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Introduction, The solution of the boundary value problems of
potential theory can be reduced, according to Poincare, to an inhomo-
geneous integral equation of the second kind. It was the study of this
particular problem which led, at the beginning of this century, to the
development of the modern integral equation theory at the hands of
Fredholm and Hubert. From the beginning, attention was drawn to the
eigen value problem for the homogeneous integral equation with the
potential theoretical kernel [10]. The eigen functions of this problem
can be extended as harmonic functions into the domain considered as
well as extended into the complementary domain and give rise to interest-
ing series developments and to a theory relating solutions of the interior
and exterior boundary value problems of a closed curve or surface.

In a preceding paper [17], these Fredholm eigen functions were
applied to problems of conformal mapping of simply-connected plane
domains. Their connection with the dielectric Green's function of such
domains was discussed and we showed the possibility of obtaining univalent
functions by means of the dielectric Green's function. A variational
formula for the Fredholm eigen values was established and an extremum
problem for the latter was solved which permitted one to estimate the
convergence of the Neumann-Liouville series solving the Dirichlet and
Neumann boundary value problems.

In the present paper, the Fredholm eigen value problem is studied
in the case of multiply-connected plane domains. Various new difficulties
arise in this case. The complementary region of a multiply-connected
domain is a domain set and the number of trivial solutions of the problem
with the eigen values | λ | = 1 increases. This fact necessitates a brief
restatement of the basic definitions and concepts in § 1. A certain re-
petition and overlap of material with the preceding paper could not be
avoided but, on the other hand, the presentation of this section makes
the paper self-contained and should facilitate the understanding of it.

In § 2, the dielectric Green's functions gz(z, ζ) of a multiply-connected
domain are discussed and their Fourier development in terms of the
Fredholm eigen functions is given. The functions g, are of geometric-
physical significance by themselves moreover, they represent a one-
parameter (0 < ε < co) family of harmonic positive-definite kernels which

Received October 1, 1958. Prepared under contract Nonr-225 (11) for Office of Naval
Research.

211



212 M. SCHIFFER

have also the Fredholm functions as eigen functions. For ε — 1, g2(z, ζ)
reduces to the fundamental singularity — log | z — ζ \ and leads to the
classical kernel of potential theory. A power series development of the
dielectric Green's function in terms of (ε — l)/(ε + 1) is given the coef-
ficient kernels are elementary and can be calculated explicitly by integra-
tion of simple functions over the boundary curve system.

The role of the one-parameter family g2{z, ζ) becomes particularly
interesting when one studies the limit cases ε = 0 and ε = oo. This is
done in § 3. It appears that this function family interpolates between
two well-known harmonic functions which determine two important
canonical mappings of the domain considered namely the radial-slit
mapping and the circular-slit mapping.

In § 4 it is proved that not only the limit cases ε = 0 and ε — CΌ
of gs(z, C) give rise to univalent functions in the domain but that each
dielectric Green's function does so. We obtain one-parameter families of
univalent functions which connect the radial-slit mapping function con-
tinuously with the circular-slit mapping function via any prescribed
univalent function in the domain. This result is applied to give a new
proof for the extremum properties which characterize the above two
canonical slit mappings. Another type of one-parameter sets of univalent
functions is constructed which interpolates between the canonical parallel-
slit mappings.

In § 5, we use the dielectric Green's functions in order to define
various norms and scalar products. These are quadratic and bilinear
functional defined for harmonic functions in the multiply-connected
domain D as well as for functions harmonic in the complementary domain
set D. If one pair of argument functions is defined in D, the other
pair in D, and if relations between their boundary values on the separating
curve system are assumed, equations between the various scalar products
are obtained. It is shown that these identities yield estimates and Ritz
procedures for solution of boundary value problems in D if the corre-
sponding boundary value problems for the complementary set D are
already solved. In the special case ε = 1 the procedure becomes, of
course, particularly easy to apply since the dielectric Green's function
becomes trivial. It has, indeed, already been used in this form in order
to prove interesting isoperimetric inequalities for polarization and for
virtual mass [18-20]. The extension of the method to the case of general
ε should increase its flexibility and clarify its significance. The various
quadratic forms are used, finally, in order to characterize each Fredholm
eigen value \λ \ > 1 by the solution of a simple maximum problem without
side conditions. This result lays the groundwork for proving the varia-
tional formula for the Fredholm eigen values in the next section. The
extremum definition is also used in order to prove that all positive
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Fredholm eigen values of a subsystem of curves are never less than the
corresponding positive eigen values of the full curve system.

In § 6, we derive the variational formula for the dielectric Green's
functions under a small deformation of the domain. Through the
maximum definition of the Fredholm eigen values, we can derive from
this result also the variational formula for the Fredholm eigen values
under the same deformation, This formula could also have been obtained
immediately from the general perturbation theory of operators. But it
seems of methodological interest to utilize fully the maximum property
of each eigen value in order to give an elementary proof for this formula.

In order to avoid a discussion of possible degeneration of eigen values
it is convenient to deal with symmetric functions of all eigen values
and their variation, instead of considering individual eigen values. For
this purpose, we define in § 7 the Fredholm determinant of a domain
this concept is rather natural when one comes from the general theory
of integral equations. The variational formula for the Fredholm deter-
minant is easily expressed in terms of a complex kernal closely connected
with the dielectric Green's function which possesses, moreover, as limit
case a kernel well-known in the theory of conformal mapping. Indeed,
the variation of the Fredholm determinant for the particular value 1 of
the argument is described by this classical kernel itself.

In § 8, at last, we apply the results of the preceding section in order
to solve an extremum problem for univalent functions in a multiply-
connected domain and involving the Fredholm determinant. This solution
gives a new proof for the possibility to map every domain conformally
onto a domain bounded by circumferences and characterizes this canonical
domain as an extremum domain of a simple variational problem. The
treatment of the variational problem for the Fredholm determinant seems
also of interest from the methodological point of view and for the
general theory of variations of domain functions. In general, one knows
from the theory of normal families that a solution of an extremum
problem for the family of functions, univalent in a given domain and
with specified normalization, does exist the method of variations has
only the task to characterize the extremum domain. In our present
problem, we had to restrict ourselves to univalent functions which are
analytic in the closed domain in order to be sure of the existence of
the Fredholm determinant. In this case, the theory of normal families
does not guarantee the existence of an extremum function of equal
character. We do not characterize, therefore, the extremum function by
our variations, but rather an extremum sequence within the function
class, considered. We prove from the very extremum property of the
sequence that its limit function does, indeed, belong to the same class
and has, moreover, certain characterizing properties. This procedure is
very general and may have numerous analogous applications,
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l The Fredholm eigen value problem. Let D be a domain in the
complex z-plane containing the point at infinity let its boundary C
consist of N closed curves C5 each of which is three times continuously
differentiate. We denote the interior of each C3 by Ό3 and the union
of the N domains D3 by D.

We define the kernel

(1) k(z, C) = - ^ log . - 1 - — ζeC
dnζ \z - C 1

where nζ denotes the normal of C at ζ pointing into D. It is well known
that, under our assumptions about C, the kernel k{z, ζ) is continuous in
both its arguments as long as they are restricted to C.

We want to discuss the eigen value problem

(2 ) φM = -M k(z, ζ)φv(ζ)dsζ , zeC
π Jo

which plays an important role in many boundary value problems of
potential theory with respect to the multiply-connected domain D. The
ψv(z) and the Λv are called the Fredholm eigen functions and the Fredholm
eigen values, respectively, of the curve system C. The study of the
Fredholm eigen value problem is facilitated by the fact that the kernel
k(z, C) is, for fixed ζ e C, defined and harmonic for all values z Φ ζ in
the complex plane. The integral in (2) represents, therefore, a harmonic
function in I) and a set of different harmonic functions in D. We shall
use the notation

( 3 ) M k(z, QΨM)dsζ = HZ) f 0 Γ * β D

Λv(2;) for z e D .

The set of harmonic functions /&v(#) and /&v(£) can be interpreted
as the potential due to a double layer of logarithmic charges, spread
along C with the density (Λv/π)je>v(C). Hence, the well known discontinuity
character of such potentials leads to the boundary relations at each point

( 4 ) lim hv(z) = (1 + λv)φv(z0) , lim /Γv(s) = (1 - λv)φv(zQ) ,

and

( 4') —& v (z 0 ) = — hv(zQ) ,
dn on

where n denotes the normal of C pointing into D.
The Fredholm eigen value problem may thus be formulated as the

following question of potential theory which is of interest by itself :
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To determine a harmonic function h in D and a set of harmonic functions
h in D which have equal normal derivatives and proportional boundary
values on CΊ. It is easily seen that the two problems are completely
equivalent and that the possible factors of proportionality in the second
problem are simple functions of the Fredholm eigen values λv.

Instead of the harmonic functions hv and hv, we may consider their
complex derivatives, i.e., the analytic functions

( 5 ) vv(z) = • jU v (s) , v,(z) = ^-k(z) .
dz dz

In view of definition (3) and by our assumption on C it can be asserted
that vv and vv are continuous in D + C and Ό + C, respectively. In
order to translate the relations (4) and (4') into terms involving vv and
vv, we use the parametric representation z — z(s) of C by means of the
arc length s and introduce

( 6 ) z> = f ,
as

the unit vector at z(s) in direction of the tangent of C. We can then
write (4) and (4') in the form

\ d z ) l - λ v I d z )

and combine these two equation into the one complex equation

8 ) V,(Z)Z' = - ΐ-- ίv(2)2' + i --^ —ί v (2)z' , Z = 2(8) .
X Λy -L Λy

Introducing (8) into the Cauchy identity. We obtain for ζ e D

9 ) v. (C) = — ί Vv(z±dz = λ±- -λ- f ^ 5 S
2πi J z - C 1 - Λv 2πΐ J z - C

(7 (7
(7

while the use of the equation conjugate to (8) leads to

(10) 1 <ί M?)dz) = A _ _L <f (M^M )̂_ r p D
2 i J z ζ l λ 2 i J z ζ '2 π i J z - ζ l-λv2πiJo z - ζ

Combining (9) and (10), we arrive thus at the following integral equation
for vv:

(11) t>v(C) = - ^

In the same way we prove the analogous equations
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(90 UO = A (

1 — λv 2πi J z —

and
(11') ίi (Γ\ — ^_ I \υvyZ)dz)

In all these formulas the integration over the curve system C has to
be performed in the positive sense with respect to D.

The line integrals in (9), (9') and (11), (11') can be transformed into
area integrals and the integral equations take the forms

(Λo\ *v ff vv{z) , ftfv(C) f o r ζeD

^ J J(« - O 2 ( ( 1 + A v )v v (c) f o r ζeD

a n d

(13) - k f f . J S ΰ ^ J t t - ' v M C ) f o r C e ΰ
7r J J (^ — ζy vΛC) for C G D .

In both integrals dr, denotes the area element with respect to the variable
z and the integrals have to be interpreted in the Cauchy principal sense
whenever they become improper.

The transformation

carries every ZΛintegrable function f(z) defined in the complex plane
E into a new function F(z) of the same class and with the same norm :

(15) JJ I f W d r = jj \f(z)\*dτ.
E B

This functional transformation plays a role in many problems of function
theory [1,3,4] and is called the " Hubert integral transformation".
The integral equations (12) and (13) show the close connection between
the theories of the Fredholm eigen functions and of the Hubert transforms
of analytic functions.

We introduce next the Green's functions of the domain D and of

the set of domains D. While the Green's function g(z, ζ) of D is defined

as usual, the Green's function g(z, ζ) of D is given by the equation

(16) 9(z,ζ)=\
(0 for ze D3ζe
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Here, gό{z, ζ) is the usual Green's function of the domain Dj. By complex
differentiation, we derive from g(z, ζ) the analytic function

(17) L{z, ζ) = - 2 ?-g(z, C) = -~-^ - Hz, 0
-re dzdζ π(z — ζ)"

The kernels L(z, ζ) and l(z, ζ) are well known in the case that D is a
domain [3, 16]. We observe that our generalized kernel l(z, ζ) still
preserves the following important property : If f(z) is regular analytic
in D, then

(18) -1- \\ί

f{z)^dτ= \\l(z,Of(*)dτ.
π JJ(2 - ζy JJ

In fact, if ζ e D3 then l(z, ζ) = lj(z, ζ) for z e Dj and l(z, ζ) = [π(z - C)2]"1

for z e Dly I Φ j . The identity (18) follows, therefore, directly from the
corresponding property of the kernel lj(z, ζ).

In particular, we may formulate the integral equations (12) and (13)
for vv(z) and v,(z) as follows :

(19) λv J j l(z, ζfiMdτ = vv(c) , ζeD
DD

and

(20) -

From the symmetry of the kernels l(z, ζ) and ϊ(z, ζ) we can conclude

(21) ttVvvμdτ = 0 if

(21') (f vv^c?r = 0 if Λv ̂  ,}μ .

