ON THE NUMBER OF LATTICE POINTS IN gt 4 yt = 5t/2
R. E. WILD.

Introduction. Suppose that ¢ is independent of n,n >1;t=
emeN+1); M=1,2,8,--+; N=0,1,2, ---; M= N+1, so that £>1.
Let L,(n"?) be the number of lattice points, (x,y), satisfying a’ -+ ¢ < n*2
Our main objective is the proof of the relation

1.1) S(n) = t/2 n'~t* SnL;(w”z)w‘/Z'ldw
0

= en? — o,fanCi-DIeH S q=2=1 cos(2r/n a — n[(2t))
@=1

ﬂzl/’t‘:'l fopur] B=1(dﬂ)(z-2)/(2;-2)H(3L-1)/(z;-z)
. _oarpy 2=t (1)
with ¢>1,¢ = ﬁ(tu—l-_T)F% , Cy=- i ,
H = (a¥¢-D 4 pUC-D)¢-LIt  The case ¢ = 2 is known in connection with
the classical problem of the lattice points in a circle [4, pp. 221, 235].
By choosing ¢ as specified above the analysis is less bulky than it
would be if we considered the slightly more general problem of L,(n?/?)
corresponding to the curve |a |7 + |y |” = »"/* with real T > 0. Expres-
sions and estimates for L,(n"*) have been obtained by Bachmann
[1, pp. 447-450], Cauer [2], and van der Corput [3]. In particular van
der Corput [3] found that

2 S cos2rHV'n — w/4) o/n )

1.2) Ly (n™?) = ¢jn — 8T - Tnyp(r=DICT) S: a(Vn — 2)et-DIrdy
+ Om'?), T > 3;
=cn—8 i“ (— 1)+ (1/-T)C(—‘ FT )G90
j=1 J
+0m"™),0<T <8 T=+1;
where

o 20T)

=

TreT) '’

9(x) = ¢ — [&] — 1/2, [«] is the integral part of =, &(s) is the Riemann
zeta function and (g’) is the binomial coefficient. From (1.2) it follows

that
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(1.8) Ly(n™) = ¢in + O(n™~DICD) L (n™") = ¢in + Qn@-DCD | T >3,

These results in (1.8) and analogous results can be obtained from (1.1)
also. Our methods fail to establish the analogue of (1.1) for 0 < ¢ < 1.

2. First auxiliary result. We first obtain the result

@1) S =y = SS (1 = o — yt)eos 2n/ 7 (aw + Ay)dady ,

A= — 0o B._~oo

x +yn§1
t>1.
In §4 we prove that the double series is absolutely convergent.
We have [4, p. 205]
(2.2) SWLt(w)dw = S NS ldw=5% S duw
0 serbzw erbzw J sl axt
ZZ(W—Q—k”)‘— > (W —g'—k).
srrtsw Wb yzwllt — -\ gk ow - Y

To this we apply the Poisson summation formula [4, p. 204] to obtain

w oo 1/t
(2.3) S L(w)dw = 3 SW 1/, €08 270 S(W — xt — k)da
’ pmTe W ~w-2" M srsw-2tH"

o Wit o [(W-z )l/&
= > S 1, €08 2mam 3 g cos 2r Py« (W—z'—y')dyd.

e —oo ) —wllt BT w —-(W-z”)l/‘

Integrating by parts and applying the second mean value theorem for
integrals, we have, for the inner integral,

(w—zbyt et \(E=1)] [ =zt
t S gy = HW —2 )‘S sin 2z fydy ,

2 . ogt=1
Bdo sin 27y - y'~'dy B

where 0 < ¢ < (W — &%)t so that the sum over f is uniformly convergent

in . Hence we can interchange the order of operations in dezﬂ‘, in
(2.3) to obtain

@=—o00 Be=—co

zt+!leW

By symmetry we can replace cos 2zazx cos 278y by cos 2n(ax + fy) . If
also we set w =2'*, & = W', y = Wiis, W = n'"*, we reduce (2.4) to

oo

(2.5) t/ZSZLL(z"Z)z””‘Idz = w5 ] SS (1—r—s') cos 2y miarBs)drds

PPastsl

and then (2.1) follows upon multiplication of each side by n®-9',
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3. Second auxiliary result. For ¢ > 1, we shall obtain from (2.1)
the identity

31 S»)=1T+T,+ T, +T,+ T}
where

ory(ljt)
¢+ 22’

