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GRADIENT CORRECTIONS
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1. Introduction. Many methods have been employed for establish-
ing the classical result, Theorem 2.1, concerning the existence of func-
tions x,(t) satisfying a system

(1.1) fj(m;t)z()y (j:]-:zy"'vn)

of n equations in » unknowns (2, + -+, x,) = & with (¢, -, t,) = ¢, where
all variables and functions are real valued, and fy(a; ) =0. The
object of this article is to present a new proof of the theorem by a
constructive method of successive approximations involving corrections
related to the gradients in z-space of the functions fy(z; f).

To establish Theorem 2.1, a sequence x™(t) with x®(¢t) = « will be
defined, where x™(t) is obtained by adding to x™-V(¢) a vector correc-
tion 4x™-Y(¢) which is equal to a certain constant, p, times the vector
sum of corrections parallel to the gradients of the fi(x; 8) at = = «.
The vector dox™-V(t), for a fixed ¢, is a special case of the corresponding
correction of an iterative process for solving a general system g,(x)=0,
(j=1,-+-,k), k= n, introduced by the authors in a previous article [2].

For a particular system (1.1), the method of the present paper
would be applicable to obtaining values of the z,(¢f) by use of a digital
computing machine for any ¢ sufficiently near ¢t = 5. Section 6 in [2]
describes a related small arc method with the same objective ; the two
methods differ in the values of the arguments used in fundamental
matrices which appear with similar roles in [2] and below. The method
of [2] might be superior computationally to the method of the present
paper. However, in §6 in [2], Theorem 2.1 below was employed as a
starting point. Thus the present paper shows that the composite
gradient method is effective to establish the supporting Theorem 2.1 as
well as the related small arc method of [2] for computing values of the
implicit functions.

In connection with the present article, it is pertinent to mention
the proof of Theorem 2.1 by E. Goursat, [1], extended by William L.
Hart, [3] and [4], to various infinite systems. In the Goursat method
for (1.1), a system
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(1.2) 2= 0)(; ) G=1,2-,mn)

equivalent to (1.1) is constructed by use of the inverse of the matrix'
A = (ay), a;; = 0f (a; B)/ox;; then a solution z(t) of (1.2) is defined by
applying the method of successive substitutions to (1.2). In contrast,
under the same hypotheses as those of Goursat, § 2 employs a system
(1.2) constructed by direct use of A, without forming its inverse. This
feature might be of computational advantage. In case » = 1, the present
method with p = 1 is identical with the Goursat method.

Either Goursat’s method or the present method can also be regarded
as a constructive algorithm solving the problem of elimination of n — 1
variables x;, « -+, x,-, from n equations fi(x; t) = 0 leading to a relation
(such as x, = x,(t)) between the remaining variables (x,, ¢, « -, t,).

The problem of solving y = F(x; uw), F' = (F}, ---, F,) and y = (y,,
<o, Y), by = ¢(y; u) (inversion with and without parameters), for
nonzero Jacobian F',, is only apparently more general than the solution
of (1.1) (to subsume it set ¢t = (y,u),f= F — y) and thus is equally
amenable to our iterative procedure.

2. Construction of a system (1.2) equivalent to (1.1). We shall
consider (1.1) subject to the following hypotheses :

2.1) {The J; are continuous, and all derivatives of,/dx; exist and
are continuous in some open neighborhood Q of (# = a;t = /).

(2'2) fj(a;ﬂ):O (j:1?27°"yn)'
(2.3) The matrix A = (a,,), @;, = 0f(«a ; B)/0x;, is nonsingular.

In z-space, let the positive gradient of fi(z; 8) at x = a be defined
as having the magnitude (3}, a};)"?, nonzero because of (2.3), and the
direction angles ¥, specified by

n 1
(2.4) cos ¥y = aywyt; w, = (;l ai,)® .