Thus, using a familiar argument from theory of integral equation we
may assume that any pair of different eigen functions vv, v^ (or 5V. Vμ)
are orthogonal upon each other :

(21") f U v V ^ = 0 f ί vjΰμflτ = 0 for v Φ μ .

There remains the question of normalizing the vv and the vv. We
have obviously the free choice of a real multiplicator in the definition
of vv however, this choice will already determine the function vv in a
unique way, for example through equation (12), The relation between
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the norms of vv and vv is best understood by returning to the harmonic

functions h^(z) and h,(z) and to their boundary relations (4) and (4'). In

fact, we have

(22) (fI v, \2dτ = A f f I
JJ 4 JJ

D D

?dτ = - λ
4 J Θn

G

4 1 - ^v J ^ Λv - 1
G

We can conclude first from (22) that

(23) μ v 1 > 1 .

Let us consider the limit cases λv = ± 1 . For λv = 1 we have necessarily
$v(z) = 0 the second equation (7) yields

(24) 3 { v , ( z ) z ' } = 0 f o r ^ e C ,

Thus, the eigen function vv(z) is a real differential for each component
domain Djm But a simply-connected domain Dj cannot have such real
differentials hence also vv{z) = 0. Thus, as far as the integral equation
for vv and vv are concerned, λv = 1 cannot occur as an eigen value.
The situation is, however, different when we return to the original
integral equation (2) and to the harmonic functions hv and hv. To λv = 1
must correspond

(25) hv{z) = 2cj in Ό5 , hv{z) = 0

and

(25') φ,(z) - Cj on C, .

In fact, it is immediately verified that for arbitrary choice of the con-
stants Cj the function φ(z) = c5 on C3 is a solution of the Fredholm eigen
value problem (2) to the eigen value λv = 1. There exist thus N linearly
independent solutions of (2) to the eigen value λ = 1. These solutions
disappear when we replace the original integral equation (2) by the
integral equations for vv and Φv, say, by (12) and (13). It is easy to
show that the eigen value λ — 1 is the only one lost m this transition.

We consider next the case λv = — 1. We conclude now from (22)
that vv(z) ΞΞ 0. We find therefore, in view of (8)

(26) 3 R ( Φ ' } = 0 for zeC ,

i.e., vv(z) is a real differential of D. There are N—l linearly independent

differentials of this type in D and we can construct a basis for them

as follows. Let ωό{z) be harmonic in D and satisfy on C the boundary

condition
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(27) ωj(z) = dn f o r z e d .

ω^z) is called the harmonic measure of Cj with respect to z of D.
Clearly, each function

(28) w,{z) = idp
oz

is a real differential in I). Since Xf=1 ω3 = 1, we have Σί=i Wj(%) — 0'
But it is easily seen that apart from this relation no other linear condition
between the wΛ does exist. Thus, we can select any N — 1 of the wά(z)
as a basis for all real differentials in D.

It is clear that each real differential in D satisfies indeed the integral
equations (12) and (13). However, there exists no corresponding single
valued harmonic function hυ(z) connected with the original Fredholm
equation (2) which has this real differential as its complex derivative.
Indeed, in view of (26) such function would have to satisfy the boundary
condition

(29) ^ - E Ξ O on C
dn

which admits only the solution \v = const, and could not lead to a non-
vanishing differential. Thus, while we lost in the transition to (12) and
(13) the N eigen functions to the eigen value λ = + 1, we have obtained
N — 1 new eigen functions to the eigen value λ = — 1 which have no
counterpart in the original Fredholm equation.

After discussing the exceptional cases <lv = ± 1, we consider now
the eigen functions vv(z) and vv(z) which belong to eigen values | λv \ > 1.
Each such pair is obtained by complex differentiation from a pair of
harmonic functions h,(z), hy(z) connected with the original Fredholm
problem. Since hv(z) is harmonic in each of the simply-connected domains
Dj} it can be completed to a set of single-valued analytic functions in
the set of domains D5 :

(30) Vv(z) = hv{z) + %K{z) .

Similarly, we may complete hv in D and define

(31) Fv(z) = K(z) + ϊkv(z) .

From the boundary conditions (4) and (4') and from the Cauchy-Riemann
equations we derive the boundary conditions for the kv:

(32) K{z) - h(z), ®-K{z) = J - + A ~θ-fcv(s) , * e C .
dn 1 — /?v dn
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Equations (32) guarantee that kv(z) is single-valued in D since kv(z)
is single-valued in each Dό. We may characterize the single-valued
analytic functions Vv(z) and Vv(z) as follows: Their real parts have
equal normal derivatives on C while their boundary values are propor-
tional in the ratio (1 + Λv)/(1 — λv). Their imaginary parts are equal on
C but their normal derivatives are proportional with the same ratio.

Let us write k[Ό = (1 — λv)ky and fc(

v

υ = (1 + λv)kv we have on C

(32') k«\k\z) j f c ^ ^
1 + Λv ^^ dn

Thus, k[1} and fc£υ may be conceived as a pair of /^-functions belonging
to eigen functions of the Fredholm problem (2) with the eigen value
— λv. With each eigen value λv with | λv | > 1 there occurs also its
negative — λv as an eigen value. Their corresponding /^-functions are,
up to a factor, conjugate harmonic functions.

Finally, we introduce the analytic functions

(33) uv{z) = Vλv — 1 vv(z), uv{z) = i-\/λv + lvv(z) .

By virtue of (21") and (22), we may assume that these functions form

orthonormalized sets in D and D that is

(34) 11 ujΰμdτ = (5vμ, \ I uvuμdτ = δvμ .
Ώ

 D

Since the ^-functions will be frequently used in this paper, we note
here some formulas which follow immediately from the corresponding
results for the v-ίunctions. From (8) we derive the boundary relation

(35) u*{z)z' = --φ_- u,{z)z' - -?_ψ -- (uχz)z') .
λ 1 V Λv 1

Equations (9), (9') and (11), (11') take on the form

( 3 6 ) ^ £(uAz± = [iV% ~ lttv(C) for ζeD
2πi J z - ζ I _ ύv(ζ) for ζeD.

and

(37) _A_ Γ _ ( M ? ) = pv(C) for ζeD
2 π i J z - ζ I _ i - ] / l ζ ^ ' Γ u v ( ζ ) f o r ζ e D .

From their connection with the Fredholm integral equation it can be
shown that the uv(z) form a complete system of analytic functions in D,
in the sense that every function f(z) which is analytic in D and for

which i l l / \2dτ < cx> can be represented in the form
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(38) f{z) = £ a,u,(z), a, = j J fΰ,dτ .
ϋ

The series converges uniformly in each closed subdomain of D. In the

same sense, the functions uv(z) form a complete orthonormal system

within the class of all functions which are analytic in D, have a finite

norm in D and possess a finite single-valued integral in this multiply-

connected domain. If we add to the (άv}-set any N — 1 linearly indepen-

dent real differentials of D we obtain a complete system for all analytic

functions in D with finite norm and vanishing at infinity [3, 21].

2. The dielectric Green's function. The theory of the Green's func-
tion of the domain D is connected with the electrostatic problem of a
point charge at a source point ζ in the presence of the system of ground-
ed conductors Cj. We may consider also the problem to determine the
electrostatic potential induced by the same point charge at ζ in the
presence of N isotropic dielectric media which are spread over the domains
Dj and have the dielectric constant ε. The corresponding potential g2{z, ζ)
will now be defined in D as well as in D and will be characterized by
the following properties :

(a) gs(z, C) is a harmonic function of z in D and in Ό, except for
z — C and for z = co.

(b) If C e D, the function g2(z, ζ) + log \z — ζ\ is harmonic at ζ.
(b') It ζ 6 D, the function g2(zt ζ) + ε log \z — ζ \ is harmonic at ζ.
(c) 08(2, C) is continuous through C.

(d) / g,(z, C) + ε-tgs(z, C) = 0 for z e C, C in D or in D.
dnz dnz

(e) gz(z, C) + log | z | -• 0 as z -> oo for C fixed.
If such a function #2(£, C) exists it must be unique and symmetric

in its two arguments, as is shown by the standard argument of potential
theory based on the second Green's identity. In order to construct the
Green's function, we set it up in the form

( 1 ) g9(z, C) = log . -±— + \ μ(rh ζ) log | η - Z \ dsη, ζ 6 D
\Z - ζ\ Jo

and try to determine μ(rj, ζ) in such a way that the above requirements
are fulfilled. We proceed analogously, if ζ e D only the singularity
term on the right side of (1) will now be — εlog \z ~ ζ \. By this formal
set up, we have already fulfilled conditions (a) to (c). Condition (e) is
satisfied if we require

/ o \ f /γi r \ j r ε — 1 f o r ζ e D

( 2 ) μ(V, ζ)dsη = J .
•!* 1 0 for C e ΰ .
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Finally, we can satisfy (d) by choosing the density function μ of the
line potential as solution of the integral equation

( 3 ) μ(z, C) + — - J — ( μ(η, QKη, z)dsη =
ε + 1 π JO

8 ~ 1 — fc(C, z) for C € D
ε + 1 π

6 + 1 π

Here k(ζ, z) is defined by equation (1.1). We observe that

k(ζ, z) for ζe D .

( 4 ) S k{η, z)dsz =
0

( 0 for η e D

π for η e C

2π for v e D .

Hence, if μ(z, ζ) is a solution of the integral equation (3) we may integrate
this equation with respect to z over C and verify that condition (2) is
fulfilled automatically. It is sufficient, therefore, to concentrate upon
the inhomogeneous integral equation (3).

For physical reasons, we shall assume ε > 0. In this case, we always
have

(30 ε - 1
e + 1

< 1

Since we showed in § 1 that all eigen values of the kernel k(z, ζ) have
absolute values > 1, it follows that integral equation (3) can always be
solved by the usual process of iteration and that the solution can be
represented by a Liouville-Neumann series. The convergence of this
series will be the better, the nearer ε will be to 1. We observe that

( 5 ) gγ(z, C) = log T-

is trivially known.
The function

( 6 ) 7-ε(S, C) = 0ε(S, O ~ log
z- C

is (for C € D or for ζ e D) a regular harmonic function of z in D, vanishes
if z tends to infinity and possesses a single-valued conjugate harmonic
function in _D. This last fact follows from the boundary condition (d) on
the dielectric Green's function and the fact that each complementary
domain Dό is simply-connected. Let Σ be the class of all functions
h(s) which are harmonic in D, vanish at infinity and have a single-valued
conjugate harmonic function. It is easy to show that the harmonic
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functions hv(s) which belong to eigen values | λv \ > 1 of the Fredholm

problem in § 1 form a basis in the linear space 2 By virtue of (1.5)

and (1.21'), we have

( 7 ) j ( VΛV VΛμdr = 43tjf J$M5μdr} = 0 for v Φ μ .
D D

By a trivial renormalization we can then achieve that

( 8 ) ff VΛv VΛμdr = 5Vμ .
D

We wish now to develop γξ(z, ζ) in terms of the complete orthonormal

set {K}. In order to determine the Fourier coefficients or rε(z, C), we

consider the Dirichlet integrals

J J g s f e C) VΛv(«)drf .

We integrate first by parts with respect to 08(z, ζ) and use the continuity

of this function across C as well as the relation (1.4') for the normal

derivatives of hv and hv on C. We find

(10) iv(C) - 0 .

Next, we integrate by parts with respect to hv(z) and hv(z) we use
(1.4) and the condition (d) on gs(z, ζ). We obtain the equations

(11) j \ ( ζ ) - 2πeK(ζ) ~ ( 1 + ε P v ) \ d g φ ^ > h v ( z ) d s z f o r C e ΰ
jo dnz

and

(11') iv(C) = Zπhίζ) - X + ε ^ f dg4Z^hv(z)dsz for C € ΰ .
β|θv J o dnz

Here, we have introduced the abbreviation

(12) P, = - ^ t |

this simple function of λv will occur frequently in our developments.
From (10), (11) and (11') we deduce immediately

(13) [ [ v g 8 ( z , ζ ) - V h ( z ) d τ z = - - 2 π ε — h v ( ζ ) f o r ζ e D
J J 1 + spv

D

and
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(130 (\ V</ε(z, C) VK(z)dτz = 2 ^ Λv(C) for C e ΰ .
JJ 1 + ε p v

When we specialize ε = 1, we obtain because of (5) the values of
the left-hand integrals with gs replaced by log 1/1« — C l Hence, we
obtain finally by subtraction

(14) f f
JJ f o r

and

(140 ((vίβ(«, ζ)vh(z)dτz = τΓ? (-SτZ"-T ^ f o r

JJ (l+p)(l + fif>)

Having expressed by (14) and (140 the Fourier coefficients of γ2(z, C)

with respect to the complete orthonormal system in Σ , we obtain thus

the two series development for z e D

(15) * ( , . O - l o , Γ J 4 - C , + 2»(1 - . ^ g - ^ f e f f l - j for c β D

(16) ,.(,, 0 = h j j ^ j + 2* - DΣ(1 fϊ§f^ to C β ΰ .

