SUBDIRECT SUMS AND INFINITE ABELIAN GROUPS

ELBERT A. WALKER

- 1. Definitions. Let G be a group, and suppose G is a subgroup of the direct sum $\sum_{a\in I} \bigoplus H_a$ of the collection of groups $\{H_a\}_{a\in I}$. If the projection of G into H_a is onto H_a for each $a\in I$, then G is said to be a subdirect sum of the groups $\{H_a\}_{a\in I}$. (Only weak direct and subdirect sums are considered here.) If a group G is isomorphic to a subdirect sum of the groups $\{H_a\}_{a\in I}$, then G is said to be represented as a subdirect sum of the groups $\{H_a\}_{a\in I}$. A group is called a rational group if it is a subgroup of a $Z(p^{\infty})$ group or a subgroup of the additive group of rational numbers.
- 2. Theorem. Every Abelian group can be represented as a subdirect sum of rational groups where the subdirect sum intersects each of the rational groups non-trivially.

Proof. G is isomorphic to a subgroup of some divisible group, and thus can be represented as a subdirect sum G' of rational group $\{H_a\}_{a \in I}$. Let $(h_1, h_2, \dots, h_a, \dots)$ be an element of G'. Let $(h_1, h_2, \dots, h_a, \dots)\beta_1 = (k_1, h_2, \dots, h_a, \dots)$, where $k_1 = h_1$ if $G' \cap H_1 \neq 0$, and $k_1 = 0$ if $G' \cap H_1 = 0$. Assume β_c has been defined for c < b. Define

$$(h_1, h_2, \dots, h_a, \dots)\beta_b = (k_1, k_2, \dots, k_b, h_{b+1}, \dots)$$

where $k_b = h_b$ if $H_b \cap (\bigcup_{c < b} G' \beta_c) \neq 0$, and $k_b = 0$ otherwise. Each β_a preserves addition because each is a projection. Let $(h_1, h_2, \dots, h_a, \dots) \neq (0, 0, \dots, 0, \dots)$ and let

$$(h_1, h_2, \cdots, h_a, \cdots)\beta_a = (k_1, k_2, \cdots, k_a, h_{a+1}, h_{a+2}, \cdots)$$
.

Only a finite number of the coordinates of $(h_1, h_2, \dots, h_a, \dots)$ are not 0. Let them be $h_{a_1}, h_{a_2}, \dots, h_{a_n}$, where $a_1 < a_2 < \dots < a_n$. If $a < a_n$, then

$$(h_1, h_2, \dots, h_a, \dots)\beta_a$$

= $(k_1, k_2, \dots, k_a, h_{a+1}, \dots, h_{a_m}, h_{a_{m+1}}, \dots) \neq (0, 0, \dots, 0, \dots)$

since $h_{a_n} \neq 0$. Assume $a \geq a_n$. If n = 1 and $a_1 = 1$, then $(h_1, h_2, \dots, h_a, \dots) = (h_{a_1}, 0, 0, \dots, 0, \dots) \in G'$ and $G' \cap H_1 \neq 0$ so that $(h_{a_1}, 0, 0, \dots, 0, \dots) = (h_{a_1}, 0, 0, \dots, 0, \dots)$. That is, $h_{a_1} = h_{a_1} \neq 0$, and hence $(h_1, h_2, \dots) \neq (0, 0, \dots, 0, \dots)$. If n = 1 and $a_n \neq 1$, then $(0, 0, \dots, h_{a_1}, 0, 0, \dots) \in G'$ and also in $G'\beta_c$ for all $c < a_1$. Thus $H_{a_1} \cap (\bigcup_{c < a_1} G'\beta_c) \neq 0$, and

Received September 19, 1958, in revised form October 20, 1958.

$$(h_1, h_2, \dots, h_a, \dots)\beta_a = (0, 0, \dots, 0, h_{a_1}, 0, 0, \dots)\beta_a$$

= $(0, 0, \dots, 0, h_{a_1}, 0, 0, \dots)\beta_{a_1} = (0, 0, \dots, 0, h_{a_1}, 0, 0, \dots)$
\(\neq (0, 0, \dots, 0, \dots)\).

Assume n>1. If $(h_1,h_2,\cdots,h_a,\cdots)\beta_a=(0,0,\cdots,0,\cdots)$, then $k_c=0$ for $c\leq a_n$, and

$$(h_1, h_2, \dots, h_a, \dots)\beta_{a_{n-1}} = (0, 0, \dots, 0, h_{a_n}, 0, 0, \dots)$$
.