T, = czn5/4"1/<2‘)‘;a'3/‘ L] ,2+1,‘(27r1/n a),

T,=cn, ¢ =

where

. 2(25 1)/tt1/t['(1/t)

G = ’
g +D

and J,(x) is the ordinary Bessel function of order r;

T, = en? f‘, Slf(w, t)cos 2r/n axdr , ¢ = 16t ,
0

a=1
and f(rv, t) — (1 _ xu)(cn)/c _ (t/2)(z+1)/o(1 _ x‘l)(t+1)/6 :

- 2t 33 2nHV'n _ - NI
T, = — 3 ,32‘1(“;?)00(2)/72% 2)Ht)/(t o H = (@lemn o gre-nye-nie;

T, =2, 55 2 A7 6w« pycos 2ey /B ot o, 7)o, o B

a=18=1¢

where

v(u, «, B) = H'A7"(w) , Afu) = (— 1o (Pa — u)~" + 74QF + u)~',
_ -1 . ﬂll(t 1

= o 4 gramn 9T gueen | gueen

Gl @, ) = Af&Aciuz);lﬁgu) — aa, B sgnull — v, a, A,

£/ (2t—2)
a_(a, f) = - IE(CX(S()t 1y + ‘@z/(c 1))

In the proof of (3.1) we make use of the following result on Bessel
functions [5, p. 366],

(3.2) Sl (1 — &)1 cos Kades = 1/72" K-"'(m + 1/2)J(K) m > — 1/2.

First, it is convenient to break up the double sum in (2.1) as follows,
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(8.8) =R 2. 2 ]
B9
+ a:i:‘l ;:Z=1 + w;zj‘m s:zilcc + a:-i—oo é + ail Bgl‘iw.

By symmetry this can be written as

3.4)  Sn) = n* SS (1 — ot — y)dady

=85+S+S;.

S, can be evaluated in terms of gamma functions to obtain

@5 S= 2D

(& + 2)I'(2Jt)

Let I, denote the integral in S,. Then

_ptyl/t
(3.6) I, =4 Sl cos 27r1/17axdmg ' 1 -z — y)dy
4t £\t +1)]E
St (1 — ) cos 271/ n axdx
4t

t t+1)/t (1 . .
=, N 1< > S (1 — 23Dt cos 271/n axdx

+ 74? S Az, t) cos 2m/n axdx
0

by the definition of f(«, t) in (3.1). Applying (3.2) to (3.6) we have
(3.7) S, =d* S L,="T,+ T,.
w=1
Let I, denote the integral in S;. Then by symmetry

(3.8) I =2 SS (1 — o — o) cos 2r/n (aw — Py)dady .

zt+yt§1

ax+BY=0
The transformation

(3.9) x = Hu(P — uja) , y = Hv(Q + u/B)
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transforms z* + y* = 1 into
(3.10) v = H 147" (u)
where H, P, Q, and A,(u) are defined in (3.1). The transformation (3.9)

is one to one for aw + By = 0 and the absolute value of the Jacobian is

(3.11) J(M) _ Hv

v, U af
The graph of (3.10) resembles that of v = 1/(1 + w?) except that the
curve is not symmetric to the v axis unless ¢ = 2. The curve has a
relative maximum at (0, 1).

Applying (38.9) to (3.8) we transform z'+ ' <1 and az + fy =0
into v = H'4;Y(u) and v = 0 respectively, so that (3.8) becomes

3.12) I, —3%". r du S”(“’ [1— Hw A (u)]v cos 2eHy nvdv .
(04 —co 0

Upon integration by parts with respect to v, the integrated terms vanish
and we obtain

3.13) I, = — *If‘r dui”‘“’[l — (¢ + V) H*v A(w)] sin 2xH/n vdv
rVnaf J-= 0
.H 1 . ,A u+(v)
S _"__S sin 22H/n vde [1 — (¢ + 1)H"v Ay(w)]ldu
V' naf Jo u_(@

where u.(v) and u_(v) refer to the first and second quadrant branches
of (8.10) respectively. Since

(B.14) Aw) = (— D'a~(Pa — )~ + QP + u)'~,

. d, A () =t — 9)A,..(u),
du

we can write (3.13) as

(3.15) L= — VZ&B [ [0.0) = F0t 4, (0)] sin 20 H) m oo
_ ’m/%ﬁ So [— u_(v) + Hv'A_(u_(v))] sin 2z Hy/nvdv .

By the change of variable (3.10) this can be written as

3.16) 1, - [:u — Aﬂ(@]sin 2 Hy/mow) - o' (w)du .

