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Introduction* Suppose that t is independent of n, n > 1 t =
(2ikf)/(2iV+l);M=l, 2, 3, . . ; N=0, 1, 2, . . . Λ f ^ J V + 1 , so that ί > l .
Let Lt{nt!'2) be the number of lattice points, (α;,2/), satisfying xι + yι ^ ntr\
Our main objective is the proof of the relation

(1.1) S(n) — ί/2 n1"112 \ Lt(wtl%)wtl2~ιdw
Jo

; cos(27α/w-« - ττ/(2ί))

V COS(^7Γ/f l /% — τr/4) , £)Λ/^~Λ

05 = 1

2ί 3

πVt-1

with t > i, * = _ J H
(ί +

, ,2 ,
(ί + 2)Γ(2/t) TΓC^1)/̂

-v + βtiv-Ό)«-vι*m The case t = 2 is known in connection with
the classical problem of the lattice points in a circle [4, pp. 221, 235].

By choosing t as specified above the analysis is less bulky than it
would be if we considered the slightly more general problem of Lτ(nτl2)
corresponding to the curve | x \ τ + \ y \τ = nτn with real T > 0. Expres-
sions and estimates for Lτ{nτrλ) have been obtained by Bachmann
[1, pp. 447-450], Cauer [2], and van der Corput [3]. In particular van
der Corput [3] found that

(1.2) Lτ(nτl2) = c[n - 8T<1

+ O(τz1/3), T > 3

- c[n - 8 Σ (- l) j + 1 (ψ)^- j

, = 2Γ(X}T)
1 ΓΓ

where

^(α;) = a? — [a;] — 1/2, [a?] is the integral part of x, ζ(s) is the Riemann

zeta function and (?) is the binomial coefficient. From (1.2) it follows

that
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930 R. E. WILD

(1.3) Lτ(nτl2) - c[n + O(n^- 1 ) / ( 2 Γ )), Lτ(nτ/2) = c[n + Ω(n^^^ , T > 3 .

These results in (1.3) and analogous results can be obtained from (1.1)
also. Our methods fail to establish the analogue of (1.1) for 0 < t < 1.

2 First auxiliary result. We first obtain the result

(2.1) S(n) = n* Σ Σ \[ (1 - xι - y*)cos 2πV

/^Γ(ax + βy)dxdy ,

In § 4 we prove that the double series is absolutely convergent.

We have [4, p. 205]

(2.2) \WLt(w)dw = [W Σ Σ I dw - Σ Σ Γ d w

= ΣΣ(^-i {-^)- Σ Σί^-i*-^).

To this we apply the Poisson summation formula [4, p. 204] to obtain

(2.3) Lt(w)dw = Σ \ /f cos 2ττα^ Σ (W - α?β - Jfe*)cte
J o Λ=-°° J - ^ V -ar-xt}1*'****-*')1"

= Σ

Integrating by parts and applying the second mean value theorem for
integrals, we have, for the inner integral,

sin 2πβy y^dy = v ; 1 sin 2πβydy ,

where 0 ̂  ξ < (W — x1)111, so that the sum over β is uniformly convergent

in x. Hence we can interchange the order of operations in \c£#Σ i n

(2.3) to obtain

Lt{w)dw = Σ Σ I cos 2κax cos 2πβy (W' — xι - yι)dxdy .