Both series converge uniformly in each closed subdomain of D.
We wish next to expand analogously gz{z, ζ) for z e D in terms of

the functions h*(z). By (1.4), (1.4') and the normalization (8), we have

(17) jjvλv V M r = /°Aμ.
D

Let COJ(Z) and g(z, oo) denote again the i-th harmonic measure and the

Green's function with pole at infinity of 2λ We clearly have

(18) ( h^ds = 0, \ K*&> m)ds = o .
Jtf 9 ^ Jo du

Indeed, because of (1.4) these linear conditions are equivalent to those

with h, and these in turn follow from the fact that all hv have single-

valued harmonic conjugates in D and that they all vanish at infinity.
Let Σ be the linear space of functions h(z) which are regular

hamonic in D and which satisfy the N linear conditions (18). Observe
that Σ does not contain any function hQ(z) which has a constant value
Cj in each Dj9 except for ho(z) = 0. Indeed, the conditions (18) would
yield for such a function hQ(z)

(180 Σ
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where

(18") J>,, = M 8pds

denotes the period matrix connected with the harmonic measures. But
the first system of linear equations (18') implies clearly [5, 15] cλ — c% =
. . . — cN — c and the last equation yields

\ JL U } is y CD A\ v-*-5 I O \J .

Thus, only the trivial function hQ(z) = 0 of this type lies in y,
From this fact and the considerations of § 1, it follows that the

functions {p\/2K(z)} form a complete orthonormal set in Σ The function
γ2(z, C) lies in Σ if ζ e D this follows at once from the conditions (c),
(d) and (e) on the dielectric Green's function. If ζ e D, it is seen that
Γεfo C) + (1 — e)g(z, ζ) lies in Σ where g{z, ζ) is the Green's function of
D defined by (1.16). The Fourier coefficients of γs(z, ζ) are easily
determined from (9), (10), (13) and (13'). Observe that for ζ e Dj

(20) \Wg(z, ζ) VK(z)dτz = - ( d-/^g(z, ζ)dsz = 0\ \vg(z, C) VK(z)dτz = - \ dh-^
J J JC dn

D J

such that the correction term (1 — e)g(z, ζ) does not affect the Fourier
coefficients at all. We find without difficulty

(21) gs(z, C) = log --1- + (s - l)g(z, ζ)

f o r ζ e D

(22) g,(z, C) - log X + 2π(l - ε) ± * 2 ^ ξ L for Cef l .
U - Cl ^=1(1 + i°v)(l + ε/ov)

These series also converge uniformly in each closed subdomain of D.
Equation (22) could have been derived from (15) and the property of
symmetry of the dielectric Green's function in dependence of its two
arguments.

The various series developments for gs(z, ζ) given so far are of
theoretical interest and allow the derivation of numerous identities.
They help little in the actual determination of the dielectric Green's
function of a given domain since we know all Fredholm eigen functions
and eigen values only in very few cases. In order to utilize the preceding
formulas for actual calculations, we have to add the following considera-
tions.

From the definition of the dielectric Green's functions and from
Green's identity, one can derive the identity
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(23) -UfVflΦ, C) Vflrβ(s, 7>)dτ, +\\vge(z, ζ) Vgβ(z, v)dτz = 2πg2(ζ, rj) .

Interchanging ε and e in (23) and subtracting the new identitity, we
obtain

(24) 2π[</ε(C, 7) - Λ(C, 7)]

In particular, passing to the limit e —> ε, we find

(25) Aflr,(ί, 7) = * > J j
X)

We introduce the expression

<26) r(c " = k ί j ( v - I o κ r c1 v

which is a " geometric " functional of Z>, i.e., can be calculated from
elementary functions by a simple process of integration and not by solving
any boundary value problem of potential theory. Passing in (25) to the
limit ε — 1, we find in view of (5)

(27) -|-</ε(C, = Γ(ζ,

On the other hand, we can calculate this same ε-derivative directly from
formulas (15), (16) and (21). Comparing results, we obtain

(28) Γ(ζ,τ])=-2π± A L W I L for ζ,VeD
v-i (l + pvy

(28') Γ(C, ^ ) - 2 τ r Σ ^ A ( Q M ^ f o r ζeD,ηeϊ)
v-ι (l + pvf

(28") Γ(C, η) - <7(C, 7) + 2π Σ ^ ^ 1 for C ^ ί ) .

The fact that these particular series in the ^-functions have relatively
elementary sums is of considerable interest. It leads to series develop-
ments for the dielectric Green's functions in terms of geometric expres-
sions.

Let us define recursively

(29) Γ<">(2, C) = I- \ [(v,Γί-«(7, z) • An log r -- T T V,, Γ « Ξ Γ .

Using equations (9), (10) and the Fourier formulas (13), (13'), we derive
the series developments
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(30) Γ<">(3, ζ) = -2π v. W*QMO f o r

' K ' - (l + θ)"+ 1

(31) Γ")(2, C) = 2.π v P-hίΦ iζ) f ze ϊ),ζe b

(32) ΓW(«,C) = flf(2,C) + 2 ^ Σ -
>

We return now to the formulas (15), (16) and (21) for #ε(2:, £). We
use the series development

(33) A - 1 . = 2 Y, ( i - iy+ 1..(1 _Γ. Λ)! = _ 2 . _ y (A 1 J Γ J
1 + ε̂ v *=oVs + 1 / (1 + iθv)

fc+1 1 - pv fco\i, 1 + e

which converges absolutely since ε > 0 and \λv\ > 1. We insert this
series into the above formulas for g2(z, ζ) interchanging the order of
summation, we obtain in each case the representation :

(34) g,(z, 0 - log X + Σ (£ ~]TlM}izy ζ) .
z —

The kernels Mk(z, ζ) are defined as follows :

(35) Mk(z, C) = - 4 π ± ^ ' ~ ^ k ( z ) h y ( ζ ) f o r zeb,ζeϊ)

(36) Mk(z, C) - - 4π v A - . POVV / , v ( ^μ v ( c ) f o r ^ e J9, C e ΰ
V-l ( 1 + /> v)^+-

(37) Mk(z,ζ)=:2g(zyζ) + Aπ± & ~ ^ + Λ ( * ) M 0 for z e D, ζ e D.

By use of the geometric terms (30), (31) and (32), we can express Mk(z, ζ)
in a uniform way, independently of the location of their arguments.
We find

(38) Mk{z, C) = Σ ( - l ^ W ^ Γ C * - ^ ^ c ) .

Formulas (34) and (38) allow a series development for all dielectric
Green's functions in the entire plane in terms of the known iterated
Dirichlet integrals /τ(w)(£, ζ). They are closely related to similar develop-
ments for the classical Green's function of a multiply-connected domain
in terms of geometric expressions [3, 21]. The formulas are convenient
for I ε — 1 I small. Observe also that the geometrical terms Mk(z, ζ) are
independent of ε and may be defined as the coefficients of the Taylor's
series for gs(z, ζ) in terms of (ε — l)/(ε + 1).
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3Φ Limit values of the dielectric Green's function. From the series
developments for the dielectric Green's function, given in the preceding
section, we can determine the limit values of gB(z, ζ) as ε converges to
zero or to infinity. For this purpose, we have to introduce additional
functions of the classes Σ and Σ a n d to develop them into series of
the h-ίunctions.

(a) We suppose ζ e D and consider the analytic function φ(z, ζ) of

z in D which has a simple pole at z = ζ, vanishes at infinity such that

(1) limzφ(z,ζ) = l

and which maps D in a one-to-one manner upon the complex plane slit
along concentric circular arcs around the origin. These requirements
determine φ(z, C) in a unique way.

Let now

(2) G(s,C) = log|?(s,C)|.

The function G(z, ζ) + log | z — ζ \ is harmonic in D, has a single-valued

harmonic conjugate there and vanishes as | z | -> oo. Hence, this function

lies in the class Σ .

We can construct G(z, ζ) explicitly in terms of the Green's function

g(z, C) of D. In fact, it is evident that

(3) G(z, C) = g(z, C) - g(z, oo) - g(ζ, go) + f

- Σ Oijjlω^z) - ω3{co)){ωΊc{ζ) - ωfc(oo)) ,

with

(3 f) r = \im(g(z, o o ) - l o g 12 I) .

The coefficient matrix ajΐc has to be chosen in such a way as to make

the conjugate of G single-valued along each boundary curve Ct. Hence.

we obtain for it the linear equations

( 4 ) ωτ(ζ) - o)i(co) = Σ ajJcPjilωΛO - ωΛ(co)]

where the pn are the elements of the period matrix defined in (2.18").
Hence, we conclude

i.e., the ^-matrix is the inverse of the period matrix of rank N — 1,
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We can develop G(z, ζ) + log | z — ζ | in terms of the complete

orthonormal system {hv} in Σ Since G(z, C) takes on each curve Cx a

constant boundary value

( 6 ) G(z, C) = c,(C) f o r z eCt,ζeD ,

we have

( 7 ) (\vG(z, C) Vh(z)dτ, = Σ ct(ζ)\ d^ds = 0 .

Thus, combining (7) with (2.130 for ε = 1, we obtain

( 8 ) \\v[G(z C) + log \z - C I] VΛv(s)dr. - - ^ k(ζ) .
JJ 1 4- pv

Consequently, we arrive at the following series development for G(z,ζ):

( 9 ) G(z, C) = log . - 1 -r -2π± -&- Mz)k(ζ) .
1 z - ζ I v-i l + pv

We may now cast (2.16) into the form

(10) g,(z, C) - G(z, C) - 2π ± ε M± M^)i(C) .
-i 1 + εpv

We recognize, in particular, that

(11) lim gt(z, C) - G(z, C) .

Thus, the logarithm of the important canonical map function φ(z, ζ) is
closely related to the limit of the dielectric Green's function as ε—>0.

Let next ψ(z, ζ) be analytic for z e Ό except for a simple pole at

z — ζ e I), vanish at infinity such that

(Γ) lim #(z,C) = l

and map D univalently onto the entire plane slit along rectilinear segments

which are all directed towards the origin. ψ(z, ζ) is uniquely determined

and might be constructed explicitly in terms of the Neumann's function

of D.

Let

(12) iV(z,C) = log|0(z,C)i.

Obviously, the function N(z, ζ) + log \z — ζ\ lies in the class X Since

N(z, C) has, by its definition, vanishing normal derivatives on C, we have
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(13) j JVN(Z, C) v£ v(z)c^ =

t h e r e f o r e , in v i e w of (2.13') fo r ε = 1

(14) ( ί V[JV(z, C) + log \z - C I] Vhv(z)dτz = ^ 2 π

JJ 1 +

Thus, we arrive at the series development

(15) N(z, C) - log Γ - ί + 2π Σ — |

1 —M2)

We can transform (2.16) into

(16) N(z, C) - flre(z, 0 = Σ |

and read oίϊ the limit relation

(17) lim flφ, C) = iV(z, C)

The dielectric Green's function gs(z, ζ) yields thus in D a continuous
interpolation between the logarithms of two canonical map functions.
The result is the more significant since we shall prove in the next section
that each gs(z, ζ) is analogously related to a univalent function in D.

(b) From the fact that the function G(zf ζ) + log \z — ζ \ lies in Σ>
i.e., that it has a single-valued conjugate and that it vanishes at infinity,
it follows by virtue of (6) that

(18) f c,(O ί Θ^ds = \ log A ψds

and

(180 Σ c,(0! βΆ^Us = \ log - 1
z-i JO1 dn JO \z —

We define now for fixed ζ e D the harmonic function c(z, ζ) of s in
D by putting

(19) φ , C) - ct(C) for 2 6 A .

By (18), (18;) and the definition (2.18) of the class Σ, the function
— log I z — ζ I — c(z, C) lies in this linear space. We may develop it,
therefore, into a series of the h,(z). By use of (2.10) and (2.13'), we
obtain
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(20) log X = c(z, C) - 2π Σ h ^ h ^ zeD,ζeϊ) .

We may combine (20) with (2.22) and ήnd

(21) g3(z, C) - Φ , C) - 2^ε Σ X Λv(2)fcv(C) .
v=i 1 + εjθv

This leads to the limit relation

(22) lim g,(z, C) = φ , C) for z e D,ζ e D .
ε->0

The limit of (?3(£, ζ) as ε —> 00 does not seem to admit a simple
geometric interpretation.

(c) Consider next the case ζ e D, say ζ e Dz. We define now the
regular analytic functions φτ{z) which map D univalently into a full
circle around the origin which is slit along concentric circular arcs, such
that z — co goes into the center and that

(1") \imzφι(z)^l .

The function ψt(z) is uniquely determined by the additional requirement
that the special boundary curve Cι shall correspond to the outer
circumference.

Since the function

(23) G%{z) = log I ψτ{z)\

is harmonic in D except for a simple logarithmic pole at infinity and
since

(24) Gt(z) = cl3 for z e C5 ,

it is evident that Gz(z) may again be expressed explicitly in terms of
the Green's function g(z, ζ) of D [5].