- H S L
Vnaf J-« Ay(u)

From (3.14) we obtain
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— Au) _ Pott — QF 1
. = e 00

124

for large wu, so that upon integrating by parts again we obtain

(3.18) 1= ,2%:@ S: F(w) cos 2nH L/ mow) - v'(w)du
where

_ — A (w)Ay(u) — Ai(u)
(3.19) Fu) = Flu, a, f) = /() Axw) :

The function a_, sgn u[1l — v*(u)]~"* is an asymptotic equivalent of
F(u) in the neighborhood of (0, 1), even though »(0) =1 and +'(0) = 0,
if a_;, = a_(a, B) is determined from

(3.20) a, = lim Flu)/1 — @) = lim V1= ¢
u—0+ u—04  —
i A=) 1 0
w0+ " v”7(0) w0+ V1 — v
-1 1

TV (0a, VI0O)
From (3.10) and (3.14) we obtain
(3.21) v'(w) = — HA7O*Mu)[— (¢ + DAIw) + (¢ — 1Ag(w)Ay(w)]
from which a_,, as given in (3.1), can be determined.

We now write (3.18) as

ta.-
3.22)y I, =
(3-22) 2r’naf

+ t S“’ [F(u) —a_, sgnuf1—v()]-"*] cos 2 H/mwv(u) - o/ (u)du
27 natf J-e

Si sgn u[l — v*(w)]""* cos 2rHy/nv(u) - v'(u)du

S ,'?“‘1 Sl (1 — v cos 2z H\/nvdv
z'nafB Jo

t

T ovinap

r G(w) cos 2xH/nv(u) - v'(w)du

where G(u) = G(u, «, ) is defined in (3.1). Applying (3.2) to (3.22) we
obtain

(3.23) S, =4S S L =T, +T,.
a=18=1

Collecting the results of (3.4), (3.5), (8.7), and (3.23), we have (3.1).
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4. Convergence investigations. We next prove that the double
series in (2.1) is absolutely convergent. We write (3.18) as

@.1) L= gf;@;(h + S+ SP + S:)

t
=" (L+L+I+1
271"%6(,3( et Lt L+ 1)
where 0 < ¢ < Pa.

First we consider
(4.2) L= S” F(w) cos 2xHy/mo(w) - v/ (u)du .
Pao

By (3.14) and (3.19) we have
4.3) Fu)=HEPe—w(@QF+u)"" _ —Hla™(u—Pa)'+ 3~ (u+QF) T

(@A WAL @l — Py~ + Fu+ QP

From (4.3) we find that

dF(u) _ (1 —)H ((u — Pa)’ | (u + QF) =0
(4.4) =0 ( oo )
% ( = B(u — Pay*Tt + a(u :*‘,,,Qﬁ)ff";,,,,,,> )
(v — Pa)(u + QB)[a'(w — Pa)~t + B'(u + QBT

From (4.3) and (4.4) we derive certain information about the graph of
F(u), namely,
(4.5) Fu) >0, F'(u) < 0,0 <u < Pa;
F'(Pa)=00,1<t<2; FF(Pa) =0,2< ¢t;
Fu) <0, Pa <u < < ;
Fu)=0u=u,Pe<u < o,f>a;
Fu)<0,Pa<u< o, fZa.

The point (u,, v,) is a relative minimum and from (4.3) and (4.4) we
find that

. Qﬂa(zz)/(zn~1) + Paﬂ(zt)/(zt—l)
(4.6) b= penlee-n _ qeoliee-n 7

v, = F(ZLI) — H(at/(%—l) + l@z/(z;—l))-(zt-l)/a .

Thus by (4.5) and the second mean value theorem for integrals we
have, for B > @, and Pa £ & < u, < § < o,

@n L= S?+ Sm = F(u,) S;‘ + Flu) S;

st



936 R. E. WILD

£ _
= F(w) S: cos 2nH/mo(w) - o' (u)du
1
— O{F(ul)H-ln—uz} — 0{(6!”(2"1) + ﬂt/(%—l))—(2t-l)ltn—112}
= O{(nexf)™}
by the inequality «*+ 9* = 2xy, « > 0,y > 0. Similarly, for 8 < «, and
Pa £ 6, < o, we have
“8) I, =S°° = F(e0) S: cos 2nHy/mv() - v (w)du
Po 3
— O{F(OO)H—ln—IIZ} — {(a—t + ﬁ—t)(l—t)/t(at + ﬂb)—ln—llz}
= O{(afy et + B =m0} = O{(narf) ™} .

