TWO NON-SEPARABLE COMPLETE METRIC
SPACES DEFINED ON [0, 1]

BURNETT MEYER AND H D SPRINKLE

Let MM be the set of all Lebesgue measurable subsets of the closed
interval [0, 1], and let 4, Be M. It is well-known that M becomes a
pseudo-metric space if distance is defined by

d(A, B) = m(A — B) + m(B — A) = m[(A — B)U(B — A)],

m denoting the Lebesgue measure. See [1, pp. 31-32]. It is the purpose
of this paper to extend 9t to include the non-measurable sets and to
examine some of the properties of the resulting space.

If we remove the restriction that A and B be measurable, and let
them be any subsets of [0, 1], then if

p(4, B) = m*(A — B) + m*(B — A), and &4, B) = m*[A — B) U (B — A)]

(where m* denotes the exterior Lebesgue measure), it is easily seen that
pseudo-metric spaces & and T are obtained, corresponding to p and ¢
respectively. The properties which we discuss of & and ¥ are the same
and are proved analogously, so we shall state and prove our results for
the space & only, it being understood that similar theorems and proofs
hold for Z.

LeEMMA 1. A necessary and sufficient condition that p(A, B) =0 is
the existence of sets Z, and Z,, both of Lebesgue measure zero, such that
AU Z1 - B U ZZ-

Necessity. If p(A, B) =0, then m(A — B) = m(B — A) = 0. Since
AU(B— A)=AUB=BUA=BU(A— B), Z, and Z, may be taken as
B — A and A — B, respectively.

Sufficiency. If AUZ, = BUZ, then
p(A, B) < p(A, AUZ) + p(AUZ,BUZ,) + p(BUZ,, B) =0

The relation p(A4, B) = 0 is seen to be an equivalence relation defined
on the elements of & ; hence, those elements are partitioned into equiva-
lence classes. Let [A] denote the equivalence class which contains A.
It is clear that if C € [A] and D e [B], then p(4, B) = p(C, D). If &*
is the set of all equivalence classes defined above, and if p([4], [B]) =
P(A, B), then &* becomes a metric space with the metric p([A4], [B]).
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LeEMMA 2. If B,e[A,] for n=1,2, -+, then [Us.. 4.] = [U7-.B.]
and [Nr-1 4.] = N1 Bl

LEMMA 3. If A is measurable and B e [A], then B is measurable.

There exist Z; and Z, such that AU Z, = BU Z, with m(Z,) = m(Z,) = 0.
Let B denote [0,1] —B. Then BUZ, is measurable and since
B=(BUZ) — (BNZ), B is measurable.

It follows from Lemma 3 that the sets in each equivalence class are
either all measurable or all non-measurable. Thus the space &*=%t* y N*,
where M* is the space of all equivalence classes of measurable sets, and
N* is the space of all equivalence classes of non-measurable sets. It
should be noted that IM* is the metric space corresponding to the well-
known pseudo-metric space Wt defined at the beginning of the paper.

In the following we will omit the asterisks and square brackets,
and will write & for &* etec., and p(4, B) for p([4], [B]). When we
write A € &, A may be considered either as an equivalence class or as
a representative element of that class.

THEOREM 1. The space & is complete.

The proof is similar to that given in [1, p. 32].

THEOREM 2. For every A € & and every positive number ¢ < 1, there
exists B e & such that 0 < p(4, B) < .

Proof Case 1. m(4) = 0.
If m(4) =0, then A € [¢], ¢ denoting the empty set. Let Be &
be an interval of length < e. Then p(A4, B) = p(¢, B) = m(B) < e.
Case I1I. m*(A) > 0.
Let Ie & be an interval of length < e, such that m*(INA) > 0.
If B=A — I, then

P(A,B)=p(A,A—I)=m A—(A—-D]=m*INA)=m*(I)<e.
COROLLARY 1. If in Theorem 2, Ae M, then B (as constructed) e IMN.

THEOREM 3. If Ae M and ¢ > 0, then there exists C € N such that
0<p(4, C) <e.

Proof Case 1. m(4) = 0.

Let M be a set of real numbers such that for every measurable set
E, m*(M N E)=m(E) and m (M N E)=0, m, denoting the interior Lebesgue
measure. (See [2], Theorem E, p. 70.) In Case I of Theorem 2, let
C=BNM. Then
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P(A, C) = p(¢, C) = m*(C) = m(B) < ¢ and m,(C) = 0.

Case 11. m(4) > 0. \

In Case II of Theorem 2, let C = A — (INM), M described above.
Then p(4, C)=m*(A— C)=m*(ANINM)<m(I)<e¢, and m*(ANINM)=
m(ANI) >0, m(ANINM)=0. Since (ANINM)e R, CeN.

THEOREM 4. N is open in &.

Proof. Assume Theorem 4 is false. Then there exists Ne 9 and
sets M, e M, m =1, 2, ---, such that lim,,_.. o(V, M,,) = 0. The sequence
M, m=1,2, ---, is, therefore, a Cauchy sequence in & and so by
Theorem 1 has a subsequence M, ,n=1,2,---, such that lim,_ . o(lim
sup, an, M,)=0. Since lim sup, an is measurable, this means that
N is measurable by Lemma 3, a contradiction.

The last few results can be summarized as follows.

THEOREM 5. N s perfect and nowhere dense in & ;N is open and
dense in .

The remainder of the work is valid for both spaces, as only the
equivalence classes are dealt with (these being the same for & and %).

After having proven completeness for & in Theorem 1, a natural
question to ask is ‘‘Is the space separable ?’’. The theorem proved
here which demonstrates the existence of 2%(= f), where 2% = ¢ ,equiva-
lence classes in & answers this question (and a similar one about a
countable basis) in the negative. It is also interesting to note that the
space W has exactly c¢ equivalence classes. (In the following work Q
is the first ordinal belonging to c.)

THEOREM 6. There exist | equivalence classes in the space S.

Proof. It will be sufficient to construct a well-ordered family
{A,10 < ax < 2} of mutually disjoint subsets of [0, 1], each of which
has m*(4,) = 1.

Consider {B;|0 < 3 < 2} as a well-ordering of all closed subsets
B of [0,1] which have a positive Lebesgue measure. For each 5,0 <
B< 0, let {£|0 < a < B} be a well-ordered subset of Bs such that
x8 = af, if B+ or a + a'. This selection is possible since, for each
B, the set of all 28 with 0 <« < < B has a cardinal number < c.
Set A, = {28 |a < B < Q}, for each «, 0 < « < 2. By a simple argument
A.NA, = ¢, for a = a’. Now consider any 4., ; if m*(4,) # 1, then A,
is contained in some open set Y such that m(Y) < 1. The complement
of Y is closed and has m([0,1] — Y) > 0. But m{[0, z]N([0, 1] — Y)}
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is a continuous function of z for 0 < x < 1; therefore, this function
takes on all values between 0 and m([0, 1] — Y'), inclusive. This means
that there are non-denumerably many closed sets whose measures are
greater than 0 and which do not intersect A,. This is, of course, im-
possible by the construction of A4,. Therefore, m*(4,) = 1.

Form the set of all subsets of the set of A,’s, and take the sum
of each element of this power set. Any two such sums belong to two
different equivalence classes since they disagree in a set of exterior
measure 1. This set of sums has cardinal f. There are, therefore, at
least { equivalence classes, at most { such classes ; hence, exactly f.
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