Since we assumed ζ e Dl9 the function Gτ(z) + log | z — ζ | lies in the
class Σ. We can develop it into a Fourier series of the system {hv}.
The same calculations as before lead to

(25) Gx{z) = log - λ -- + 2π Σ ψ

From (2.15) we obtain

(26) 08(s, C) - Gτ(z) - - 2πε £ τ }~

hence
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(27) lim gt(z, C) = Gt(z) for z e 3, ζ e Dt.

We obtain again interesting canonical mappings from the dielectric
Green's function by passing to the limit ε — 0.

(d) The expression Gτ(z) + log | z — ζ | satisfies the linear relations
(2.18) if ζ e Dτ. It has on C the same boundary values as the function
g(z, C) + log I z — C I + ct(z) which is harmonic in D, with

(28) φ) = cv for ze Dj .

Thus, the new combination will belong to the class Σ and can, therefore,
be developed into a Fourier series in the {hv}-system. An easy calcula-
tion leads to

(29) g(z, 0 - log A - φ) -2π± h^hf% z e D, ζ 6

From (29) and (2.21) follows

(30) g,(z, C) - eg(z, ζ) = φ) + 2πε±- — i ~hv(z)hy(ζ) .
v-i pv(l + ε^v)

Thus, we find the limit formulas, valid for z e D, ζ e Dt :

(31) lim ffβ(s, C) = Φ) , lim -ίflfβ(2, C) - f/(s, 0 .
0 £ε->0

4 Dielectric Greenes functions and conformal mapping• In this

section, we shall show that the dielectric Green's function gs(z, ζ) leads

to a univalent analytic function in D and to a set of univalent analytic

functions in D. Let us suppose, for the sake of definiteness, that the

source point ζ lies in D. Let p8(z, ζ) be the analytic completion of

gz(z, C) for z in D that is, ps(z, ζ) is analytic for z e D and we have

( 1 ) g*(z, C) = SR{Pβ(«, 0 }

Ps(^, C) is regular analytic except for the two logarithmic poles at ζ and
at CXD . The function has no periods with respect to the boundary curves
Cj. Hence

( 2) /8(s, C) - exp [- pe(z, C)3 , zeD,ζeD

is a single-valued analytic function of z e D and regular in this domain
except for the simple pole at infinity. Since the analytic completion of
a harmonic function is only determined up to an additive imaginary
constant, we may choose f8 in such a way that

(20 /ί(«>,C) = l , Λ
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We may similarly complete gε(z, ζ) to analytic functions of z in D.
In order to determine the additive constants for the disjoint domains
D3 we proceed as follows. By condition (c) of § 2 on gε(z, ζ) and because
of the Cauchy-Riemann equations, we have, whatever the analytic
completion pε(z, ζ) of gε(z, ζ) in D :

( 3 ) 3{p*(z, 0 } - e3f{pe(«, C)} + kj for zeC3.

Here ps and ps shall denote the limits of ps from D and D, respectively
we shall use this more specific notation whenever discussing boundary
relations. We dispose now of the additive constants in the domains D5

by requiring k,f = 0. This convention fixes pe(z, C) in ΰ in a unique way.
In analogy to (2), we define

( 4 ) / ε ( z , C) - e x p [ - ^pe(z, θ ] for zeD,ζe£>.

We shall prove the

THEOREM. The function fs(z, ζ) is univalent in D and the set of
functions fs(z, ζ) is univalent in D in the sense that

( 5 ) /ε(2j, 0 = Λ(A> C) and zu z2e D implies zί = z2 .

In order to prove this theorem, we start with the

LEMMA. The dielectric Green's function has no critical points.
That is, the equation p's(z, ζ) = 0 is only satisfied at z = co and this
point is a pole of the Green's function. The dash denotes differentiation
of Ps(z, C) with respect to its analytic argument z.

Proof. We denote again, more precisely, the analytic completion
of gε(z, C) by ps or by ps according to the location of z in Z) or D,
respectively. We combine the boundary conditions (c) and (d) of § 2 on
the dielectric Green's function gc(z, ζ) into the one complex equation

( 6 ) pί(2, ζ)z' = '-ζ^Mz, ζ)z' + ϊ—ίp't(z, 02'

Since we assume throughout this paper ε > 0, equation (6) yields

( 7 ) SRe{pί(s, ζ)lpί(z, 0} > 0 for z e C .

This inequality implies, in particular :

(8) f d vrg p't(z, ζ) = f dargpί(«,C).
Jo J c
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The statement is evident if p[ and fy are non-zero on C but it can be
upheld in the usual way even in the case that these two functions have
common zeros on C

Let Z, P and Z, P denote the number of zeros and poles of p[ and
pi respectively, in their domains of definition. By the argument principle,
we have

( 9 ) f d arg p't(z, ζ) = Z - P , <f d arg %(z, C) = P - Z
Jo J c

if z runs through C in the positive sense with respect to D. Combining
(8) and (9), we obtain

(10) Z + Z^P + P.

But all poles of p[ and p's are known clearly P = 0, P — 1 and Z > 1.
Hence, we conclude from (10) :

(11) Z=0 , Z=l.

This proves our lemma.
In order to prove the theorem, we consider the lines defined by

(12) ${fφ, 0} = ct for z 6 D , . ^ | — ^ ( ^ , ζ)\ = a for z e D .

Each such line starts from the logarithmic pole ζ and runs to ω. By
virtue of our convention on the analytic completion of gs(z, ζ) these
lines are continuous in the entire plane and, except on C, they are even
analytic. Because of our lemma, there is no intersection between different
lines except at ζ and oo. The lines have the physical interpretation as
lines of force for the corresponding electrostatic problem and the lemma
asserts that there are no points of equilibrium in the field. The lines
form for 0 < a < 2π a non-intersecting system which covers the entire
complex plane. Along each line, gs(z, C) decreases monotonically when
we pass from ζ to oo. These facts guarantee obviously that the analytic
functions fz(z, C) and fs(z, ζ) have the above stated univalency properties.
Thus, the theorem is proved.

Let us assume without loss of generality that ζ — 0. Using the
limit theorems of § 3, we can assert:

We have thus found a one-parameter family of univalent functions which
connects continuously the circular slit mapping through the identity
mapping with the radial slit mapping.

In order to illustrate the significance of this result, we calculate
from (2.16) that
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(14) log |/ί(C, 01 = 2π{ε - 1) £ ίΛ , -• £• Mζf .
v=i (1 + /λ,)(l + epv)

Since all v̂ > 0, this is a monotonically increasing function of ε in the
interval [0, oo) it is negative for 0 < ε < 1 and positive for 1 < ε. In
particular :

(15) l / ί ( C , C ) l < l l Λ ( C , C ) l > l .

We define the family j^Γ of all functions f(z) which are analytic

and univalent in I) and normalized by the requirements

(16) / ' (~) = 1 /(O = 0 .

Through the mapping w = f(z) we obtain the new domain Dw applying

the inequalities (15) in this domain and returning to the original domain

D, we obtain the inequality

(17) l/ί(C,C)l<[/'(OI<lΛ(C,C)l

valid for each / 6 j^Γ.
Inequality (16) asserts an extremum property of the canonical slit

functions /0 and fx which is well-known [13, 15]. It is, however, not
obvious that all real values between the extrema are also possible values
for I /'(C) I in ^l. We have now explicity constructed a one-parameter
family in ^l which interpolates between the two extremum values.

There are various other possibilities to obtain from the dielectric
Green's function one-parameter families of univalent functions. Consider,
for example, the analytic functions

(18) As(z, C) - - % ε ( s , C) , Bs(z, C) - I -~-,P*{z, C)
dξ % dηf

with C = f + iV- Both functions are single-valued in D and in D they
have for z = ζ simple poles with residue 1 and are else regular in D
and in Zλ We obtain from the identity (6) by differentiation

(19) A&, ζ)zf = λ+- 1A&, ζ)zf + 1 ~--±(Al(z, ζ)zf)

(19') B[{z, ζ)z' = x-±-~-B&, ζ)z' - L ±(B[(z, ζ)z>) .

Let a be an arbitrary point on C integrating (19) along C from a
to z e C, we find

(20) A(2, 0 - A3(α, C) = 1 + ε[Aε(zf C) - Aε(α, C)]
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Hence, we have

(21) 5 R { M ^ _ 0 - A A a Λ 0 \ > 0 f o r z e c .
{ΆQ(z,ζ)-Άs(a,ζ)]

Reasoning as before we can conclude by means of the argument principle
that As(z, C) takes the value Aq(a, ζ) precisely once in D + C and that
A*(z, C), likewise, takes every boundary value precisely once. Thus,
As(z, ζ) and Ae(z, ζ) are univalent in their respective domains of definition.
The same reasoning applies to Bs(z, ζ) and B2(z, ζ).

It is known, and easily verified, that

(22) I0(z, 0 = Jr log φ (z, ζ) , Bfc, C) = 4 1 - log φ(z, C)

are univalent functions in D with a simple pole at z = C and that they
map D onto the entire complex plane, slit along rectilinear segments
parallel to the imaginary and the real axis, respectively [16]. Similarly,
the analytic functions

(23) A»(z, C) = ;?- log ψ{*> 0 , B-(z, 0 = 4 - 1 log ψ(z, ζ)

are univalent in D with the same singularity and map the domain onto
the entire complex plane, slit along segments parallel to the real and
the imaginary axis, respectively. Hence, by the uniqueness theorems
on the canonical mappings of a domain, we must have

(24) A^z, ζ) = B0(z, C) + JC(C) B^z, ζ) = A0(z, ζ) + ;(C) .

Finally, clearly

(25) A&, C) = Bλ(z, C) = — ~ - .

Hence, Ae(z, ζ) and Bε(z, ζ) interpolate between the two parallel slit
mappings through the simple rational mapping (25).

Using the series development (2.16) for gz(z, ζ), ζ e D, we may prove
the well-known extremum properties of the canonical slit mappings in
the same way, as we did above for the circular and the radial slit
mapping.

We do not enter into a more detailed discussion of these families of
univalent functions. We want to remark, however, that the dielectric
Green's function is not, like the ordinary Green's function, a conformal
invariant. By auxiliary mappings of D into a domain ϊ)w, one may
obtain very different one-parameter families of univalent functions which
interpolate between the canonical slit mappings.
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5 Dielectric Green's functions and norms in function spaces* With
each dielectric Green's function g2(z, ζ) we can connect a positive-definite
quadratic form which may be interpreted as a norm in the linear
function spaces Σ and I7, defined in § 2. This norm has remarkable
properties for function pairs h e Σ and h e Σ which have on C equal
boundary values or equal normal derivatives. Useful inequalities and
identities can be established which facilitate the solution of the bound-
ary value problem in potential theory by utilizing auxiliary solutions in
complementary domains. One can characterize the Fredholm eigen
values λv as solutions of certain extremum problems involving these
quadratic forms. This characterization, in turn, will lead later to
elegant variational formulas for the λv under infinitesimal deformation of
the curve system C.

Let h and h be two arbitrary functions of the classes Σ and Σ,
respectively. We have the Fourier developments

(1) h(z) = Σ &vΛv(s) f M«) = Σ %Mz)

in terms of the complete orthonomal sets {pϊir%(z)} and {hv(z)} of these
linear spaces. The Fourier coefficients are given by

( 2 ) xv = 1 D(h, K) , xv = D(ti, k)
Pv

where D and D denote the Dirichlet integral in Σ and Σ :

( 3 ) D(h, H) = [ ivh - VHdτ , D(h, H) = (\vh
D ΰ

Let us consider now the particular case that

( 4) h(z) = h(z) on C .

By Green's identity and (1.4/), we have obviously

( 5 ) D(h, Λv) = - f hdh?ds = - [ hdh^ds = -ϊ)(h, hv)
jo dn JO dn

which gives

y D j Xy :=z Xy .

Pv

We proceed analogously for two function h e Σ and h e Σ which
satisfy on C the relation

/ 7 \ dh __ dh
dn ~ dn '



238 M. SCHIFFER

Now, Green's identity and (1.4) yield

( 8 ) D(h, K) = - \ hjhds - Pv \ hj- ds =

JC on JO dn

and, consequently

( 9 ) x, = x» .

Thus, both boundary relations (4) and (7) reflect themselves in a very
simple manner in the relations (6) and (9) between the Fourier coefficients.

We define next the bilinear form

(10) Mh, H) = λ \ \ g,(z, 0
2π Jo jc d

for any two elements of Σ and in precisely the same manner we define

the bilinear from πε(h, ίί) for any two elements in Σ.

By use of the Fourier type formulas (2.13) and (2.13') we may

express the bilinear forms in terms of the Fourier coefficients of the

functions involved. Let us denote the Fourier coefficients of h, h by

x'v, xy and of H, H by y-v,Vv; then a straightforward calculation shows

that

(11) πJJi, H) = Σ --—£-v-- XvVv, ί s(fe, H) = Σ -- SpV ~- x»Vv -
v=i 1 + epv v=i 1 + εpv

We verify, first, from (11) that the quadratic forms πd(h, h) and π2(h, h)
are positive-definite. This fact allows us to interpret them, indeed, as
norms in their corresponding function spaces.