Therefore $H_{a_n} \cap (G'\beta_{a_{n-1}}) \neq 0$, and so $H_{a_n} \cap (\bigcup_{c < a} G'\beta_c) \neq 0$. Hence $k_{a_n} = h_{a_n} \neq 0$, and this contradicts $k_c = 0$ for $c \leq a_n$. Therefore

$$(h_1, h_2, \cdots, h_a, \cdots)\beta_a \neq (0, 0, \cdots, 0, \cdots)$$

and the kernel of β_a is 0. Hence each β_a is an isomorphism. Now let $(h_1, h_2, \dots, h_a, \dots)\beta = (k_1, k_2, \dots, k_a, \dots)$. Clearly β is a homomorphism of G' into $\sum_{a \in I} \bigoplus H_a$. But the kernel of β is 0 because every element in G' has only a finite number of non-zero coordinates. Let I' be the set of indices such that $a \notin I'$ implies that the image of the projection of $G'\beta$ into H_a is 0. $G'\beta$ is isomorphic to a subdirect sum of the groups $\{H_a\}_{a \in I'}$. If $G'\beta \cap H_1 = 0$, then for $(h_1, h_2, \dots, h_a, \dots) \in G'$ we have $(h_1, h_2, \dots, h_a, \dots)\beta_1 = (0, h_2, \dots, h_a, \dots)$, so that

$$(h_1, h_2, \cdots, h_a, \cdots)\beta = (0, k_2, k_3, \cdots, k_a, \cdots)$$
.

Hence the image of the projection of $G'\beta$ into H_1 is 0. Therefore $1 \notin I'$. Let a > 1. Suppose $G'\beta \cap H_a = 0$ and $H_a \cap (\bigcup_{c < a} G'\beta_c) \neq 0$. Then there exists b < a such that $H_a \cap G'\beta_b \neq 0$. Let $(0,0,\cdots,0,k_a,0,0,\cdots) \in H_a \cap G'\beta_b$, where $k_a \neq 0$. Let $(h_1,h_2,\cdots,h_a,\cdots)\beta_b = (0,0,\cdots,0,k_a,0,0,\cdots)$. Then $(h_1,h_2,\cdots,h_a,\cdots)\beta = (0,0,\cdots,0,k_a,0,0,\cdots)$, and so $G'\beta \cap H_a \neq 0$. Therefore if $G'\beta \cap H_a = 0$, then $H_a \cap (\bigcup_{c < a} G'\beta_c) = 0$. This implies for every $(h_1,h_2,\cdots h_a,\cdots) \in G'$ that

$$(h_1, h_2, \cdots, h_a, \cdots)\beta_a = (k_1, k_2, \cdots, k_a, h_{a+1}, h_{a+2}, \cdots)$$
,

where $k_a = 0$, and hence that

$$(h_1, h_2, \dots, h_a, \dots)\beta = (k_1, k_2, \dots, 0, k_{a+1}, k_{a+2}, \dots).$$

Thus the image of the projection of $G'\beta$ into H_a is 0 so that $a \notin I'$. Hence for $a \in I'$, $G'\beta \cap H_a \neq 0$. Since G is isomorphic to $G'\beta$, the theorem follows.

3. Remarks. Theorem 9 in [1] is an immediate corollary of the preceding theorem, as are some other known theorems in Abelian group theory. In [2], Scott proves that every uncountable Abelian group G has, for every possible infinite index α , $2^{o(G)}$ subgroups of order equal to o(G) and of index α , and that for each given infinite index, their intersection is 0. The following theorem shows that if G is torsion free, one can say more.

4. THEOREM. Every torsion free Abelian group G of infinite rank has, for every possible infinite index α , $2^{o(d)}$ pure subgroups of order equal to o(G) and of index α . Furthermore, the intersection of these pure subgroups of index α is 0.

Proof. Represent G as a subdirect sum G' of rational groups $\{H_a\}_{a\in I}$ such that for each $a\in I$, $G'\cap H_a\neq 0$. Let α be an infinite cardinal such that $\alpha\leq o(G)$. o(I)=o(G) since G has infinite rank. Let $I=S_1\cup S_2$ where $o(S_1)=\alpha$, $o(S_2)=o(G)$, and $S_1\cap S_2=\phi$. Let T be a subset of S_2 such that $o(S_2-T)=o(G)$. There are $2^{o(G)}$ such T's. Let $(h_1,h_2,\cdots,h_a,\cdots)$ be in G', and let

$$(h_1, h_2, \cdots, h_a, \cdots)t = \left(\sum_{j \in T} h_j, k_1, k_2, \cdots, k_a, \cdots\right),$$

where $k_i=h_i$ if $i\in S_1$ and $k_i=0$ otherwise. The mapping t is a homomorphism and the order of its image is equal to $o(S_1)$. That is, the index of the kernel of t is α . The order of the kernel of t is equal to o(G) since $o(S_2-T)=o(G)$, and $G'\cap H_a\neq 0$ for all $\alpha\in I$. Let $T,T'\supseteq S_2$, $T\neq T'$. Then there is a $j\in T$ such that $j\notin T'$, say. Let $h_j\in G'$, $h_j\neq 0$. Then

$$(0, 0, \dots, h_j, 0, 0, \dots)t = (h_j, 0, \dots)$$
.