0 0--OO β=-OO J J

By symmetry we can replace cos 2πax cos 2τr/5t/ by cos 2π(ax + βy) . If
also we set w = zί/2, a? = TFi;V , y = "pri;is , TΓ = ̂ t/2, we reduce (2.4) to

(2.5) tβ^LXz^y^dz = wt/2+1 Σ Σ (f ( l~r t -
JO o;e-.oe β=-oβ J J

and then (2.1) follows upon multiplication of each side by
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3* Second auxiliary result* For t > 1, we shall obtain from (2.1)
the identity

(3.1) S(n) = Ί\ + T, + T3 + T, + T5

where

T, = c

where

and </,.(#) is the ordinary Bessel function of order r

Ts = c3n? Σ (V(^, ί) cos 2πVn~axdx , c3 = -^ ,
α - l JO t + 1

and /(a?, ί) = (1 - ^

Oi C6 OO I IOC _

Tδ = —n Σ Σ - - G(%, α, /3) cos 2πHVn v(u, a, β) v'(%, α, β)du ,

where

^ , α, /9) = H-'A^'Ku) , A4(%) = ( - l)ιa-\Pa - icy-1 + β-\Qβ + M

p = a l ~

G(u, a, β) = ^<^W-Jfo). - α_,(α, /?) sgn u[l - t;2^, α, β)]~iri ,
v'ίw, α, ^)Λ2(^)

a (a β) = ( ^ ) l / c w " l ) _

In the proof of (3.1) we make use of the following result on Bessel
functions [5, p. 366],

(3.2) P (1 - χψ-w cos Kxdx = Vπ2m-ΎKrmΓ(m + \\ΐ)JJK) m> - 1/2 .
Jo

First, it is convenient to break up the double sum in (2.1) as follows.



932 R. E. WILD

(3.3) * ) = ΣΣ+ Σ Σ + Σ Σ
O β 0 β 0 0S

+ Σ Σ + Σ Σ + Σ Σ + Σ Σ
α=lβ = l Q;=_OO β=-oo a=-oo β = i α="lβ=-oo

By symmetry this can be written as

(3.4) S(n) = riι \ \ (1 - x% - yι)dxdy

xt+yt^l

+ 4?22 Σ \ I (1 — ̂  — 2/e) cos 2ττι/^ axdxdy
α - l J J

+ 4%2 Σ Σ \ \ (1 - & - yι) c ^ s 2τr]/7z(αa; + βy)dxdy
α = l β = l JJ

= Sτ + S2 + S3 .

Sτ can be evaluated in terms of gamma functions to obtain

(3.5) S, = — 2 Γ χ i / ί ) _ n, = 2

(ί + 2)Γ(2/ί)

Let /2 denote the integral in S2. Then

cos 2π\/naxdx\ (1 - xc - yι)dy
o Jo

Λ* fi
= ----- (1 - xψ+^ltcos2πλ/naxdx

t + 1 Jo

= (—) (! - xψ+Όlt cos 2τι/w α^α;

+ — \ Aχf ^) c o s 2τr i/^ ΛOTίί̂
4 Jo

by the definition of f(x, t) in (3.1). Applying (3.2) to (3.6) we have

(3.7) Sr

a = 4rc*ΣΛ = Γ*+ T*
05 = 1

Let /3 denote the integral in S3. Then by symmetry

(3.8) /3 = 2 if (1 - α;f - yι) cos 2τr-ι/̂ Γ(α^ - βy)dxdy .

The transformation

(3.9) a? - i?v(P - w/α) , 2/ - ffi;(Q + ujβ)
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transforms xt + yι = 1 into

(3.10) v = f f-W^W

where if, P, Q, and At(u) are defined in (3.1). The transformation (3.9)
is one to one for ax + βy ^ 0 and the absolute value of the Jacobian is

(3.11)
v,u/ aβ

The graph of (3.10) resembles that of v = 1/(1 + u2) except that the
curve is not symmetric to the v axis unless t — 2. The curve has a
relative maximum at (0, 1).