For any («; ¢t) and each j define, formally, a vector correction 4,x for
x, where x is considered an approximation to a solution of fy(x;¢) =0,
by specifying the ith component 4, of 4,2 as follows :

(2.5) da, = — pffx; w;'cos ¥,y ,

with a constant p >0 to be restricted later. Then define the com-
posite vector correction 4x for x, considered now as an approximation
to a solution of (1.1), by specifying for Ax the ¢th component

1 Capital italic letters represent % by 72 matrices. The transpose of a matrix A4 is
denoted by A’. We treat x as a one-rowed matrix.
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(2.6) dzx;, = ﬁ—j dy; ;5 or, dx = i 4 .
j=1 j=1
By use of (2.6) we introduce, formally, a sequence x™(¢) of approxima-
tions to a solution of (1.1):
2.7 @) = a; x™(t) = a™I(t) + dx™ (), m > 0.

From (2.5), the 4th coordinate x;"™(t) is given by
(2.8) @, () = @, D(t) — pj"; a7 ™Dt 5 t)

Let the components @, of a vector @ = (¢, @,, ---, @,) be defined by
(2.9) O 1) = @ — p X auwifie; 1)

Then (2.7) is the sequence of approximations ™ (¢) arising if the method
of successive substitutions, with x®(f) = «, is used to seek a solution
of the system

(2.10) x=d,1) .

By use of (2.1) and (2.3) we find that (1.1) and (2.10) are equivalent
systems.

We remark that, in x-space, 4z of (2.6) is invariant under an
orthogonal transformation of coordinates and under an alteration of
Si@; t) to hyfi(x; t) if h;#+ 0. Thus, before considering the existence
and convergence of sequence (2.7), we may assume that (1.1) has been
altered by dividing fy(z; t) by w, of (2.4). Then, without change of
notation, from (2.4) and (2.5) for all j we obtain

(2.11) wy=1; da, = — payfie; t); Sat, =1.
i=1

Note that AA4’ is symmetric and positive definite Hence there
exist positive characteristic constants 4, ---, 2, and an orthogonal matrix
S = (s,) such that

(2.12) SAA'S = (6;;4) = D, where 0;; =1 and 6,; = 0 if 4+ j.

Now, in (1.1), let the coordinates be changed from (x, ---, x,) to
(21, =+ ,2,) = 2 by the orthogonal transformation x = 2S. Then, with
94z ; t) = fyx; t) when & =2S, and @ = 7S or v = aS’, (1.1) becomes

(2.13) gz; t) =0, where g,(y; ) =0, (=12 ---,n).
If we let b,; = 0g,(r ; f)/0z, and B = (b;;), we have
(2.14) B=SA4; BB =SAAS =D; BB=AA.
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From B'B = A’A on comparing main diagonal terms we obtain 37 .b}; =
Swiai =1, for all 5. Hence, if sequence (2.7) is formed for (2.13) by
use of the analogue of (2.11) in the z-coordinates, from (2.8) we arrive at

20(t) =75 200(t) = 2" V(E) + 4™V, m >0

(2.15) n
Az, D(E) = — PE bi;95(z™(@) 5 1) .

On account of the invariant features which were mentioned concerning
the gradient corrections 4x™-V(t) of (2.7) for (1.1), it follows that the
existence of all z™(¢) for any ¢ is equivalent to the existence of all
z™(t) and that x™(¢) and 2™ (¢) represent the same point. We shall
find it convenient to discuss 2™ (¢) instead of x™(t).

We introduce the functions

(2.16) bz t) =2, —p %,Ib,ug,(z ; t) h=1,---,n),
and consider the following system, obtained as in (2.10), which is equiva-
lent to (2.13):

(2.17) Z = ¢ulz; t) (h=1,---,m).

In (2.17) the ¢, and all derivatives 8¢,/02; are continuous when (z; ?) is
in Q, now defined with coordinates (z; t). With ¢ = (¢, ---, ¢,), sequence
(2.15) can be written

(2.18) RO@W) =75 2™(@) =" V(E); ¢) .
6¢ . 7 ag .
From (2.16) and BB’ =D we obtain 6z?h = O —p ,%b’” az; ’
(2.19) T3P 1 —pSi0,b, =1 pha
0z, j=1
(2.20) @‘?ﬁgi@ —0, ifh+i.
2

Let ¢, =1 — p4, and o, = max,.,|p|. Since (4, ---,4,) are the
characteristic constants of AA” and >\7.,a}, =1 for all j, we have

Sh=n; 0<Ai<n,ifn>1.
Then the following lemma can be proved easily as in [2]%.