On the other hand, we have because of the normalizations (2.8)
and (2.17)

(12) D(h, H) = Σ P XM, ϊ>(h, H) = Σ x*V* .
V = I v = 1

We define further the bilinear forms

(13) I\(h, H) = D(h, H) - -]-πε(fι, H) , I\(h, H) = D(h, H) - π2{h, H)
c

and obtain for them the explicit representations :

(Λά\ Γ (h TJ\ — V ε ^ r 'Ϊ/ /τ (h Ή\ — V ^ ^ 'ίy
V«J 1 + εpv v-i 1 + spy

These formulas show that ί\ and /7

:, too, are positive-definite and lead

to norms in Σ and Σ. We have the estimates :
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(15) 0 < --πt(h, H) < D(h, h); 0 < π,(h, h) < D(h, h) .
s

By the very definition of π, and π3, we have

THEOREM I. If

(16) -<* = 9 * and dIL = d & on C
dn dn dn dn

we have

(17) τrε(fe, i ϊ ) - 5e(A, H) .

From (4), (6) and (14), we derive :

THEOREM II. / /

(18) h = h and H = H on C ,

(19) /τ

ε(fc, H) - εf\(h, H) .

Finally, we verify from the explicit representations for the bilinear

forms

THEOREM III. If

(20) h - h and dH~ = 9 ? o n C ,
dn dn

τυe have

(21) D(h, H) - - Z)(fc, H)

and

(22) π?(λ, fί) = - εl\(h, H), Γε(Λ, if) - - 58(fc, ff) .

Theorems I—III show a very symmetric interrelation between the
various bilinear forms for elements with matching boundary data on C.

The significance of the preceding theorems lies in the fact that one
has often to solve a boundary value problem, say in D, which is much
easier to solve in the complementary domain D. In this case, the above
theorems provide valuable information. Let us illustrate the method
by the following applications.

(a) Given a function h e Σ, to determine the function h e Σ which

ha$ on C the same boundary values as h. In particular, we ask for

the Dirichlet integral ϊ)(h, ti).
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This problem arises, for example, in two-dimensional electrostatics
in connection with the question of polarization of a set of conductors
in a homogeneous field [19, 22].

We derive inequalities for the Dirichlet integral in question by
applying Theorems I—III. We start from the fact that τrs and Γe have
definite quadratic forms and that they satisfy, therefore, the Schwarz
inequalities

(23) τr8(Λ, Hf < π2{h, h) π2(H, H) Γe(h, Hf < Γe(h, h) - Γ*(H, H) .

We select a pair of test functions H e Σ and H e Σ which have equal
normal derivatives on C and obtain from Theorem III and from (23)

(24) Γe(h, Hf < π2(h, h) - π9(Ht H) .

Using the definition (13) of f2 and Theorems I, II, we can transform
(24) into

(25) Γe(h, Hf < [D(h, h) - ~Γs(h, h)]π,(H, H) .
ε

This inequality contains the sought Dirichlet integral ϊ)(h, h) and else
only the known function of h e Σ and the arbitrary test function
He Σ. Thus :

(26) D(h, h) > - - 8 ^ - ^ + -1 -ΓB(h, h) .
π,{H, H) ε

It is easily seen from our derivation that the inequality (26) is
sharp if H is chosen as that function in Σ which has on C the same
normal derivative as h in fact, in this case, the Schwarz inequality
leading to (24) becomes an equality. Thus, we can express (26) as
follows :

(260 D(hf h) = max- / T^' H)- + -~Γe(h, h) for all H e Σ .
πξ(H, H) e

This representation permits us to determine the desired Dirichlet integral
by a Ritz procedure in Σ.

It is sometimes more convenient to renounce a precise equation in
order to obtain a simple and applicable estimate. We may select, for
this purpose, the test function H(z) as equal to the given function h(z)
in this case, we have by (13) and (26)

πz(h, h)

This inequality holds for all pairs of functions h e Σ,h e Σ which have

equal boundary values a t the same points of C.
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In order to understand better the important inequality (27), we
express it in terms of the corresponding Fourier coefficients. If we
denote again by xv the coefficients of h(z), we have by (6) the values
— pvxv = χv for the Fourier coefficients of h(z). Hence, using the explicit
representations (11), (12) and (14) for the quadratic forms, we may write
(27) as follows :

(270 Σ plxl Σ ~p-—^ > Σ P^I Σ r-^—«ϊ .
v =i v=i l -f epv v=i v-i 1 + εpv

We rearrange (27') into the from

(27") Σ jf^ZΓ^ ,$& >- °
v.μ-i(l + εpv)(l + epμ)

Now the inequality has become evident but, what is more important,
we recognize that equality in (27") and, hence in (27), holds if and only
if all xv vanish except for those which belong to a fixed eigen value λμ.
Thus, equality in (27) holds for

(28) h(z) = hv{z) and h(z) = - pS,{z) , v = 1, 2, . . . ,

and only for these functions.
It is interesting that the inequality (27) becomes precise infinitely

often, namely for all functions of the sets {λv}, {Λ,v}, which are complete
in Σ and Σ. On the other hand, this fact leads to a new characteriza-
tion of the Fredholm eigen functions

(b) We deal next with the analogous question : given a function
h e Σ, to determine the function h e Σ which has at corresponding points
of C the same normal derivative as Λ. In particular, to determine the
Dirichlet integral of h.

This problem occurs in the theory of a steady incompressible and
irrotational fluid flow in the plane around the set of obstacles C. The
sought Dirichlet integral, in this case, is the virtual mass of the curve
system C [19, 22].

We select now a pair of test functions H e Σ, H e Σ which have
equal boundary values on C. Starting again with the Schwarz inequality
(23) and Theorem III, we have

(29) πz{h, HY < e2Γz{h, h). Γε(ίf, H) .

We apply equation (13), make use of Theorems I and II and find

(30) πz{h, Hf < εΓs(H, H)[D(h, h) - πe(h, &)] .

Thus finally



242 M. SCHIFFER

(31) D(h, h) > - £ % ^ τ + π.(h, h) .
ei z{n, ri)

We obtained thus again a lower bound for the Dirichlet integral in terms
of the given function h and the arbitrary test function H. If H has on
C the same boundary values as h, the inequality (31) becomes an equality.
This fact allows us again to approximate arbitrarily the Dirichlet integral
from below by a Ritz sequence of test functions.

When we choose, on the other hand, H(z) — h(z), we obtain

(32) D(h, h) > ^^RD(hy h) m

Γz{h, h)

This inequality holds for every pair of functions h e Σ,h e Σ with equal
normal derivatives on C.

This inequality can be verified by means of the explicit Fourier
representations (11), (12) and (14) as we did in the case of the inequality
(27). We can further show as before that equality in (32) can hold if
and only if

(33) h(z) = hv(z) , h(z) = K(z) , * = 1, 2, .

Thus, inequality (32) leads to another characterization of the Fredholm
eigen functions.

We obtain corresponding inequalities when we interchange the role

of D and D the Dirichlet integral of a function h e Σ can then be

estimated in terms of a function h e Σ which has on C either the same

boundary values or the same normal derivative as h.
The most convenient form in which the preceding theory can be

applied is obtained by using ε = 1. For, in this case, the dielectric
Green's function reduces to the elementary function — log \z — ζ \ and
the bilinear forms can be easily evaluated. Indeed, the general method
was first applied to obtain isoperimetric inequalities for polarization and
virtual mass with this particular choice of ε [18, 19, 20]. However, the
flexibility of the method is obviously increased by considering arbitrary
positive ε-values and the significance of the procedure is clarified in this
way.

We shall now utilize the quadratic forms in order to obtain estimates
for the Fredholm eigen values λv. Let λλ be the lowest positive Fredholm
eigen value > 1. We have shown in § 1 that with λλ also — λλ is an
eigen value. We denote λ2 = — Λx. By definition (2.12) of the pv, we
have obviously

(34) 1 - = p2 < Pv < ft , v - 1, 2, 3, .
ft
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Using now the developments (11), (12) and (14) of the various bilinear
forms, we verify by inspection the following theorems :

THEOREM IV. For every function h e Σ the inequalities

1 + ep1 ~~ D(h, h) ~~ pλ + ε

hold. The first equality sign holds only for those function hv e Σ which
belong to the eigen value λλ; the second equality sign holds only for
functions hv e Σ which belong to the eigen value λ2.

THEOREM V. Every function h e Σ satisfies the inequalities

Pi + e D(h, h) 1 + ePi

Equality holds only if h — hv where h , belongs to the eigen values λ2

and λ19 respectively.
We have thus characterized the lowest positive and non-trivial

Fredholm eigen value ^ by a minimum and a maximum problem in Σ
and in Σ for the ratio of two positive-definite quadratic forms. This
characterization makes it possible to estimate this eigen value by the
use of test functions in Σ and in Σ. The most convenient case for
applications is, of course, the case ε = 1.

It is clearly desirable to find analogous extremum problems which
characterize the higher eigen values Λv. For this purpose, we introduce
the bilinear form

\o i) i ζ e\'Vf Ή ) ~~ > ε y> u f e y> u

ε — e

in Σ and the bilinear form

(37;) 5βfβ(Λ, H) = MhJΏ^^ΰhΛϊ , e > o, e > 0
ε — e

in Σ. From (11) and (14), we obtain the Fourier representations

(38) Γ2tβ(h, H) - Σ 7Γ-+ spv)(l + epy) ' ε%e ' v=i( l + epv)(l + epv)

The quadratic forms Γz%e{h, h) and πSte(h, h) are evidently positive-definite.
We observe that the function

(39) f{x) = —- x

(1 + εx)(l + ex)
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takes in the interval 0 < x < OD its maximum value at the point

<40) X. ^

Hence, (38) yields the following theorems :

THEOREM VI. Every function h e Σ satisfies the inequality

(41) t^uhg^fipj
D(h, h)

where ρm is a value in the sequence of the pv which gives the largest
value of f. Equality holds only for such hv which belong to such a
value pm.

THEOREM VII. For every function h e I7, the inequality

(42) M M ) < / ( P w )

D(h, h)

holds where pm is a value in the sequence of the pv which gives the
largest possible value of f(p). Equality holds only for such hv which
belong to such a pm.

Given any specific pv, we can always choose Vεe = p;1 and the
corresponding maximum problem will pick out this particular eigen value.
We can apply Theorems VI and VII in order to obtain estimates for
the location of ^-values near any given point xm by the use of test
functions in Σ and in Σ. It is easily seen that Theorems IV and V are
contained in Theorems VI and VII as limit cases.

We specialize in Theorem IV ε = 1 and obtain the particular result

(35') 1 ( ( log, 1 , «*W mθdsβ < _ft_i)( λ > h)
2π)o)o | z - C l dn dn ζ 1 + Pι

for every h e Σ equality holds only if h = hv and hv belongs to λ2.
This result permits the following application. Consider the system

of curves C* which consists of the subset C19 C2, * ,CN* of C with
iV* < N. This system of boundaries determines a connected exterior
D* Z)D and the set Z>* of the domains Djf j = 1, , ΛΓ*. Let I7* be
the function class in D* which is analogous to the class Σ in D and let
hf{z) correspond to the largest non-trivial negative eigen value λf of
C*. We determine a function h(z) e Σ such that

(43) ^ = * o n C * , ^ = 0 o n C - C * .
dn dn dn
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Since the boundary conditions (43) determine h(z) in each Dj only up
to an additive constant, we may adjust these constants in such a way
that h(z) satisfies the N conditions (2.18) and thus belongs indeed to Σ.
Observe that the Dirichlet integral of h coincides in each Djf j < JV*
with the corresponding Dirichlet integral of hf, since h and hf differ
only by a constant in these domains. In each D3 with j > ΛΓ*, h{z) is
a constant and has the Dirichlet integral zero. Hence :

(44) D*(hf, hf) = D(h, h) .

By (35') we have

(45) Γ^D*(h*,hί) = ±\ \ log, *

log * - **&

By virtue of (44), we conclude finally

, P* < Pi(46)

Thus, we proved :

1
P
Λ

1

-p? ~ 1
Pi

+ Pi

THEOREM VIII. The lowest positive and non-trivial eigen value λx

of a curve system C is never larger than the corresponding eigen value
λ* of any subsystem C* of C.

Suppose all positive eigen values of C arranged in increasing order,
say λvt, such that v' < v" implies λv, < λv,,. Let us do the same with the
positive eigen values Λ* of the subsystem C*. By the above reasoning
and by use of the standard methods of eigen value theory [cf. 11], it
is easily shown that quite generally

(47) λv, < λ*

will be fulfilled.
We consider finally the bilinear form

(48) B(h, H) =
2 dn

where Γ(ζ, rj) is the geometric kernel defined in (2.26). For he Σ,He Σ
we have, in view of (2.28) the following Fourier representation for B:

(49)

and the same expression is also valid for h e Σ, Ή. e Σ,
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From (11), (38) and (49) follows

(50) πλ(h, H) - B(h, H) = Σ — — &v0v = Λ i(h, H) ,
v-i (l + pvγ

and

(51) B(h, H) = πltl(h, H) .