Applying (3.9) to (3.8) we transform xι + yι ^1 and ax + βy ;> 0
into v <; fl""1^17'^) and v ^ 0 respectively, so that (3.8) becomes

(3.12) Iό = \ du\ [1 — ̂ ^ ^ ( w ) ] ^ cos 2πHy/nvdv .
α/9 J-oo Jo

Upon integration by parts with respect to v9 the integrated terms vanish
and we obtain

(3.13) 73 = - — ~ — ί°° du \υ(U\l - (t + IWv'AM] sin 2πH\/nvdv
πVnaβJ-™ Jo

- - —β.— [ sin 2πHVnvdv (^^'[l - (t + l)ffVΛ,(w)]d%
7rV7zα:/5Jo J«β(ϋ)

where u+(v) and U-(v) refer to the first and second quadrant branches
of (3.10) respectively. Since

(3.14) Alu) = (- iya-'(Pa - u)^1 + β~\Qβ + uγ~\

we can write (3.13) as

(3.15) Iz— — ,-— I [u+(v) — HtvtA-ι{n+{v))'\ sin 2πH\/nvdv
πVnaβ Jo

\\-uJv[- u-(v) + HtvtA-1(u-(v))Ίi sin 2πHVnvdv .—^— Γ
πvnaβ Jo

By the change of variable (3.10) this can be written as

(3.16) I, = j [ n f" L - A z_MΊ Sin 2πHVnv(u) . ̂ (
πVnaβ J-~L Λ>(̂ ) J

From (3.14) we obtain
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(3.17) u - -A=M - Pal'^ ~ Qξ~ί + <

for large u, so that upon integrating by parts again we obtain

(3.18) I, = --1—τ [~ F(u)cos 2πHι/ΰv(u) v\u)du
2π2naβ J —

where

(3.19) i^) = F(u, a, β) = A^uψ^Mu)^ .

The function α_t sgn u[l — ̂ 2(^)]~1/2 is an asymptotic equivalent of
F(u) in the neighborhood of (0, 1), even though v(0) = 1 and v'(0) = 0,
if α_! = α_x(α, 8̂) is determined from

(3.20) α-χ = \imF(u)ι/l - v\u) = lim

— IllΎI x - —

- 1 1

From (3.10) and (3.14) we obtain

(3.21) v"M = - H^AϊVWiuyi- (t + l)Aϊ(w) + (t -

from which α_t, as given in (3.1), can be determined.

We now write (3.18) as

(3.22) I3 = - * ^ i - (°° sgn %[1 - i;»(u)]-1/a cos
2π2notβ J-~

f °
J2π2naβ J-oo

= _ i 0 ^ f' (1 - cos 2πH\/nvdv
πιnaβ Jo

\ G(u) cos 2πH\/nv(u) vr(u)du
J-oo

where G(α) = (?(M, α, j9) is defined in (3.1). Applying (3.2) to (3.22) we
obtain

(3.23) S3 = 4n2 Σ Σ h = T, + Tδ .
05 = 1 β - 1

Collecting the results of (3.4), (3.5), (3.7), and (3.23), we have (3.1).
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4 Convergence investigations* We next prove that the double
series in (2.1) is absolutely convergent. We write (3.18) as

2z Γ+Γ+Γ)
Jo Jσ }POCJ

2π2naβ 4 5 6

where 0 < σ < Pa.

First we consider

(4.2) I7 = [ F(u) cos 2πHVnv{u) i/

By (3.14) and (3.19) we have

(4 3) Fίu^HίPa-uY^W+uY'*^-Hla-\u~Pa)t±β^{u+Qβ)ψ''^lt

From (4.3) we find that

du (aβY ^ at

V2ί-1 4_ ^ ί / , . i

^ + QWI/^fa - Pα)1-C + β\n + Qβf-'Y

From (4.3) and (4.4) we derive certain information about the graph of
F(u), namely,

(4.5) F(u) > 0, F(u) < 0, 0 < u < Pa

F\Pa) = oo, 1 < t < 2 F/(Pa) = 0,2 <t;

F(u) < 0, Pa < % < oo

2P(H) = 0, % = ul9 Pa < ^ < oo., β > α

F(u) <0,Pa<u < co, β ^a .