We next consider I in (4.1). By (4.3) we can write

(4.9) I = S:Fl(u) cos 2z HY/mo(w)du
where
_ = _(p)! — Pa—u,q=
(4.10) Fiy(u) (@f) A’ p=Pa—uq=Q8+u,
_ A7 (u) [(pg)/(ap)]* <A u) 1

af  [(pla) + (@[ PCDr S ap 2CDk
Ao—zlt(o) _ O(Hz> .

apzeor — \ag
Therefore
_ A H*(° _ nfH?
(4.11) I = 0(55 So du) - O(—a ; ) :

Turning next to I, in (4.1), we note that by the first line of (4.5)
we can use the second mean value theorem to write, for some &, satisfy-
ing ¢ < &, £ Pa,

412) I =F() f cos 2y o) - v (du = 0-£0).)

To examine the question of the order of F(u) in 0 < u < Pa we
use (4.3) with, p = Pa — u, ¢ = QfF + u, and write

__H . [(po)pe->"
4.13 Fu) = . .
(19 )= @y ey + (a1
1
— (Bla)y™(pl)“~>" + (a] B ™(alp)*~>"
< H 1 1
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Since Fy(0) =0 and

10 =950~ IV L (28]

we have, by the mean value theorem,

0<u<Pa0<u,<Pa.

| m -, 2o
(4.15) F(u) = (a‘@)uz Fy(ug)u , 4 P10

Setting p, = Pa — uy, ¢, = QB + u,, we obtain

4.16) Fu) < H* . , PGy B

(L16) Fo) = () [(Bla)(Ds)as) =" + (af B)"(qs/ )~ e
~ Hi | DsQs H 4 -
T (@B [(Bley 4 (@l By T (@B (Bl + (af f) T u
_ H(aﬂ),(t_l)m
B O{V(cx‘ + Bu } )

Hence combining (4.11), (4.12), and (4.16), we obtain

10 L+ L=0o({)+ o D)= oM )

In the further analysis of I, +I, we use the inequalities,

IA

(4.18) 1+ <l4+a)"m0<a<l,m>1,
(4.19) (x+ 1< 2™+ 1), 2 >1,m >1.

In (4.17) suppose 1<¢<2. Since H=(a'/(-D 4 UCE-DYE-DIt gnd ¢t/(t — 1) > ¢,
we have by (4.18), H < («a® + 9)Yt, and therefore, for 1 < t < 2, we
have

(4.20) H@AP1 (@i pe-vieo  (ag fe-or o gemor
(at + ﬁt)l/Z (aﬁ)(S-t)li (a‘@)(t—l)M(a‘g)(z—n)/z (a,@)("U“

Hence from (4.17) and (4.20) we have, for 1 < ¢t < 2,

(4.21) I + I, = Of{(af)~C-Dip-11) |

If ¢ > 2 is (4.17), then ¢ > t/(t — 1) and so by (4.19) we have
(a2 HEA (@D pen)ent e

( a‘\-lf;,é")i’ = (d‘ T+ ﬂ‘)“‘ (' + ﬂz)(c—‘z')f(it)
< 2(;-2)/1: . (aﬂ)(v—3)l4
(at + [E)C-DIen
2(3-2)/c(a‘g)(o—3)/4 . 20 -0[(2t)
2(;-2)/(2;)(6(‘3)@-2)/; (a‘g)m :
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Hence from (4.17) and (4.22) we have, for ¢ > 2,
(4.23) I; + I, = O{(naB)~"*} .

By (3.10) v(— u, «, B) = v(u, «, B) so that an estimate for I, + I, + I,
holds also for I, in (4.1). By this fact, and the results of (4.7), (4.8),
(4.21), and (4.23), it now follows that for S;, defined by (3.4), (3.23),
and (4.1), we have,

429 s,=2%"%% - S“ Fl(w) cos 2xHy/ mo(u) - v'(w)du

T a=1p=1 Q1

=0(@"),t>1,

the double series being absolutely convergent.

Integrating by parts and applying the second mean value theorem,
we have, from (3.6), for z, = [(¢ — 1)/¢]¢,

(4.25) S, = 16 a3 Sl (1 — @)Dl cos 2/ awdar

t -+ 1 a=1J0

J— 8t 3/2 & 1 ! t\1/t pt—1

=Ly 0 =\ (1 — af)igr-1 sin 2m/n axds
T a=1 & JO

s Ly ()
s a=1 O 0 2

_ 8t 3/2 1 INTIINT L i o

=t Y s (1 — ab) iy sin 271/n axdx
T @=1 £

5

£, _
F (1 — at)iigpes g ® sin 27/7 axdx}

*

_ 8 3/120( qlm) Oom),t>1,

e a=1

the series being absolutely convergent. The absolute convergence of the
double series in (2.1) now follows from the results leading to (4.24) and
(4.25).