LEMMA 2.1. In order that o, < 1, it is necessary that 0 < p < 2, and
it 18 sufficient that

2 See formulas (4.16)-(4.18) in [2] with 7= =n.
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0<p<2n O<p<2nif n=1).

Moreover, the minimum wvalue of o, occurs for a single value p = p,
where

2 2(n—1) ifn>2 and pp=14 n=s2.
n

E<p <
n

Foreach ¢, and 1 =1,2, ---,m, let (z=&® ; ¢) be a point in 2 and
define

(2.21) ult) = %%“3 D) 51— pdy) .
zh,

Let V{(t) = (v,(t)), and introduce the following matrices :
(2.22) B, =1— pD = (6,,(1 — p4)) ;
(2.23) U@t) = B,V'(t) + V(6)B, + V(E)V'(¢) = (wis?)) .

Note that u;,(¢) is a polynomial with each term of degree 1 or 2 in the
elements v,,(f) of V(¢). Let H(t) = [>.7 -1 ul,(E)]".

LEMMA 2.2. Select p > 0 so that o, < 1, and choose 0 > 0 with o, <
0 <1. Then there exist ¢> 0 and 0 < ¢, 0 > 0, such that, if* ||t — || < 0,
Iz —71ll £ &, and all ||E® — 7|| £ ¢ in (2.21), then the functions g,z;t),
09,2 ; t)/0z;,, and z®(t) exist and are continuous, and

(2.24) lle®(t) — 71l = (1 — 0);
(2.25) 0= Hit)< 0 — o

To establish Lemma 2.2 first notice that, if ¢ = 8 and all £§® =7 in
(2.21), then all v;,(t) = 0 and thus all «;(f) = 0. Hence ¢> 0 exists so
that the specified conditions are satisfied by the g,, dg,/0z, and H(t) if
le—7ll=Z e llt— Bl <e and all ||g® — 7||< e in (2.21). From (2.18),
2®D(t) = ¢(r; ) and thus 2®(F) = 7. Hence, if § is sufficiently small and
0 <06 <e we have (2.24) when ||t — B|| < 0. This completes the proof
of Lemma 2.2.

THEOREM 2.1. Suppose that p > 0 and is such that o, < 1. Assume
that (2.1), (2.2), and (2.3) are satisfied. Then there ewist ¢ >0 and
6> 0,0 < e, such that, if ||t — Bl < 8, all 2™ (t) of (2.7) exist, are con-
tinuous, and satisfy |lx™(t) — all < e. Also there ewists, uniformly for
it —Bll =9,

8 For any vector z we use ||z|| for the length. Thus, ||2{|=(ZF, 2}
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lim x™(t) = x(t) ,
m-—oo

where x = x(t) satisfies (1.1). Moreover, if & point (x ; t) with |jx — || < e
and ||t — Bl < ¢ satisfies (1.1), then x = a(t).

To establish Theorem 2.1, we shall prove the corresponding facts
for the sequence z™(¢t) of (2.15) and system (2.17). Let p, 6, ¢, and ¢
be determined by Lemma 2.2 and, hereafter, assume that ||t — || < 6.
Then z®(¢) and z2®(¢) exist in the region |jz — 7|| < ¢; by (2.24), since
2©(t) = 7, the following inequalities are true when %k = 1: '

(2.26) lle™ (@) — 7l < e; @) — 25 P = 711 - 0) .