The point (ulf vτ) is a relative minimum and from (4.3) and (4.4) we
find that

(4.6) u, =

Thus by (4.5) and the second mean value theorem for integrals we
have, for β > a, and Pα <Ξ £t < %x < £2 ̂  oo,

(4.7) I? = Γ1 + Γ = F(^) Γ1 + F{u{)
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= F(ut) 1 2 cos 2πHi/n v(u) v\u)du

by the inequality x2 + y2 ^ 2xy, x > 0, y > 0. Similarly, for β ^ a, and
Pa ^ £g < oo, we have

(4.8) /7 = Γ = *X«0 t" cos2πHVnv(u) vr

? ) ' - 1 ^ + ^)-c«-D/ίw-i/»} = 0{(naβ)-112} .

We next consider /5 in (4.1). By (4.3) we can write

(4.9) /5 = \ FAu) cos 2πH\/nv(u)du
Jo

where

(4.10) - JF\(%) =

_JAo^(O 0 ^
aβ2*«-1'>lt \ctβ

Therefore

(4.11) / l =

Turning next to I6 in (4.1), we note that by the first line of (4.5)
we can use the second mean value theorem to write, for some £4 satisfy-
ing σ < ξ4 ^ Pot,

(4.12) I6 = i?χσ) Γ4 cos 2πHVnv{u) . v'(M)d% = θ f - ^ % L ) .

To examine the question of the order of F(u) in 0 < u < Pα we
use (4.3) with, p — Pa — u, q = Q/5 + w, and write

(4.13) F(u) = - ^
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Since F2(0) = 0 and

ψ γ γ , + (̂
dw 2 L \ α / V g / q2 \β/ \p

we have, by the mean value theorem,

(4.15) F(u) £ -J%- { ^ ψ , λ = f """, 0<u<Pa,0<Ui<Pa.

Setting p-i = Pa — u3, q-i — QβΛ- u3, we obtain

(4.16) F(u) ̂  Hλ ViQi

I (a1 + β*)u

Hence combining (4.11), (4.12), and (4.16), we obtain

(4.17)

In the further analysis of /5 + / 6 we use the inequalities,

(4.18) 1 + xm < (1 + #)m, 0 < a? < 1, m > 1 ,

(4.19) (x + l ) m < 2m~\xm + 1), α? > 1, m > 1 .

In (4.17) suppose l < ί ^ 2 . Since H=(atl«-»+ βw^ψ-w and ί/(ί- 1) > ί,
we have by (4.18), H < (a1 + β*)1'*, and therefore, for 1 < t ^ 2, we
have

(4 20) H<^(L^1 < (

Hence from (4.17) and (4.20) we have, for 1 < t ^ 2,

(4.21) /B + /β = 0{(α/5)-ct-D/^-i/n .

If ί > 2 is (4.17), then ί > ί/(ί - 1) and so by (4.19) we have

(a1 + βψ2 (α* + ̂

2 ( ί " 2 ) / C 2 °
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Hence from (4.17) and (4.22) we have, for t > 2,

(4.23) Iβ + /.

By (3.10) v{— u, a, β) = v(u, a, β) so that an estimate for I6 + I6 + I7

holds also for Iά in (4.1). By this fact, and the results of (4.7), (4.8),
(4.21), and (4.23), it now follows that for S3, defined by (3.4), (3.23),
and (4.1), we have,

ΛJL OO OO -I poo

(4.24) S s =
 Δ™ Σ Σ - ~ F{u) cos 2πHVn v(u) v'(u)du

π ίt-iβ-i ctβ J-~

= O(n^), t > 1 ,

the double series being absolutely convergent.

Integrating by parts and applying the second mean value theorem,
we have, from (3.6), for xλ = {{t - l)/t]ιlt

f

(4.25) S, = - ^ - ^ 2 Σ (1 - ^ ) c t + 1 ) / t cos 2πVn axdx
t + 1 «=i Jo

= — w3'2 Σ -- \ (1 - α ) 1 " ^ - 1 si
π- «-i Oί Jo

ί(i *γι%*i f*1 sin

+ (1 - Qtf

the series being absolutely convergent. The absolute convergence of the
double series in (2.1) now follows from the results leading to (4.24) and
(4.25).

