A NOTE ON THE COMPUTATION OF ALDER'S POLYNOMIALS

V. N. Singh

In two recent papers [2,3] I deduced and used the general transformation

$$
\begin{align*}
1 & +\sum_{s=1}^{\infty}(-1)^{s} k^{M s} x^{\frac{1}{2} s((2 M+1) s-1]}\left(1-k x^{2 s}\right) \frac{(k x ; s-1)}{(x ; s)} \tag{1}\\
& =\prod_{n=1}^{\infty}\left(1-k x^{n}\right) \sum_{t=0}^{\infty} \frac{k^{\prime} G_{M, t}(x)}{(x ; t)}, \quad(M=2,3, \cdots)
\end{align*}
$$

to prove certain generalized identities of the type

$$
\begin{align*}
& \prod_{n=1}^{\infty} \frac{\left(1-x^{(2 M+1) n-s}\right)\left(1-x^{(2 M+1) n-(2 M+1-s)}\right)\left(1-x^{(2 M+1) n}\right)}{\left(1-x^{n}\right)} \tag{2}\\
& \quad=\sum_{t=0}^{\infty} \frac{A_{s}(x, t) G_{M, l}(x)}{(x ; t)}
\end{align*}
$$

where $A_{s}(x, t)$ and $G_{M, t}(x)$ are polynomials. For $s=M$ and $s=1$ respectively in (2), we get Alder's generalizations of the well-known Rogers-Ramanujan identities

$$
\prod_{n=1}^{\infty} \frac{\left(1-x^{5 n-2}\right)\left(1-x^{5 n-3}\right)\left(1-x^{5 n}\right)}{\left(1-x^{n}\right)}=\sum_{t=0}^{\infty} \frac{x^{t^{2}}}{(x ; t)}
$$

and

$$
\prod_{n=1}^{\infty} \frac{\left(1-x^{5 n-1}\right)\left(1-x^{5 n-4}\right)\left(1-x^{5 n}\right)}{\left(1-x^{n}\right)}=\sum_{t=0}^{\infty} \frac{x^{t(t+1)}}{(x ; t)}
$$

in the form [1]

$$
\prod_{n=1}^{\infty} \frac{\left(1-x^{(2 M+1) n-M}\right)\left(1-x^{(2 M+1) n-M-1}\right)\left(1-x^{(2 M+1) n}\right)}{\left(1-x^{n}\right)}=\sum_{t=0}^{\infty} \frac{G_{M, t}(x)}{(x ; t)}
$$

and

$$
\prod_{n=1}^{\infty} \frac{\left(1-x^{(2 M+1) n-1}\right)\left(1-x^{(2 M+1) n-2 M}\right)\left(1-x^{(2 M+1) n}\right)}{\left(1-x^{n}\right)}=\sum_{t=0}^{\infty} \frac{x^{t} G_{M, t}(x)}{(x ; t)}
$$

For the Alder polynomials $G_{M,(}(x)$ in (1), I gave the general form

$$
G_{M, t}(x)=x^{t^{2}} \sum_{t_{1}=0}^{\left[\begin{array}{c}
M-2 \tag{3}\\
M-1
\end{array}\right]} \frac{\left(x^{t-2 t_{1}+1} ; 2 t_{1}\right) x^{-2 t_{1}\left(t-t_{1}\right)}}{\left(x ; t_{1}\right)} \prod_{n=2}^{M-2} T_{n, \mu}
$$

Received June 3, 1958.
where

$$
T_{n, M}=\sum_{t_{n}=0}^{\left[\frac{M-n-1}{M-n} t_{n-1}\right]} \frac{\left(x^{t_{n-1}-2 t_{n}+1} ; 2 t_{n}\right) x^{-2 t_{n}\left(t_{n-1}-t_{n}\right)}}{\left(x ; t_{n}\right)\left(x^{t_{n-2}-2 t_{n-1}+1} ; t_{n}\right)} \quad M \geq 2,
$$

