ON INTEGRATION OF 1-FORMS

MAURICE SION

1. Introduction. It has been noted by several people that in order
to define the integral of some differential 1-form « along a curve C, the
latter need not be of bounded variation. For example, in the extreme
(and trivial) case where o is the differential of some function f, the
integral can be defined as the difference of the values assumed by f
at the end-points of C. No condition on C is necessary. H. Whithney
[4], with J. H. Wolfe, by the introduction of certain norms, has found
general abstract spaces of curves along which the integral of 1-forms
satisfying certain conditions can be defined. In fact, H. Whitney con-
siders integration of p-forms with p > 1. In a previous paper [2], we
obtained rather awkward conditions for a decent integral to exist that
depended on the number of higher derivatives of w on C.

In this paper, we consider 1-forms » possessing ‘ higher derivatives’
on C in a sense somewhat different from that due to H. Whitney [3]
which we used previously. A Lipschitz type condition on the remainders
of the Taylor expansion is imposed (see 4.1.). We define the a-variation
of a curve as the supremum of sums of ath powers of chords (see 2.7)
and show that the integral of w along C exists if the a-variation of C
is bounded, where « is related to the number of ‘higher derivatives’
of w on C. Under somewhat stronger hypotheses on C, we show that
this integral is an anti-derivative of » on C.

2. Notation and basic definitions. Throughout this paper, N is a
positive integer and we use the following notation.

2.1. FE denotes Euclidean (N + 1)-space.
2.2. |lz|l= <i xi)/ for z ¢ E.
i=0
2.3. diam U =sup{d:d = ||z — y|| for some z e U and y e U}

2.4. ¢ is a continuous function on the closed unit enterval to E and
C = range ¢.

2.5. % is the set of all subdivisions of the unit interval, i.e. functions
T on {0,1, ---,k} for some positive integer & such that :
T0)=0, T(k)=1, TG—1)<T@)fori=1,---,k

2.6. [Tla,b]l= {i:a <T@\ —1) < T@E) < b}
2.7, Via,b) =sup > |[|e(T@ — 1) — o(T@)|*
re GP1€lT/a,0]
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3. Properties of V,.

3.1. LEMMA. If0<a<b<c<1, then

Vida, b) + Vb, ) < ala, ¢) < Vi(a, b) + Vi, ¢) + (diam C)*
3.2. LEMMA. If a < 8 and Vi(a,b) < o, then Vi(a,b) > oo.

Proof. Since V,(a,b) < o, there is an integer n such that there
are at most n elements ¢ € [T/a, b] with || ¢(T(¢ — 1)) — ¢(T(3))|| > 1 for
any T e .. For any other ¢ e [T/a, b] we have

He(T@ — 1) — o(T@) 1P < | (T — 1)) — ¢(T@)) |1 .
Hence,

Ve(a, b) < Vo (a, b) + n(diam C)® < oo .

4, Integration of 1-forms. In this section, we first define the kind
of differential form we shall be dealing with. Our definition is a variant
of Whitney’s definition of a function m times differentiable on a closed
set [3]. Next, we choose a special sequence of subdivisions and proceed
to define the integral of the form over the curve C by taking sums of
polynomials of degree m and then passing to the limit. Under condi-
tions involving the generalized variation V,, we show that the integral
exists and possesses, in particular, the properties of linearity and ‘ anti-
derivative ’.

Throughout this section, m is a positive integer, 7 > 0, K > 0.

4.1. The Differential Form. Let
ok = Sk, for any (N -+ 1)-tuple % .
i=0

A differential 1-form « on C is a function on the set of all (N + 1)-
tuples %, for which %, is a non-negative integer for ¢=20, ..., N and
1 < ok < m, to the set of real-valued functions on C such that

m—aok e oo — 7
wn() = 35 wga () U TI Wn Z BN 4 (g )
oi=0 Jo+ >y
where

| Rz, )| < Kl||a — y||™*"" for xe C and ye C.

It is important to note that, in case m =1 and 7 > 0, » is a dif-
ferential form on C satisfying a Holder condition. If however m > 1,
then o is also a closed differential form on C, that is, dw =0 on C.
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By taking m =1 and » =1, we get the sharp forms considered by
Whitney. The conditions we impose on C, however, are quite different
and, we feel, in practice easier to check than those obtained in [4].