5. Proof of (1.1). Finally we deduce (1.1) from (3.1). We make
use of the asymptotic expansion for the general Bessel function, namely
[5, p. 368],

(5.1) Jn(K) = / ^ cos (K -m* -

for large K and m independent of K.
By (5.1) and the absolute convergence of the sum we have
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(5 2) T. = C.JI S ' 4 - 1 / ( ! 1 ) Σ a-3'*-11^cos

Q 5 - 1

or2"1" cos (2^1/no; - τr/(2ί))

In Γ3/(0, ί) = 0 and /<*>(1, *) = 0, fc = 0, 1, 2. Hence if we integrate
by parts twice the integrated terms vanish and we have left

(5.3) T, = - —•- n Σ 1 Γ/"(α, *) cos 2τn/nccxdx .
π2(ί + 1) β-iαa Jo

// ;(^, έ) is continuous in 0 <£ x ^ 1 and independent of n and α and so
it has a finite number, independent of n and a, of relative and absolute
extrema whose values are also independent of n and a. Hence dividing
the interval of integration into pieces in which f\x, t) is monotonic, we
obtain by the second mean value theorem, for appropriate ξj9 ξ], ξf

j+1 in
the interval from 0 to 1, the ξ's depending on n and a, the result,

(5.4) Γ s = - i* rc'/* Σ - i Σ / ' ( ^ , ί) fe?+1 cos 27ΓT/W αa άc - 0{Vn)

π\t + 1) a-ia1 3 Jξj

Applying (5.1) to ϊ\ we obtain

T 4 = — 2 ^ 3̂/4 v V COS (27rgl/^"— π /4)

π2λ/t — Γ α = lβ ( ^

Since

the double series are absolutely convergent so that

(5.5) Γ4 = - 2t-=— n
2 / ^ 1

3Ji cos (2πHVn - ττ/4)
— 1 ίΓiβ=i(Λi9)(«-a)/(2«-a)dgX3ί-i)/(2ί-2)

Next we consider T5. We have shown that — T± and S3 are absolutely
convergent double series for t > 1 and hence so is their term by term
sum which is identical with T5. We break up the interval of integration
in T5 into a finite number, independent of n, a, β, of subintervals in
which G(u, a, β) is monotonic and write

(5.6) T6 =
 2 t n Σ Σ --- Σ ΓJ+1 G(w, α, /̂ ) cos 2πHVnv{u) .

π2 «=iβ=iαj5 j Jgj
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Now G(u, α, β) is continuous in each ξ5 <: u £ ξj+1. The only doubt arises,
at u = 0 where v'(u) — (1 — v2)112 — 0, and at u = oo where ι/(%) = 0.
But, using the definitions in (3.1) and evaluating an indeterminate form,
we obtain

(5.7) G(0 +,a,β)= " HA'M - lim ( λ + -_2iL_ Λ

(0) , o
Άi'ιlt(θ) W^-1) +

which is bounded. On the other hand, by (4.3),

(5.8) G(oo, a, β) = - Hiaβy-^

which is also bounded.

Applying the second mean value theorem to (5.6) we obtain

(5.9) T5 =
 2 t n Σ Σ V Σ G(Ci, α, /?) ( ί j+1 cos 2πHVnv{u) v

7Γ2 Λ-lβ-1 α/9 j J ^

for appropriate ζ'Jf ζJf ζj+ι in the interval from ξ3 to fj+1. Further we
have

(5.10) Σ Σ

^ Σ Σ 4 ^ Σ
7Γ2 a-lβ-lCLβH J

by the absolute convergence of the double series.
The relation (1.1) now follows from (3.1), (3.5), (5.2), (5.4), (5.5),

and (5.10).
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