inverse.
Hence, by Theorem 7, & satisfies the equivalent conditions of Wigner's
theorem. Now let N be a cyclic group of order 2n, let K be as before,
and let g? be the set of all pairs ξ, x where ξ e N and x e K. Let θ be
a generator of iV. We define a multiplication in & by setting

where Xι(ζ2)—ζ2 or ξfι according as xλ=e (the identity) or not, and
h(xlfx2) = θn or e depending upon whether χ1=χ2=e or not. It is readily
verified that ^ is a group with respect to this multiplication. It is
the well known dicyclic group of order in. Let the elements of K be
z and e. Then (β, z)~1 = θn, z but the class containing (e, z) is easily seen
to consist just of the elements of the form ξ2, z where ξe N. Hence if
every class in & is self inverse, an=a2k for some k. Hence n—2k is
a multiple of 2n and n is even. Thus if n is odd, the dicyclic group
of order An has a non self inverse class. On the other hand let (?, x)a

— x(ξ)y x. Then it is easy to check that a is an involutory anti-auto-
morphism of <& which takes every class into itself. Hence gf does not
satisfy the equivalent conditions of Wigner's theorem but by Theorem
5 and 7 does satisfy the equivalent conditions of Theorem 2.
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