The function

(1 + a?)2

takes its maximum 1/4 for positive argument at the point xm = 1 and
we derive from (41) and (42) the inequalities

(52) 0 < πλ{hy h) - B(h, h) < —D(h, h) , he Σ
4

and

(53) 0 < B{h, h) < ~D(ti, h) , he Σ .
4

These inequalities are interesting since they yield estimates for the
Dirichlet integrals of h and h by means of elementary integrations over
C which involve only the normal derivatives on C of these functions
and geometric terms. On the other hand, given only these normal
derivatives, we could calculate the precise Dirichlet integrals only after
solving a Neumann boundary value problem for the domains. We gave
by inequality (32) another lower bound for ϊ)(h, h) but in this estimate
we have to assume as known the solution of the corresponding boundary
value problem for the complimentary region D of D. The present
inequalities are, therefore, often easier to apply.

The dielectric Green's functions g2(z, ζ) and ge(zf ζ) which are needed
in the calculation of 7rε>e and Γζ%e are known only for very few domains
if ε and e are different from 1. We may, however, use the series
developments (2.34) for these functions and utilize the partial sums in
the development together with a simple estimate for the remainder terms
in order to obtain estimates for pm. The calculations are clearly quite
laborious, but in principle feasible.

6 Variational formulas for the dielectric Green's functions and
for the Fredholm eigen values* The properties (a)-(e) ennumerated in
§ 2 and defining the dielectric Green's functions g,{z, ζ) are all invariant
under a conformal mapping z* = F{z) which is normalized at infinity
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such that i F'(oo) | = 1. Unfortunately, the only conformal mapping of
this kind which is regular in the entire complex plane has the trivial
form F(z) = az + 6, | a \ = 1. We may consider, however, functions F(z)
which are analytic with isolated singularities. In this way, we are led
naturally to a variational theory for the dielectric Green's functions.

The simplest possible choice of F(z) is evidently

(1) z* = F(z) = z + ~a

z~z0

which has the right normalization at infinity but has a simple pole at
z = z0. We will choose z0 arbitrarily in D or in D but not on the curve
system C. Let E(z0) denote the entire complex plane from which a
circle of radius l/ | a \ around the center z0 has been removed. It is
easily seen that F(z) is univalent in E(z0). Given, therefore, a fixed
point z0 in D or in I), we can always choose | a | so small that C lies in
E(z0) and is mapped in a one-to-one manner into a new curve system
C*. Since F(z) is regular analytic in E(z0) all differentiability properties
of C are transferred to C*. We denote the dielectric Green's functions
of the new curve system C* by gf(z, ζ). Our aim is to connect these
new functions with the functions g2(z, ζ) of the original system C

We introduce the function

( 2 ) d(z, C) = gΐ(F(z) , F(O) - Λ(*, 0

By the definition of gf and of the curve system C*, the function d(z, ζ)
is symmetric and harmonic for z, ζ e E(z0), except along the curve set
C. The function is still continuous across C but its normal derivatives
satisfy the discontinuity relation

(3) JLd(z, ζ) + εj^d(z, ζ) = 0 for z e C, ζ e E(z0) - C .
dnz dnz

Observe that d(z, ζ) is still regular harmonic for z = ζ and that

(4) limd(*,C) = 0 .

We consider now the integral

( 5 ) J(ζ, rj) = 1 f \d{z, ζ)^~gs(z, V) - gs(z, y)-°~d(z, ζ)]dsz .
2πJcL dnz dnz J

We introduce the characteristic function d(z) of D, i.e., we define

(6) δ ( z ) = \ 1 ί f z e D

(0 if zφD .

By Green's identity applied to D, we find
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( 7 ) J(ζ, V) = ed(ζ, η)d{η) + T(ζ, V)δ(z0) .

Here

8 T(ζ, η) = f ( \d(z, ζ)^-gs(z, 7) ~ flr«(«, ?)/-<*(*,
27r J L dwz dnz

where c(s0) is the circumference of radius τ/| a \ around z0 and where
n is its interior normal.

On the other hand, we may apply Green's identity to J(ζ, η) with
respect to the complementary domain D. Taking notice of (4) and of
the known discontinuity behavior of the various terms in the integrand,
we find

(9) J(C, η) = - ed(ζ, η){l - δ(V)] - eT(ζ, V)[l -

Subtracting (9) from (7), we obtain finally

(10) εd(ζ, η)=- Γ(C, ?)[ε + (1 - e)δ(z0)] .

The difference function (2) of gf and gs is thus expressed in terms of
an integral over the small circle c(z0) around the singularity point z0.

A straightfoward calculation of the type usual in such variational
problems [15, 21] yields

(11) 0?(C*, ?*) = ft(C, V) + [ l + ( y - l ) ^ ] j ΐ { ^ ( Z o , C ) Λ , V)}

where p,(z, ζ) is the analytic function defined in § 4 whose real part
is gs(z, C). The error term O(\ a |2) can be estimated uniformly for ζ
and η in E(z0) and for z0 in any fixed closed domain which does not
contain points of C.

We derived in (11) an interior variational formula for the dielectric
Green's function which is very similar to the well-known variational
formula for the ordinary Green's function of a domain [14, 15]. Observe
that in the special case ε = 1 formula (11) reads

log . „ * » . = log —-^-f + Sft{7 -£ 4 + 0(1 a

In view of the identity

(11") 1 -

we can verify (11') directly by means of the logarithmic series.
We shall not enter into the variational theory of the dielectric
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Green's functions since it is entirely analogous to that given in the case
of simply-connected domains [17]. We wish to utilize (11) in order to
derive analogous variational formulas for the eigen values Λv. For this
purpose, we shall make use of the extremum principles (5.41) and (5.42)
and of the method of transplanting the extremum function [6, 11].

Let us suppose that the singular point z0 of our variation (1) lies
in I) in this case, the function F(z) is regular and univalent in D. If
h(z) is any analytic function in D, we can define by

(12) Λ*(s*) = h(z)

a regular analytic function h* in each component D* of the varied
domain set D*. We call the definition (12) the transplantation of the
function h(z) from D into D*.

We define now the ratios

(13) R(h) = ^JhΆ QQ^Λ*), #(fo)
D(h,h) D*(h*,h*)

which occur in the extremum problem (5.41). In view of the conformal
character of the transplantation, we have clearly

(14) D(h, h) = D*(h*, h*)

and

(15) *W W W&
dn* dn

It is, therefore, easy to calculate the ratio J2*(fc*) by referring back to
the original region D. By the definitions (5.10), (5.13) and (5.37), we
find

(16) Γ*β(Λ*, Λ*) = - 1 - i f f Γ-^flrίίC*, 7*) -- f f f (C*, 7
ε — e 2π jo*)o*\_e ε

dn* dn* ζ η

Now, we use (11) and (15) in order to return to the curve system C as
the path of integration. We remember that zoe D and obtain

(17) Γ*β(h*, h*) = Γfβ(Λ, h) + 2ττ9ΐί a Hl^oY ZL*^lAz°f\ + O(\ a
I ε — e )

with

(17') ςf.(z) =
2
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Since z0 e D, we can express qs(z) as a surface integral

(18) qs(z0) = - A Γ-l \\vgζ(z0, fl Vλ(O
oz0 L π J J

The error term O(| a |2) can be estimated uniformly for all functions
h(z) with bounded Dirichlet integral and for z0 in a closed subdomain of
D. We have to use the known error term in the variational formula
(11) for the dielectric Green's function.

As a first result we can conclude that the eigen values of the ratio
i?*(ft*) depend continuously on a and converge with | a \ -> 0 to the
corresponding eigen values of R(h). We can, moreover, derive a precise
asymptotic formula for these eigen values.

Let indeed p0 be a particular ^-value of the original curve system
C and let the function f(x), defined in (5.39), be chosen in such a way
that it takes its maximum at a point xm which is nearer to p0 than to
any other pv. If h0 e Σ is an eigen function which belongs to p0, we
will have

(19) R(K) = f(Po) .

We may assume as before (see (2.17)) that

(19') IKK ho) = Po

If h* is the transplantation of h0 into Z)*, we can use (14) and (17) in
order to determine its ratio R*(ht). But now we can use formulas (2.9),
(2.10) and (2.13') in order to express the analytic function qs(z) by means
of the analytic completion of ho(z) defined in (1.31). We have

(20) qs(z0) = eP° V'0(z0) , zoeϊ).
1 + epo

We can now combine (14), (17) and (19) in order to express R*(h£). We
make also use of (19) and of the definition (5.39) of f(x) thus, we
arrive finally at

(21) R*(K) = f(Po) - 2πpJf{pQ)^{aV[{zQγ} + O(\ a |2) .

The function hf(z*) defined by the transplantation of ho(z) will not, in
general, belong to the class Σ* defined with respect to -D* by linear
conditions analogous to (2.18). However, we can add to every function
fo*(z*) which is analytic in D* a different constant in each component
DJ in order to bring it into the class Σ*. This trivial readjustment
does not affect the Dirichlet integral nor the quadratic from Γ*β which
depends only upon the normal derivatives of h*. Thus, in the theory
of the ratio jR*(fe*) the restriction to the class 2'* is unessential, since
easily achieved.
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In particular, we may use h* as a competing function for the ex-
tremum problem regarding R*(h*) and use the identity (21) in order to
estimate the extremum values. Let us suppose that the value p0 belongs
to k different eigen functions hβ(z) of the unperturbed curve system C
we denote their analytic completions by Vβ(z). We restrict, at first,
h*(z*) to the linear sub-space spanned by the k transplanted eigen
functions K$(z*). In this case, the ratio i?*(Λ,*) will have precisely the
k stationary values

(22) τβ = f(Po) + 2πPJ'{pQ)σβ + O(| a |) , β = 1, 2, . . . , k

where the σβ are the eigen values of the secular equation

(23) detll^^F^^K^l+^li^^..., = 0 .

Let us arrange the τβ in decreasing order likewise, we shall arrange
the values f(pβ) in decreasing order. Since the k first values f(pβ) are
the largest stationary values of R*{h*) for unrestricted argument function
fe*, it follows from standard results on quadratic forms that

(24) f{pt) > f(p0) + 2πpJ'(po)<τβ + 0(| a |2), β = 1, . . . , k .

Because of the continuous dependence of the eigen values p* on a
there exists a positive constant δ such that for small enough a all eigen
values p$ have from p0 a distance larger than δ, except for k eigen
values pf which can be brought arbitrarily near to p0.

Having now chosen | a \ sufficiently small, we can select xm to the
left of Po and the k neighboring pβ but so near that all other f(p*) are
less than any of the f(pβ). Since f'(p) < 0 for p0 and all pβ, we derive
from (24)

(240 Pt <Po + 2πPoσβ + O(| a |2) , β = 1, 2, . . . , k .

Choosing, on the other hand, xm to the right of p0 and the p% but again
so near that f(pβ) is still larger than all f{p*), we obtain

(24") pi >Po + 2πpoa-β + O(| a i2) , β = 1, 2, . . , k .

Thus, we proved :
The variation of an eigen value p0 with degree of degeneracy k — 1

is characterized by the formula

(25) pt = Po + 2πp0o-β + 0(| a |2)

where the σβ are the eigen values of the secular equation (23).
In the case that only one eigen function hv e Σ belongs to pv, we

obtain the simpler variational formula

(26) δPv=
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By the relation (2.12) between py and the Fredholm eigen value Λv, we
obtain in this case finally

(27) δλv = (λl - l)π^R{aVf

v(zoγ} .

We can proceed in analogous fashion in the case that z0 e Z>. We
will start then with hoe Σ which belongs to pQ and which satisfies by
(5.42) the equation

(28) R(h0) = JMftoAL = ffa) m

IKK h)

We transplant h0 by an equation (12) into a comparison function h* in
D*. We assume the usual normalization

(29) D(K h0) = 1

and have, therefore, also

(29') ϊ)*{ht, k*) = 1 .

The same chain of calculations as before leads to the asymptotic formula

(30) R*(ht) = ^(K9K) = / ( o) + 2πf'(Po)$ϊ{aV'Q(zoy} + 0(1 a |2) .
D*(K, ht)

Here, VQ(z) is the analytic completion of ho(z) in D. This formula is
very similar to (21) it differs only by the factor — p0. We obtain,
therefore, the following result:

If JOV is an eigen value of degeneracy fc — 1 it will change according
to the formula

(31) pt = P, + 2πσβ + O(|α p) β = 1, 2, . . . , h

under a variation (1) of the curve system C. The σβ are the k eigen
values of the secular equation

(32) det II ΪR{aV't(zQ)V's(z0)} - σδts || ίij=1,...,fc = 0

and the Vt(z) are the Jc analytic functions whose real parts are the eigen
functions h^z) which belong to pv.