4.2. The sequence of subdivisions. We define first, for each (n + 1)-
tuple of non-negative integers (s,, +-- ,s,), a point &(s,, - -+ , S,) by recur-
sion on » and on s,. These will be the end-points of the nth subdivision
of the unit interval.

4.2.1. DEFINITION. £(0) =0, (=1,
t(SO, o ,Smo) = t(sm e rsn) ’
U8y = ** s 8 g+ 1) = sup {w:8(sy, +++, 8, 79) < U < E(Sp, 2, 8+ 1)

and “(f(u’) - Sa(t(SO’ ety Sy .7) ” é —2% fOI' t(sﬂy e, 8y .7) S u’, < u}

for any non-negative integers » and j.

We shall denote by T the sequence of subdivisions of the unit
interval such that: .

range T, = {u:u = t(s) -++ , 8,) for some n-tuple (sy, *+- , 8,)} -

4.2.2. LEMMA. For any non-negative integers n and j, we have

t(s&b b ysn)gt(so’ et ;snvj)gt(so"" ’sn+1)'

4.2.3. LEMMA. For any positive integer n, 1€ [T,/0,1], j€[T,-,/0, 1]
we have: T,., is a refinement of T,, i.e. range T, C range T, ;

if T,(i—1)<u<T,\ ),
then

lo(T(i — 1)) — ¢(w)|| < ?1 ;
if
then

| ¢(To(i — 1)) — @(To () || = 2i .

4.2.4 LEMMA. If F(x,y) is a real number whenever 0 <z <y <1,
a € rangeT,, b e rangeT,, and a < b, then

F(Tyei(t = 1), Tyur(0)) = > > F(T1i(1 = 1), Tpea(4)) -

ielr, 1/, JELT,/a,b] i€[T, /T p(I~1),T ()]
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4.3. The integral of w. First, we define S“wd<p as the limit of
b

certain sums of polynomials.

4.3.1. Definitions.

Ple, 1) = St 0= B0 Ol
Pa, b) = P'(¢(a), ¢(b)),

ie[Tn/a,b]

Sbwdga — lim S,(a, ) .

b
Next, in order to prove the existence of S wdy and some of its

properties under conditions involving V,(a, b) for some a < m + 7, we
introduce the following.

4.3.2. Definitions.
R(z,y,2) = P'(x,y) + P'(y,2) — P'(w,2) .

_ 1

B=m+7.

4.3.3. LEMMA. If x,y4,2e€C,||lx —yl|| <0 and ||y — z|| <0, then
| Bz, y, 2) | < Mo® .

Proof. Let Ah(v) = P'(x,v) for ve E. Then, A is a polynomial of
degree m. Let O, = {k:k is an (N + 1)-tuple of non-negative integers
and 1 <ok <7}.

For ke O, and pe O,, let p >k iff p, >k, for ¢=0,---, N, and let

Diw) = — @)

>
6’“01}0 LI akN'vN

then

D = ('vo - wo)pﬂ — Fpeas (?N - wN)kaN
UV) pg_‘émwp(w) (Do — K)o+ (Dy — Eey) !

P2k

Hence, by Taylor’s formula

R e
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£3{[ 5w m e Wy anirt]

€6, \L v€0,, (Do — ko) !+ (Dy — ky) !
o2k

L=y By — yN)kN} .
koleee ky!

On the other hand from 4.8.1 and 4.1 we have

P'(y, 2) = kezo {[wk(x) + Z Wpe (@) (Yo — 2p)0 - - (‘ Yy — Ty)'v + Rz, y)"l

n Op—ok .70"".7N!

. (B =)o (2w — ?/N)_L}

kol oo ky!
= (yu_mo)pﬂ_kﬂ"‘(yN—xN)N N
= k%m{[k%n (Up(x) ‘—(“—_— kj) I (N:—]?N) !**—' -+ Rk(ﬂ;, ’_I/)]
. ,(3 _ wo)’c (zzv - yN)kN
Fog !l oee byl }}
= W(z) — h(y) + R, (x,v) (20— #) -+ (2w — Yn)*> .

k€0, ko!"‘kN!