$[a]$ denoting the integral part of a.
Alder in his paper [1] states that the polynomials $G_{M, t}(x)$ do not seem to possess any striking properties, even for small values of M and t. In the present note, using a simple recurrence relation, I prove beside other results the interesting property that

$$
G_{M, t}(x)=x^{t}, \quad t \leq(M-1)
$$

The form (3) is not very suitable for the actual computation of the polynomials $G_{M, L}(x)$ for particular values of M and t since certain factor have to be cancelled each time. Therefore, moving into the following series the factor $\left(x^{t-2 t_{1}+1} ; t_{1}\right)$ from the first series and the factor $\left(x^{t_{n-1}-2 t_{n}+1} ; t_{n}\right)$ from each of the $T_{n, u}$ series in (3), we put $G_{M, t}(x)$ in the form

$$
G_{M, t}(x)=x^{t^{t^{2}}} \sum_{t_{1}=0}^{\left[\begin{array}{l}
M-2 \tag{4}\\
t_{1}
\end{array}\right]} \frac{\left(x^{t-t_{1}+1} ; t_{1}\right) x^{-2 t_{1}\left(t-t_{1}\right)}}{\left(x ; t_{1}\right)} \prod_{n=2}^{M-1} \bar{T}_{n, M} .
$$

where

$$
\begin{align*}
\bar{T}_{n, M}= & \sum_{\left.{ }_{M}=\frac{M-n-1}{}{ }^{M} t_{n-1}\right]} \frac{\left(x^{t_{n-1}{ }_{n} t_{n}+1} ; t_{n}\right) x^{-2 t_{n}\left(t_{n-1}-t_{n}\right)}}{\left(x ; t_{n}\right)} \tag{5}\\
& \times\left(x^{t_{r-2}-2 t_{n-1}+t_{n}+1} ; t_{n-1}-t_{n}\right) .
\end{align*}
$$

Now if we put

$$
\begin{equation*}
g_{A, t}(N, x)=\prod_{n=1}^{M-1} \bar{T}_{n, \Delta L} \quad\left(\text { where } t_{-1} \equiv N\right) \tag{6}
\end{equation*}
$$

then, since

$$
\begin{align*}
g_{M, t}(N, x)= & \sum_{t_{1}=0}^{\left[\begin{array}{c}
M=-2 \\
\hline=1
\end{array}\right]} \frac{\left(x^{t-t_{1}+1} ; t_{1}\right)\left(x^{N-2 t+t_{1}+1} ; t-t_{1}\right)}{\left(x ; t_{1}\right)} \tag{7}\\
& \times x^{-2 t_{1}\left(t-t_{1}\right)} g_{M-1, t_{1}}(t, x),
\end{align*}
$$

it is easily seen by induction that for $t \leq M-1$, we have

$$
\begin{equation*}
g_{A+1, t}(N, x)-g_{A,, t}(N, x)=0 \tag{8}
\end{equation*}
$$

because

$$
\left[\begin{array}{l}
M-2 \tag{9}\\
M-1
\end{array}\right]+1>\left[\begin{array}{c}
M-1 \\
M
\end{array} t\right] \quad t \leq M-1
$$

From (4) we have

$$
\begin{gather*}
G_{M+1, t}(x)-G_{M, t}(x) \\
=x^{t^{2}} \sum_{\sum_{t=0}^{[M-2}\left[\begin{array}{c}
M-2 \\
M-1
\end{array}\right]} \frac{\left(x^{t-t_{1}+1} ; t_{1}\right) x^{-2 t_{1}\left(t-t_{1}\right)}}{\left(x ; t_{1}\right)}\left\{g_{M, t_{1}}(t, x)-g_{M-1, t_{1}}(t, x)\right\} \tag{10}\\
+\sum_{t_{1}=\left[\begin{array}{l}
M N-2 \\
M-1
\end{array}\right]+1}^{M-1} \frac{\left(x^{t-t_{1}+1} ; t_{1}\right) x^{-2 t_{1}\left(t-t_{1}\right)}}{\left(x ; t_{1}\right)} g_{M, t_{1}}(t, x) .
\end{gather*}
$$

Hence from (8) and (9) it follows that, for $t \leq M-1$,

$$
G_{M, t}(x)=G_{M+1, t}(x)
$$

that is,

$$
G_{M, t}(x)=G_{M+1, t}(x)=\cdots=G_{\infty, t}(x), \quad t \leq M-1
$$

Now, for $k=1$ and $M \rightarrow \infty$, (1) gives

$$
\frac{1}{\prod_{n=1}^{\infty}\left(1-x^{n}\right)}=\sum_{t=0}^{\infty} \frac{G_{\infty, t}(x)}{(x ; t)}
$$

whence $G_{\infty, t}(x)=x^{t}$, so that we finally get

$$
\begin{equation*}
G_{M, t}(x)=x^{t} \quad t \leq M-1 \tag{11}
\end{equation*}
$$

(10) can be further used for the computation of polynomials $G_{M, t}(x)$ as follows.