5. Proof of (1.1). Finally we deduce (1.1) from (3.1). We make
use of the asymptotic expansion for the general Bessel function, namely
[5, p. 368],

_ /2 _mr _ 7 _3p2
(5.1) Tn(K) =1/ 2 cos (K . 4) Ok,

T

for large K and m independent of K.
By (5.1) and the absolute convergence of the sum we have
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(5.2) T, = em-11eo i a—s/z-l/c,{ cos [2711/(7% Cr/— ﬂgll + 1/(21‘5))]
TZ.Z no 1/2

a=1
+ O(n— 3/4a-3/2) }

= — Gpouen S aml cos (2ry/na — 7/(28)) 4+ O(n1e) |

T a=1

In T5/(0,¢) = 0 and f®(1,t) = 0,k = 0,1, 2. Hence if we integrate
by parts twice the integrated terms vanish and we have left
4t

(5.3) 7= - M wz_laz S F(w, t) cos 2/ T axda .

f(z, t) is continuous in 0 < x <1 and independent of n and « and so
it has a finite number, independent of » and «, of relative and absolute
extrema whose values are also independent of n» and «. Hence dividing
the interval of integration into pieces in which f(w, t) is monotonic, we
obtain by the second mean value theorem, for appropriate &,, &, &/, in
the interval from 0 to 1, the &s depending on » and «, the result,

= £, i
GH T=— ;‘jr By E LSS Lf- ! cos 2m/nazds = O(1/n) .

Applying (5.1) to T, we obtain

2Vt — 1 a=1B=1(aﬁ)(z_z)/(zc-Z)H@s-1)/(%-2)
2tn oo O{(atl(t 1) + ﬁb/(t 1)) 3t— 3)/(2c)n—3li}

71‘1/t —1anif (aﬂ)“ /- 2)(an/([ D fUG-D

T, = — 26 s 35 cos @2rHV'n — n/4)

Since
(at/(t—l) 4 ﬂtl(t—l))—(ﬁb—?»)/(zt) < 2—(aa—s)/(zc)(aﬁ)—(55—3)1(4:,-4) ,

the double series are absolutely convergent so that

zl/t_ 1 a=18=1 (aﬂ)(z 2/ (2t - 2)H(3t 1)/(2t-2)

(5.5) T, = 2¢ Y g < i COs (272'H1/'n — 71'/4) O(nl/;) .

Next we consider 7. We have shown that —T, and S; are absolutely
convergent double series for ¢ > 1 and hence so is their term by term
sum which is identical with T;. We break up the interval of integration
in T; into a finite number, independent of », «, f, of subintervals in
which G(u, «, £) is monotonic and write

(5.6) T,= ?’?n PIDIRREE) S T G, a, B) cos 2nHy/ nv(w) - v'(w)du .

T a=1 B=1 a‘B



940 R. E. WILD

Now G(u, a, ) is continuous in each &, < u < £,,,. The only doubt arises,
at u =0 where v'(u) =(1 — )" =0, and at u = oo where v'(u) = 0.
But, using the definitions in (3.1) and evaluating an indeterminate form,
we obtain

_ —HA(0) _ 1, a,
6D GO+, af) =" T — lim (v,(u) + Vi__vz(u))
= HA—l(O) + O(a“(t—l) _ ﬂn/(a-1)>

Al 1/&(0)

at/(t—l) + IBL/(&—I)

which is bounded. On the other hand, by (4.3),
(5.8) Gloo, &, ) = — Hi@p) e + f)0" —ay,

which is also bounded.
Applying the second mean value theorem to (5.6) we obtain

(5.9) T, = ??" o Bz ﬂ 56, @ f) S " cos 2eHY/mo(u) - v'(w)du

for appropriate ¢, ¢;, ¢;+, in the interval from &, to &,,,. Further we
have

2}@ 01)
(5.10) T, = ZBZ ﬂ DG ) g

2t1/n
e Eis%aﬂHZG(C” a, £)O(1)

=0(1n)

by the absolute convergence of the double series.
The relation (1.1) now follows from (3.1), (3.5), (5.2), (5.4), (5.5),
and (5.10).
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