Making use of the condition on R,(x, y) stated in 4.1, we get

|P'@9) + P, ) — Pl )| < 3 KV = 20 ll2 =0l < ap,

4.3.4 LEMMA. Suppose ||2(0) — x(9)|| < A and ||z — 1) — z(2) || <

A fori=1, .-+, p, whereas ||x(t — 1) — 2(@) || = Afr fori=1, -+ ,p—1,
where all x(i) e C. Then

‘:Z;P’(w(z’ — 1), 2(3)) — P'(2(0), x(p»\ < Mredre S lati = 1) = a(@) I

Proof. | S P(ali = 1), 2(i)) — P'@(0), 2(0)|
< SUP(@(0), a(i — 1) + P'(a(i — 1), 2(0)) — P((0), 2() |
= 51 R@(0), ai—1), ) | < (p—1)MA? = (p—)Mra2-(2 '
= Mr?AF-® ;_1 (i —1)—a(3) ||* < Mr*Af-= gi” x(1—1) —a(2) [|* .

4.3.5 LEMMA. Let n>1, a e rangeT,, be rangeT,, o < b,
[Ty-ifa,b] =0 . Then
| Su(a, b) — P(a, b) | < M5°Vy(a, b) .
Proof. Let
o =sup{u:uerangeT,, and u < a}
b = sup{u:u erangeT,_, and u < b} .
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First, suppose a <V <b. Then o < a and, by 4.2.3

1

le(u) — ¢(a)]] < on-t

ford <u<¥

l¢(u) — ¢@) || < El for ¥ <u<b.

n-1
Hence

le(Ta0) = ¢@I1 < 2 for ie[T,/a,b],

n-1

le(Tu(0) — ¢®) |l < ~2-1 ~ for ie [TV, b],

(T — 1)) — ¢(To(0)) || = 51 for i € [T,fa, b], To(i) # b, Tu(d) £ b .

Replacing « by B in 4.3.4 and using 4.3.3 and 3.1, we see that
| Su(a, b) — P(a, b) | = | S,(a, b') 4 S,(t, b) — P(a, b) |
< |S\a, b)) — P(a, b) |+ |S, 0, b) — PV, b)| + | Pla, b') + PO, b) — P(a, b)|
< MA4*V(a, b') + M2 Vb, b) + MVy(a, b) < M5°Ve(a, d) .

Next suppose b’ < . Then, for ¢ e [T,/a, b],

AT, 0) = e@ll < 2

VR IOTEES
Hence, by 4.3.4,
[ Su(a, b) — P(a, b) | < M4PVi(a, D) .
4.3.6 LEMMA. Let a € rangeT,, berangeT,, a <b. Then,

[Suea, B = S0, 0| < M2V, B2 )

Proof. Using 4.2.4, 4.2.3 and 4.3.4, we see that
| Spila, ) — Sy(a, b)|

P(Tyunli = 1), Tur) = PTG — 1), Ta03) |

JEIT, [a,0] [ierrnﬂlrnu—l)mn(n]
p-a . .

< = [w2(l) > (Tari = ) = ¢(Tas) 1]

€M7, Ja,b] 2 CELT,, [T, (=1, Ty (D]

—m2 (LY S e~ D)~ T DI < M2V, (5 )

A $€[T}, ,1/a,b]

4.8)7. THEOREM. If 0<a<b<1, a<p, Ve, b) < o, then
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Sbwd¢l< o .,

Proof. Let
a, = inf{u :u € range T, and a < u},
b, = sup{u:u € range T, and u < b} .

If @ = b, the theorem is trivial. If a < b, for n sufficiently large,
we have

@<L ey <0 <0, <0 <D,
[T,]a,a,] =0 and [T,/b,, 0] =0,

liso(az,ﬂ)so—(a;)ns-z% and || ¢(8,) — ¢(Be) |l <".

Hence

| Sps1(@, 8) — Su(a, b) | = [ Spsr(@hs1, Osr) — Salan, 07) |
= | Spss(@pasy @) + Spsa(@h, 8)) + Spas(Bh bsr) — Su(@n, b7) |
< Snei@sn, @1) — P(@rr, @) | + [ Spaa(@n, b3) — Su(an, 07) |
+ 1 Sps1(Bhy Ur) | — PO, bpsr) | + | P(@41, @) | + 1P(D}, b)a | < (by 4.3.5, 4.3.6)

< MBVil@hary )+ M2Vl ) )+ ME Vbl Vo) + wiimw,
where

W= swp o) 3ot
1Sa-k:<m siky L k!