We first find the general form for $G_{\mu, u}(x)$.
From (10) we have

$$
\begin{equation*}
G_{M+1, M}(x)-G_{M, M}(x)=x_{M} x^{-2(M-1)} g_{M, M-1}(M, x), \tag{12}
\end{equation*}
$$

where $x_{n} \equiv\left(1-x^{n}\right) /(1-x)$ for all n.
From (7) we find

$$
\begin{equation*}
g_{M, M-1}(M, x)=(x ; M-1) x^{-(M-1)(M-2)} . \tag{13}
\end{equation*}
$$

Using (13) in (12) we get

$$
\begin{equation*}
G_{M, M}(x)=x^{M}\left\{1-\left(x^{2} ; M-1\right)\right\} \tag{14}
\end{equation*}
$$

since $G_{M+1, M}(x)=x^{M}$. Thus, for example,

$$
G_{5,5}(x)=x^{7}+x^{8}+x^{9}-x^{11}-2 x^{12}-x^{13}+x^{15}+x^{16}+x^{17}-x^{19} .
$$

More generally, taking $t=M+r$ in (7), since

$$
\left[\frac{M^{2}+(r-2) M-2 r}{M-1}\right]=M+r-2 \quad r \leq M-2,
$$

and

$$
\left[\frac{M^{2}+(r-1) M-r}{M}\right]=M+r-2 \quad 0<r \leq M
$$

we easily get

$$
\begin{equation*}
=\prod_{n=1}^{r} \bar{T}_{n, M}\left\{g_{M-r+1, M-r}\left(t_{r-1}, x\right)-g_{M-r, M-r}\left(t_{r-1}, x\right)\right\} \quad 0>r \leq M-2, \tag{15}
\end{equation*}
$$

where, in $\bar{T}_{n, \Delta}, t=M+r$ and $t_{r}=M-r$. Thus for $t \leq 2 M-2(t \neq M)$ the second sum on the right of (10) does not exist and we may successively establish the general form of the polynomials $G_{M, t}(x)$ for $M<t \leq$ $2(M-1)$. We thus find that

$$
G_{M+1, M+1}(x)-G_{M, M+1}(x)=x^{M+3}\left(x^{3} ; M-1\right) x_{2} \quad M \geq 3,
$$

so that, using (14), we get

$$
G_{M, M+1}(x)=x^{M+1}\left\{1-\left(x^{3} ; M-1\right)\left(1+x^{3}\right)\right\} \quad M \geq 3 .
$$

Similarly

$$
\begin{array}{ll}
G_{M, M+2}(x)=x^{M+2}\left\{1-\left(x^{4} ; M-1\right)\left(1+x^{4} \cdot x_{2}\right)\right\} & M \geq 4, \\
G_{M, M+3}(x)=x^{M+3}\left\{1-\left(x^{5} ; M-1\right)\left(1+x^{5} \cdot x_{3}\right)\right\} & M \geq 5,
\end{array}
$$

The above values of the polynomials $G_{A, t}(x)$ suggest that probably,

$$
\begin{equation*}
G_{M, t}(x)=x^{t}\left\{1-\left(x^{t-M+2} ; M-1\right)\left(1+x^{t-M+2} \cdot x_{t-\mu}\right)\right\}, \tag{16}
\end{equation*}
$$

for

$$
t \leq 2(M-1)
$$

But I have not been able to verify the truth of this conjecture directly.
However, I intend to investigate these interesting polynomials more thoroughly in a future communication.

I am grateful to Dr. R. P. Agarwal for his kind help in the preparation of this note.

References

1. H. L. Alder Generalizations of the Rogers-Ramanujan identities, Pacific J. Math. 4 (1954), 161-168.
2. V. N. Singh, Certain generalized hypergeometric identities of the Rogers-Ramanujan type, Pacific J. Math. 7 (1957), 1011-1014.
3. , Certain generalized hypergeometric identities of the Rogers-Ramanujan type (II), Pacific J. Math. 7 (1957), 1691-99.

Lucknow University