Assume now, for m > 1, that z®(¢t) has been proved to exist, to be
continuous, and to satisfy (2.26) when k£ =1,2, .-+, (m — 1). Then 2™(¢)
exists and is continuous ; also, by the mean value theorem with respect
to (2, -+ -, 2,) for fixed ¢,

2.27)  Z™(F) — ™) = hiz™ V() 5 t) — diz™ V() 5 1)

= é 0Py ™D (E) ; t) [2,™D(t) — 2, ()] ,

h=1 azh_
where £™9(t) is a properly chosen point in z-space on the line segment
joining z™-»(¢) and z™-D(¢). With £é® = £m™0(¢) in (2.21), let V(¢) be
the matrix with elements v,,(t), and let U(f) be defined by (2.23). Note
that ||6™(¢) — 7] £ e. Then, from (2.27),

200 =20 = G0 — OB, + V)
e (t) — 2D = (@) — 2PN @) — 2D O)
= ("D () — 2 VONB] + UGN () — 2O -

(2.28)

On applying the Cauchy inequality twice to the term involving U(?¢) in
(2.28), we find

(2.29) e (t) — 2™ D@} < llr™D(8) — 2™D(@)|[o? + H(t)]
g 02”z(m—1)(t) — z(m—2)(t)“2 .

From (2.26) for k=1,2, -+, (m—1) and (2.29), we obtain (2.26) for
k= m. Thus, by induction, all 2 (t) are defined and satisfy (2.26) if
lit — Bll < 6. From (2.26), the series >io_, [2{™(t) — 2™~ ()] is termwise
dominated by the series 3= _, (1 — 6)6™*, and hence converges uniformly.
Thus the sequence 2z(t) approaches a limit, 2(¢t), uniformly for
llt — Bl < o. Since all 2™ (t) are continuous, 2(t) is continuous. It
follows from 2z(t) = ¢p(z~D(t); t) that z = z(t) satisfies z = ¢(z; ?).

_ 212 2
4 As follows: [X7.; s X7y w0 P=(3 00 @) iy (XFo wijo)=(X7.1 00 28 5ty -
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To prove that z(¢) is the unique solution of (2.13), suppose that (¢; ?)
satisfies (2.18) for ||2 — 7|l < e and ||t — Bl| < ¢ and assume that Z # 2(%).
Then, from 2 = (% ; £) and 2(t) = ¢(=(¢) ; t), by details duplicating the
proof of (2.29), we have

12 — 2@l = 0llz — 21l < llz — 2l ,

which contradicts the assumption that 2 -+ 2(¢). Hence the proof of
Theorem 2.1 is complete, because the point 2™ (¢) in n-space is the same
point as «™(¢), and the region |[x — «al|| < ¢ is the same as the region
lle —7ll = e

Note 2.1. With a different arrangement of details, we could arrive
at Theorem 2.1 with rectangular neighborhoods {|¢, — 8| < ¢ for all 4}
and {lx; — a;) < e for all ¢} replacing the spherical neighborhoods
It — Al =0 and |lr — af| = e.

Note 2.2. In use of the sequence {x™(¢)} in any particular case to
obtain approximate values of «(¢), flexibility is introduced through the
presence of the somewhat arbitrary constant p. Greater flexibility could
be introduced (as in §5 of [2]) by permitting suitably restricted varia-
tion in p, with p = p'™ at the mth iteration; revised details would
establish Theorem 2.1. with this change.

Note 2.3. Suppose that («a; f#) is not a solution of (1.1.). With
only (2.1) and (2.3) as hypotheses, there exists ¢ > 0 so that the region
(le —al] e It — Bl <€) is in 2 and (2.25) is true when ||t — S| < e
and all €® of (2.21) satisfy ||¢® —7]|< ¢ as in Lemma 2.2. Now
assume that

(2.30) llo(a; B) — all < &1 —0).

Then, with x®(¢) = «, there exists 6 < ¢, 0 > 0, such that, if ||t — g||
< 0, a®(t) exists and

(2.31)  [zO@) —1ll = lle®@ (@) — all = |@(a; ) —all = (1 —0),

which is (2.24). Thus, with hypothesis (2.30) replacing (2.2) and § defined
as above, {x™(t)} converges as specified in Theorem 2.1 even when
(a; B) is not a solution of (1.1)
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