In the particular case k = 1, i.e., non-degeneracy, we have

(32') δpv

and hence

(33) Wv = -
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There is a lack of symmetry between the variational formulas (23), (25),
on the one hand, and (31), (32) on the other. This fact is due to the
different normalizations

(34)

and

(35) if

V[(z)

H*)

dτ = D(hi9 ht) =

dτ = D(hif hi) =

We were led to these normalizations from the theory of the Fredholm
eigen functions φ^z) through the representation (1.3). These normaliza-
tions were also used in the series developments of §§ 2 and 3. However,
the variational formulas become symmetric when we define

(36)

From the definition of the Vy{z) and Vv(z), their normalizations (34) and
(35) and from the definitions (1.33), (1.34) it follows at once that the
functions (36) are identical with the functions uv(z) and ύv(z) defined at
the end of § 1 and normalized by (1.34).

By means of the functions uv(z) and uv(z) we can express the law
of variations of the eigen values λv as follows :

THEOREM. Let λv be a Fredholm eigen value of the curve system
C and of degeneracy k — 1 let uβ(z), uβ(z)(β = 1, 2, , k) be the set of
analytic eigen functions to this eigen value. If we subject the system
C to a variation (1), we have

(37)
- 1

where σβ is an eigen value of the secular equation

(38) det || ΪΛ{aui(z0)uj(z0)} + σdi31| = 0 if z0 e D

or of

(39) det || ^{au^ujizo)} + σd^ | | = 0 if z0 e Ό .

In particular, we have in the case of non-degeneracy

(40)

and

λl- 1
= - 7 r 3 ΐ { c m 2

v ( z 0 ) } f o r ^ e ΰ
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(40') ) 2 —V = - πft{au\(Zo)} for z0 e D .

The preceding variational formulas can also be derived easily from
the original integral equation (1.2) by means of the general theory of
perturbations [17]. The above derivation is of interest since it allows
a more detailed study of the error terms by means of the dielectric
Green's function. It is also possible to obtain more precise statements
by using the higher variational terms of these Green's functions. It is
particularly easy to develop the higher variations for the lowest positive
and non-trivial eigen value Λx. Consider, for example, a variation (1)
of the curve system C with z0 e D. Let h(z) e Σ and h* its transplantation
into D*. By definition (5.10) and the identity (11"), we have

(41) π*(Λ*, fc*) = πλ{h, h)

- i f f log
2π JO Jo

1 _ CL

~ So)(C - So) θn dn

Thus, πλ{h, h) has a very simple transformation law under transplantation.
The Dirichlet integral is invariant under transplantation. Since pλ leads
to the extremum values of the ratio (5.35) it is possible to determine
the variations of higher order of λx with relatively little labor.

We wish, finally, to add a simple algebraic remark to the variational
formulas (37), (38) and (39). If λv is of degeneracy k — 1 a variation
(1) will, in general, reduce this degeneracy. It is, however, remarkable
that the secular equations (38) and (39) have only two different eigen
values such that even after the variation a degenerate eigen value can
only split into two different eigen values, at least, up to the order O(\a |2).
Indeed, σ is an eigen value, say of (38) if there exist k real numbers
tj such that the linear equations

(42) σti + Σ ^{uUiuΛtj = 0 , i = 1, , k

hold while

(420 § ί ; = = 1

We denote

(43) £ujh = M

and reduce (42) to

(44) σ^ + ^{ccUiM} = 0 , i = 1, , fc .

Multiplying the ίth equation (44) with ut and summing over all ί-values,

we find:
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(45) σΛf+—αΛΓΣwJ + — ά M " Σ | ^ | 2 = 0.
2 i=ι 2 «=i

On the other hand, multiplying (44) with tt and summing over ί, we
obtain from (42')

(46) σ + 9ΐ{αM2} = 0 .

From (45) and (46) we derive

1 Λ \ rvM \

(47) - σ = K{*M'} = | « g«J + I i ^ i - Σ I

Let us put

(48) aM2 = peίy .

The real part and imaginary part of (47) are :

(47') v cos γ = -J-^-U Σ ̂ 1 + -~ cos r Σ I

0 = | ^ { α Σ «ϊ} - [-γ sinr Σ I ut |
2

Eliminating cos γ form the first equation by means of the second, we find

(49) σ = - ^-
2

γ / l α I2(Σ I Ufa) I2)' - [»{α Σ ^

We see, in particular, that the first variation of each eigen value,
whatever its degree of degeneracy, depends only on

Observe that the product of the two possible σ-values (49) is

1(51)
4 1 = 1 4

such that under a variation (1) at least one component of a split up
multiple eigen value is non-increasing. This is the reason why many
maximum problems for positive eigen values lead to degenerate eigen
values in the extremum case.

7 The Ls-kernels and the variation of the Fredholm determinants.
In this section, we shall discuss certain kernels obtained by complex
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differentiation of the dielectric Green's functions which will appear in
certain variational formulas for important combinations of Fredholm
eigen values. The significance of these kernels is best understood by
considering the kernel obtained in an analogous way from the ordinary
Green's function, say g{z, ζ) of D.

We defined already in (1.17) a kernel L(z, C) with respect to the
Green's function g(z, ζ) of the domain set D and observed its remarkable
property (1.18). Analogously, we introduce the kernel

ϊ(z, C) is a regular analytic function for z and ζ in Zλ We shall need
two important facts about \z, ζ) for later applications,
(a) For ζ e C and z e D, we have

(2) M ^ C l Ξ 0 identically in z e b, ζ e C .
dz

This identity remains even valid when z moves onto C but to a point
different from ζ. Let now s be the length parameter on C, ζ(s) its
parametric representation and ζ' = dζ/ds the local tangent unit vector.
We differentiate the identity (2) with respect to s and find

(3) m*Lθζ> + » i _ Q c ' = 0 , z e C, C e C .
' dzdζ dzdζ

We multiply this identity by z1 and using the symmetry of the first
term in z and ζ as well as the hermitian symmetry of the second term,
we conclude :

(4) L(z, ζ)z'ζ' = real f or z e C, ζ e C .

By use of (1), we may express this result also in the form

(5)

This identity is of great interest since the left side expression is a
differential depending on the Green's function while the right hand term
depends only on the geometry of the curve system C. Moreover, it
can be shown that ϊ(z, ζ) is continuous in both variables in the closed
domain D + C [3, 21]. We may pass to the limit z = ζ on both sides
of (5) an easy calculation yields the boundary condition
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Let us denote by K — κ{s) the curvature of C at z(s) then (6) obtains
the elegant form

(7)

In particular, we note that (7) and our assumptions on C yield the

THEOREM. The function ΐ(z, z) is a quadratic differential of D, i.e.,
satisfies

( 70 ΐ(z, z)z'2 = real on C

if and only if D is a domain bounded by circumferences CJt

(b) Let z* — f(z) be a univalent analytic function in D which maps this

domain into Dλί. The conformal in variance of the Green's function is

expressed by the identity

(8) §*(«*, C*) = flf(«, C)

which leads by differentiation to

(9) L*(s*, C*)/W'(C) = Uz, C)

The 1-kernel has, therefore, the transformation law

(10) Γ*(s*, <:

and, as a simple calculation shows, in particular

(11) ϊ*(z*, z*)f'(zγ = ϊ(z, z) + λ. {/, z}
bπ

where

(12) {f9Z}=fy&--

is the Schwarzian derivative of f(z).

After these remarks on the kernel L(z, ζ), we introduce now a new
kernel by the following formula which is modeled after (1):

(13) L*(z. C) — — ———

This kernel is regular analytic and symmetric in both its arguments in

D and in D, except for a double pole for z — ζ. We define further

two kernels which are regular analytic for z, ζ e D and for z, ζ e D,

respectively :
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(14) h(z, C) = ^ΓZΓζy ~ \L^Z> C ) i n D

and

(15) Ϊ9(z, 0 = π(z^γ ~ L'(z> ° inϊ)-

These kernels have elegant developments in terms of the complex eigen
functions of the Fredholm integral equation. We start with the Fourier
developments (2.16) and (2.21) for gB(z, C) in terms of the harmonic
eigen functions hv(z) and hv{z). Using definition (1.17) and (2.21), we
obtain by differentiation

(16) W. 0 = (i - -1 )fe, 0 + Σ -T
V ε/L v-i p(

where the Vv(z) are the analytic functions whose real part is h^z). As
pointed out in the preceding section, all V[{z) have a different normaliza-
tion and it is more convenient to introduce the functions uv(z) defined
by (6.36) which have all the norm 1. Then (16) transforms to

(17) h(z, 0 = ( l - I)Γl<*, 0 + Σ TΓ
V ε /L v-i (1 + p)( p)

We observe next that with each eigen value λv > 0 which belongs
to u*(z), there occurs also the eigen value — Λv and it belongs to the
eigen function iuv{z). This assertion can be verified directly from the
complex integral equations (1.36) and (1.37) it is also a consequence of
the fact, noted in § 1, that if λv belongs to an eigen function λv(s) then
— λv will be an eigen value with the conjugate harmonic eigen function
ky(z). Thus, in formula (17), each product uv(z) uv(ζ) occurs, therefore,
twice once coupled with pv and the other time with opposite sign and
coupled with l/pv. We combine these pairs of terms and sum now only
over those v which correspond to the positive eigen values λv. Using
(2.12), we obtain finally

(18) Uz, o = ( i - A.)Γi(*f c) - Σ

-L y

-! λl - E2

with the notation

(W) S=i^i.

Passing to the limit ε = 0 and using the limit relation (3.31), we derive
first from (18)
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(ZO) l(z, ζ) = 2 J —^_2v?./_

and, hence, (18) simplifies to

Similarly, we transform (15) by differentiation of (2.16) into the
identity

(22) Uz, C) = (ε - 1) Σ γ/^$Pr~T
v=i(l + />v)(l + εpv)

and replacing F{(z) by ύv(z) by means of (6.36), we find

(23) Zβ(z, C) = - (ε - l ) Σ α \_ ^ ^

We combine again terms with pv and with l/^v and sum only over the
positive eigen values λv an easy calculation leads to

(^4) f 8(3, C) = -^ 2-J T^ ™ M —
V = l Ay — U/ ΛV

The complete symmetry between (21) and (24) is evident.
We consider the limit cases ε = 0 and ε = co of formula (24) which

correspond both to E2 = 1. From (3.11) and (3.17) follows

We can, therefore, express \z, C) by means of (3.3) in the form

(26) λ(z, C) - ϊ(z, C) ~ Σ 1 ^*^(«)wί(C)
2TΓ J , * - " l

where wό{z) denotes the analytic completion of the harmonic measure

ωj(z). Formula (26) is the counterpart for D of the relation (20) in D.

The kernel λ(z, C) is composed of functions with single-valued integral

in D the kernel ΐ(z, ζ) differs from it by a kernel which is composed

of a basis of iV — 1 functions in D which do not have a single-valued

integral and which are orthogonal in the Dirichlet metric to all functions

in D with single-valued integral.
For the sake of completeness, we give also the Fourier developments

of the kernels
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(27) K9(z,ζ)=- 2 d ^ ^ l i n ΰ
πε dzdζ

and

(28) K.(z, C) = - — ̂ % ί l in ΐ) .

Both kernels are analytic and have hermitian symmetry in their argu-
ments. Putting

(29) K{z,0= -λ^izλQ
π dzdζ

we obtain by differentiation of (2.21) after the above combination of
terms

(30) K(z, C) = (1 - - ) | K(z, ζ) - Σ ^ W ί

i τπ \r* ^v — 1

Again, we obtain by passage to the limit ε = 0 and in view of (3.31)

(31) K(z, C) = Σ Uy(z)ΰXζ)

which reduces formula (30) to

__ co 32 I
/QO\ 77" i~ r\ 77T v^ Λv -L n. (~\n, ίr\
(όZ) K2(z, ζ) = hXi — ™^v(«)^v(C)

V = l Ay hi

Similarly, we find by differentiation of (2.16) the identity

\θ6) &s\Z, ζ) — hi 2 J 2 -Wv(2)Wv(U

Formulas (21), (24), (32) and (33) for the various kernels depend on
ε only through E and this simple rational function of ε has the symmetry
property ^(1/ε) = — i?(ε). This leads to the interesting identities :

/Qy|\ 9 Qs\Zf ζ) O Qιi2\Z, ζ j O Qζ\Z9 ζ) uQiisyZf ζ)
\o^±) - - = —

dzdζ dzdζ dzdζ d z d ζ

if z,ζe£) and to a similar identity in z9ζ e D. These relations are
known in the limit case ε = 0 where they represent differential relations
between the Green's and the Neumann's function [2, 5, 21].

We define next the Fredholm determinant of the basic integral
equation (1.2), Observe again that with each positive eigen value λv
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occurs also the eigen value — λv in equal multiplicity. We may thus
write

(35) D{E) = ft ( l -
E2

where the product is to be extended over all positive eigen values λv > 1.
By use of the variational formulas (6.38) and (6.39) and of the

identities (21) and (24) one can establish readily the

THEOREM. If the curve system C is varied according to (6.1) the
Fredholm determinant D(E) changes according to the variational formulas

(36) δ log D(E) = - 2π$i{al(z0, z0)} for z0 e D

and

(37) δ log D(E) = - 2τr9ft{αie(s0, z0)} for z,eϊ) .