Therefore, for any positive integer p we have
-1
lSn+p(a': b) - Sn(afy b)[ S Z lSn+q+1(a' b) - Sn+q(ay b)l

n+q

< M5 3, [Vihgass G + VeBhons Branrae)] + M2V, D) 35 (53
M’

923~ m) + on °

Since, by 3.2, Vu(a, b) < o, with the help of 3.1 we see that Vi(a, a;,) — 0
and Vu(b,, b) > 0 as n — «. Thus, the S,(a, b) form a Cauchy sequence

Sbwd(p|< o,

3 5L <ME(Vi@, a)+ Vb, b))+M—2— V.la, o)
2

and

4.3.8. THEOREM. Suppose 6 >0, a < ff, L < oo, ||¢(a) — ¢(®) || < 1,
and

Vi(a, b) < Ll ¢(a) — ¢()||*
whenever 0 <a<b<1and b —a <. Then, for some M' < o,
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H wdp — Pla, b)| < M || ¢(a) — ¢(®) |I*

whenever 0 <a<b<1and b —a <.

Proof. Given 0 <a<b<1and b —a<5d,let
a, = inf{u:u e range T, and a < u} ,
bt = sup{u:u € range T, and u < b} ;

and let n be the integer such that [T,-,/a, b] = 0, [T,/a, b] # O.
Given ¢ > 0, we can choose p so that

[} 0 = Sursf@hen bius)| < ¢
and
| P(a, b) — Plhsp, Dhepn) | < &
and
[ ¢(@) — e@) Il — [l ¢(@hs,) — (brsp) Il ] < e

Hence we need only to show that

ISn+p(a’;»+pr b;wp) - P(a/a,zﬂn b;z+p) I < M’ “ Sp(a;Hp) - ¢(b:z+12) “m
for some M’ < o and all positive integers p.
We can check that
ISn+ZI(a’;L+p’ b;a+p) - P(a’;wp: b;L+p) [
< | Sulan, 8)) — Play, b)) | + |P(ahspy @7) + P(an, 8)) — P(@hsp b)) |
+ | P(@hspy B2) + P(Bly Ui p) — P(@hspy 1) |

+ ,cz;:'u {lP(aI:Hﬁy Warsr)  P((@hi a1y Qnar) — P(a’;"‘p’ Trri) |

+ | P(bhsry Ohsirr) + P(Orsgar, brsp) — P(bhas, bsy) |
+ | St @ns a1y Graie) — P(Qagasy Grar) |

+ | Snarr1@srr Ohsisr) — POhsrs1, Onas) |

+ lS;L+k+1(a;1+k7 Ohir) — Snen(@hsny Ohar) |} -

Now, we observe that

) — ¢@)Il < 52 for dhey <u <o < s,

1

le(u) — ¢() | < onik for b <u < v < by,

[Tsil@rsgirs Brar] =0,
[Tnﬂc/b;lﬂu b7’z+k+l] =0.

Hence by 4.3.5, 4.3.3, 4.3.6 we have
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‘S;Hp(a';wm b;zﬂu) - P(a’:zﬂn b:t+1s)‘
< M5B Vﬁ(a’:u b;b) + Mvﬁ(a;ﬁpy b;w) + MVB(a’;pr b;b-#p)
p-1 2 B-w , B-w
M | Vilthons ho)(20) T+ Vil i) )

2n+lc

n+k
5 Vs rrirss Ghs) + 5 Vahess Vi) + 2°Vl@hons Voo ) |

< M5BV5(a’:l+z7) b:ﬂ-p) + zMVﬂ(a'),'H-px ;Hp)

n+k
+ MV @rer )25 + 1+ 27) Z (%7)

< MV @i, b;“,)[S‘" +2+ (27" + 1429 fl ( 95 )k]

< M [ @(@nsp) — ¢(Br4,) ||
where

M= ML[5B+2+(2% w+1+2w)2(25 a)"”J< o .

4.3.9. THEOREM. If0<a<b<c<1,

Sbwdgﬁ + gcwdgai < oo, then
a b

Scwdgo = Sba)dgﬂ + Scwd<p .

a a b

Proof. Let
a), = sup{u:u € range T, and u < b}
b, = inf {w :u e range T, and b < u} .
We have lim,_.. P(a}, b,) = 0 and for sufficiently large »
S.(a, ¢) = Su(a, b) + P(a}, b}) + Su(b, ¢) .
Taking the limit on both sides we get the desired result.
4.8.10. REMARK. If o and «' are both 1-forms in the sense of 4.1,
then so is (o + ') and
Sb(w + o')dp = Sbwdgo + g" o' dg

provided the right hand side is bounded. This is an immediate conse-
quence of the definitions.
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