However, $(0, 0, \dots, h_j, 0, 0, \dots)t' = (0, 0, 0, \dots)$. Hence the kernel of t is not the same as the kernel of t'. These kernels are pure in G' since the quotient groups are torsion free. Thus G has $2^{o(G)}$ pure subgroups of index α , and of order equal to o(G). Suppose $(h_1, h_2, \dots, h_a, \dots)$ is in the intersection of all these pure subgroups of index α . Then if $b \in S_1$, $h_b = 0$. Hence if $h_c \neq 0$, letting $T = \{c\}$, we have

$$(h_{\scriptscriptstyle 1},h_{\scriptscriptstyle 2},\,\cdots,\,h_{\scriptscriptstyle c},\,\cdots,\,h_{\scriptscriptstyle a},\,\cdots)t=(h_{\scriptscriptstyle c},\,0,\,0,\,\cdots)
eq 0$$
 ,

which is impossible. Therefore for each $a \in I$, $h_a = 0$, and this shows that the intersection of these subgroups is 0.

- 5. Remarks. Every torsion free divisible group D of rank α is a direct sum of α copies of the additive group of rational numbers, and D contains an isomorphic copy of every torsion free Abelian group of rank α . The following theorem says that if α is infinite, every torsion free Abelian group of rank α is represented in a special way in D.
- 6. Theorem. Every torsion free Abelian group G of infinite rank can be represented as a subdirect sum G' of copies of the additive group of rational numbers, and in such a way that G' intersects each subdirect summand non-trivially.

Proof. Represent G as a subdirect sum G' of the rational groups

 $\{H_a\}_{a\in I}$ such that for each $a\in I$, $G'\cap H_a\neq 0$. Suppose first that G has countably infinite rank. That is, suppose I is the set of positive integers. Each H_a is a subgroup of the additive group of rational numbers, since G is torsion free. Let k_1,k_2,k_3,\cdots be a sequence of non-zero rational numbers such that $k_i\in G'\cap H_i$. Let r_1,r_2,r_3,\cdots be the non-zero rational numbers arranged in a sequence. Let $s_i=r_i/k_i$. Let $(h_1,h_2,\cdots,h_n,\cdots)$ be an element of G'. Let

$$(h_1, h_2, \cdots, h_n, \cdots)\beta = \left(\sum_{i=1}^{\infty} s_i h_i, \sum_{i=2}^{\infty} s_i h_i, \cdots, \sum_{i=n}^{\infty} s_i h_i, \cdots\right).$$

Since only a finite number of the h_i 's are non-zero, for each k, $\sum_{i=k}^{\infty} s_i h_i$ is a rational number, and for only a finite number of k's is $\sum_{i=k}^{\infty} s_i h_i$ non-zero.

$$\begin{split} &((h_1, h_2, \cdots, h_n, \cdots) + (g_1, g_2, \cdots, g_n, \cdots))\beta \\ &= (h_1 + g_1, h_2 + g_2, \cdots, h_n + g_n, \cdots)\beta \\ &= \left(\sum_{i=1}^{\infty} s_i(h_i + g_i), \cdots, \sum_{i=n}^{\infty} s_i(h_i + g_i), \cdots\right) \\ &= \left(\sum_{i=1}^{\infty} s_i h_i + \sum_{i=1}^{\infty} s_i g_i, \cdots, \sum_{i=n}^{\infty} s_i h_i + \sum_{i=n}^{\infty} s_i g_i, \cdots\right) \\ &= (h_1, h_2, \cdots, h_n, \cdots)\beta + (g_1, g_2, \cdots, g_n, \cdots)\beta . \end{split}$$

Hence β is a homomorphism of G' into a direct sum of copies of the additive group R of rationals. Let R_n be the set of nth coordinates of elements of $G'\beta$. R_n is a subgroup of R since it is the image of the projection of $G'\beta$ onto its nth coordinates. Let $m \geq n$.

$$(0, 0, \dots, 0, k_m, 0, 0, \dots) \in G'$$

 \mathbf{a} nd

$$(0, 0, \dots, 0, k_m, 0, 0, \dots)\beta = (r_m, r_m, \dots, r_m, 0, 0, \dots)$$

so that $r_m \in R_n$. Thus R_n contains all but at most a finite number of elements of R, and being a subgroup of R, must then be R. Therefore $G'\beta$ is a subdirect sum of copies of R. Let $x \in G'$, $x \neq 0$, and let h_r be the last non-zero coordinate of x. Then the rth coordinate of $x\beta$ is $s_rh_r \neq 0$. Hence the kernel of β is 0 and β is an isomorphism of G onto a subdirect sum of copies of R. Now consider the case where I is not countable. Let I be the union of the set of mutually disjoint countably infinite sets $\{I_j\}_{j\in J}$. Denote by S_j the image of the projection of G' into $\sum_{a\in I_j} \oplus H_a$. Then G' is a subdirect sum of the set of groups $\{S_j\}_{j\in J}$, and each S_j is of countably infinite rank. Hence each S_j may be represented as a subdirect sum of copies of the additive group of rational numbers, and it follows that G may be so represented. In light of the proof of 2, this representation may be assumed to intersect each subdirect summand non-trivially.

REFERENCES

- 1. W. R. Scott, Groups, and cardinal numbers, Amer. J. Math. 74 (1952), 187-197.
- 2. W. R. Scott, The number of subgroups of given index in nondenumerable Abelian groups, Proc. Amer. Math. Soc. 5 (1954), 19-22.

UNIVERSITY OF KANSAS AND NEW MEXICO STATE UNIVERSITY