E(e) is the rational function (19) of ε.
The elegant and symmetric variational formulas (36) and (37) show

the theoretical interest of the Fredholm determinant (35). We observe
that, in particular, for ε = oo and E = 1 we have by (20) and (25)

2πϊR{ctl(zQ, z0)} for z0 e D(38)

and

(38')

δ\ogD(l) =

δ log D(l) = 2πϊR{aλ(z09 z0)} for z0 e D .

The functional (35) is defined only for curve systems C which are
sufficiently differentiate. This fact creates difficulties in applications of
the above variational formulas to extremum problems for the Fredholm
determinant since it is not sure, a priori, that the extremum system C
will have the required smoothness. In many problems, however, it can
be shown that the very property of being an extremum set guarantees
already that the curve system C is analytic. Thus, we may restrict
ourselves from the beginning to the class of analytic curve systems C
and formulate the extremum problems only within this class. A first
result for a general theory of extremum problems for the Fredholm
determinants is the fact that D(E) is semi-continuous from above in the
class of all analytic curve systems C. In fact, we will prove the

THEOREM. Let Dn be a sequence of domains, each being bounded by
an analytic curve system Cn and with the Fredholm determinant Dn(E).
If the domains ί)n converge in the Caratheodory sense to a domain D
with analytic boundary C and with the Fredholm determinant D(E)f

then we have for all E > 0
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(39) lim Dn(E) < D{E) .

Proof. We define the kernel

(40) ί«(z, 0 = J jl(s,

and define then recursively

(41)

We remark that

(42)

We denote the corresponding expressions referring to the domain Dn by
the subscripts n. We assert, at first :

(43) \imS(*j) > SW

To prove this assertion, we select a number δ > 0 arbitrarily small

and determine a closed subdomain Δ of D such that

(44)

By the definitions (25), (40), (41) and in view of the continuous dependence

of the Green's function G(z, ζ) on its domain j5, the kernels 42j)(z, C)

converge to I(2j)(£, ζ) uniformly in each closed subdomain of Z), in

particular in 2. Given δ, we can choose n(δ) such that for n > n(δ) the

domains Dn contain Δ and that

(45) JJ

[ [ z , z)dτz - δ > SW - 2δ

Since δ can be chosen arbitrarily small, these inequalities imply (43).
We observe next that by definition (35)

(46) - log D(E) - Σ ±E2jS^

and a corresponding representation is valid for — log Dn(E). Hence,
from (43) follows immediately the asserted inequality (39) and the
theorem is proved.
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The significance of this theorem is the following. Let 21 be a family
of analytic curve systems C and let us ask for the maximum of D(E)
within the family 21, for some fixed value E. We know that by its
definition D(E) < 1 and is thus trivially bounded in 21. Let U < 1
denote the least upper bound of D(E) in 21 we can select an extremum
sequence of curve sets Cn in 3ί such that Dn(E) converges to U. If it
is possible to select a subsequence Cnl of the Cn such that the correspond-
ing domains Dnl converge to a domain DQ with analytic boundary Co e 2ί,
then Co is a maximum curve system. For, by our theorem (38), we
have D0(E) > U and, hence, D0(E) = U since no D(E) in 21 can be larger
than U. This argument will be applied in the following section to an
interesting problem of conformal mapping.

8 An extremum problem for Fredholm determinants and an
existence proof for circular mappings. In this section, we shall utilize the
variational formulas for the Fredholm determinants in order to solve a
specific maximum problem. The extremum domains of this problem will
be characterized by the property that their boundary C consists of
circumferences. In this way, we will then prove that every plane domain
can be mapped conformally upon a canonical domain whose boundaries
are circumferences. This canonical mapping will appear as the solution
of a simple extremum problem for the family of all univalent mappings
of the given domain.

We formulate the following extremum problem :
Let I) be a domain in the complex £-plane which contains the point

at infinity and which is bounded by N closed analytic curves C. Let
J^~ be the family of all functions t = f(z) which are analytic in D + C,
normalized at infinity by /'(c°) = 1 and are univalent in D. Each
f(z) e j^~ will map Ό upon a domain 2 with analytic boundary Γ and
with the Fredholm determinants Δ(E). We ask for the functions
f(z) 6 J?~ which lead to the maximum value of 4(1).

The existence of such maximum functions is by no means obvious.
We can assert only that all determinants Δ(l) obtained by mappings of
the family j^~ have a least upper bound U < 1. Hence, we may select
a sequence of mappings fn(z) e J?" such that

(1) Iim4n(l)= U.
n->oo

Since the fn(z) sue univalent in I) we can use the well-known
normality properties of these functions and assume without loss of
generality that the fn(z) converge to a limit function f(z), uniformly in
each closed subdomain of Zλ The limit function f(z) provides a univalent
map of D into a domain 2 and is normalized at infinity. The image
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domains Δn converge in the Caratheodory sense to Δ. If we could prove

that Δ has an analytic boundary Γ, we would know that f(z) e ^ and

the semi-continuity from above of Δ(l) would insure Δ(l) = U, i.e., that

f(z) is a maximum function.

In order to prove the fact f(z) e J^~ we consider the maximum

sequence fn(z) which converges to f(z). We want to characterize this

sequence by comparing it with near-by sequences obtained by infinitesimal

variations of their image domains 2n. However, if we subject a multiply-

connected domain Δn to an interior variation (6.1), we will, in general,

obtain a domain 2* which is not conformally equivalent to Δn and cannot

be obtained from D by a mapping of the family j ^ ~ . Let, indeed, ωt(t)

be the harmonic measure of the boundary component Γι of Γ with

respect to 2 and let ((pJk)) denote the period matrix (2.18") of this set

of harmonic measures. The period matrix ((pjJc)) is a conformal invariant

and if we preserve the point at infinity under the conformal mappings,

the numbers ω t(ω) must likewise be unchanged. On the other hand,

it is well-known [5, 15, 21] that under a variation of the £-plane of the

type (6.1) and with the singular point tQ e 2, we have

( 2 ) <p% = pjk + ?R{aw'3(t0)wk(t0)} + O(| a |2)

and

( 3 ) ωf(oo) = ωι(oo) + 3t{αp'(ί0, ™)w[(tQ)} + 0(1 a \2)

where again wt(t) and p(t, τ) denote the analytic completions in t of the

harmonic functions ωτ{t) and g(t, τ) in Δ. We see that, in general, the

numbers pjk and ^(oo) will change under interior variations and that

the domain 2* will not be obtained from D by a mapping of the family

Consider now m points tμ in 2 and the variation

( 4 ) ί* = t + Σ -aμ— + 0( | a |2) , \a\- max (| aμ |)
μ-l t — tμ M-

where the error term is estimated uniformly in Δ + Γ. We may choose
the aμ and the correction term 0(\a |2) such that

( 5 )

( 6 ) 31 j Σ «μP'(*μ, °° )w'l(tμ)\ =

and
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It can be shown, indeed, that given such values tμ and aμ, the variation
(4) can be selected in such a way that 2* is conformally equivalent to
2 and that the points at infinity correspond [21]. Even now, we cannot
assert that D goes into 2* by a mapping of the family ^~ which is
normalized at infinity. However, the Fredholm determinants do not
change under a homothetic mapping of a domain and, hence, the insistence
on the normalization at infinity is unnecessary in our problem. Thus,
the above variations (4) will transform the domains Δn of the extremum
sequence into conformally equivalent domains 2% whose Fredholm
determinants z/*(l) may be compared with the maximum sequence Δn(l).

We observe that the functions w'3(t) w'k(t) and p'(t, oo) wΊ(t) are
quadratic differentials of 2, i.e., functions Qk(t) which are regular analytic
in Δ + Γ and satisfy on Γ the boundary condition

( 8 ) QΛ(ί)ί'2 = real .

At infinity all these functions satisfy the asymptotic relation

(9) Q*(*) = O(lt |^ 8).

All functions with the properties (8) and (9) from a linear space with
real coefficients and of the dimension 3ΛΓ-3. We suppose that we have
chosen from the above N(N + 1) quadratic differentials a fixed basis of
3ΛΓ-3 elements Qk(t), A; = 1, 2, - , 3N-S.

After these preparations, we return to our maximum sequence of
domains Δn we denote by Qίn)(t) the corresponding basis of quadratic
differentials of Δn and by Qk(t) the basis for their limit domain 2.
Clearly, we can choose the basis in each Δn and in 2 such that

(10) limQLn)(ί) = Qft(ί),

W-s oo

uniformly in each closed subdomain of Δ. The determinant

(11) det || ^{QM} || , I, k = 1, 2, . . . , 3ΛΓ-3
does not vanish identically in 2 because of the supposed real independence

of the Qk(t). Hence, we can determine 3iV-3 points ί μ e l such that

(12) det || K{QίnXtμ)} | | * = 0 k, μ - 1, 2, . . . , 3ΛΓ-3

for large enough n we may even assume, without loss of generality,
that (12) holds for all integers n.

Let ί0 be an arbitrary point in Δn and α ( w ) be an arbitrary complex
number. We determine 3Λ/"-3 real numbers x™ by the linear equations

3JST-3

(13) SJlfαWQίΓW} - Σ <^{QiM)(U} . k = 1, 2, . ., 3ΛΓ-3
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which is always posible because of (12). Observe that x™ — O(i a (/° |)

for small values of α ( w ) . Consider then the interior variation of Δn

,-,(%) 3JV-3 ^(n)

(14) ί* = ί + a - - Σ μ - + 0(1 α w |2) .

This variation is of the type (4), but by the choice (13) of the x^, we

are sure that the equations (5) and (6) will be fulfilled. We can,

therefore, adjust the error term 0(\ α ( w ) |2) in such a way that the varied

domain i * is conformally equivalent to Δn and such that the points at

infinity correspond. Hence, 2* may be used as a competing domain

sequence to the maximum sequence Δn. We apply now the variational

formula (7.38') in order to characterize the limit domain Δ.

We derive from (7.38') that the variation (14) of Δn yields

(15) log Δ*(l) - log Δn(l) - 27r3t{α«ίn(ί0, ί0)}
3N-3 ^

+ 2π Σ xΐ^{Utμ, tμ)} + 0(1 a^ |2) .
l

Here, the λn(t91) denote the )ι-kernels of Δn. We denote

(16) δn = \ogU~ log Δn(l) .

By the definition of the maximum sequence, we have 0 < δn-+0. Since
log Λΐ(l) < log U, we infer from (Ie5) the inequality

(17) > A > - 9t{αwJB(<o, ί0)} + Σ x^'Mt,, tμ)} + 0( | α w |») .

We choose finally

(18) ct^ = (5wreίτ , r > 0

and define the real numbers $μ by the system of linear equations

(19) Σ ^{QΛt,)} = metτQΛQ} , k = l, , SN-S .
μ = l

We divide equations (13) and (17) by δn and pass to the limit n -> oo
comparing (13) with (19), we find

(20) lim * ^ = ξ,

and since at t0, tl9 , ί3Λr_3 holds

(21) lim ?n(ίμ, tμ) = \tμ9 tμ) ,

we obtain from (17)
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1 ^ 3 i V 3

(22) ι > - 5K{<Λ?(ί0, ί0)} + Σ
2ττr μ-i

This inequality holds for arbitrary values r > 0 hence, sending r -> co,
we find

-v. 3iV-3 ^

(23) 0 > - SR{e'^(ί0, ί0)} + Σ ξμ3t{λ(tμ, tμ)} .
μ=1

If we replace in (19) the signum eiτ by — eίτ, the solution vector
ξμ changes into — fμ. Since eίτ is entirely arbitrary, the inequality (23)
must also hold for inverted sign of the right hand term. Thus, we
arrive finally at the equation

^ 3IV-3 ^

(24) 9t{elτΛ(ί0,«.)} = Σ ξ^{λ(tμ, tμ)} .
μ = l

valid for arbitrary choice of the signum eiτ and the corresponding

choice (19) of the fμ. The fact that, for given fixed t19 •• ,ί3Λτ-3 in 2

and for arbitrary ί0 e 2, the linear equations (19) always imply the

equation (24) for arbitrary eι\ guarantees the existence of 3ΛΓ-3 real

numbers βμ(μ — 1, •••, 3ΛΓ-3) such that

3N-3

(25) ^(ί, ί) = Σ β.QΛt)

This identity is then the condition which characterizes the limit domain

Δ of an extremum sequence Δn.

Since, in view of (7.26), the function λ(t, t) coincides with the more

fundamental kernel l(t, t) except for a quadratic differential, we may

express the result (25) as follows :

THEOREM I. If A is the limit domain of a maximum sequence Δn,

its l-kernel satisfies the condition

(26) Γ(ί, ί) - Q(t)

where Q(t) is a quadratic differential of Δ.
Prom Theorem I, we can deduce

THEOREM II. All boundary curves Γx of Δ are analytic.

Proof. Let us express equation (26) in terms of functionals of the
original domain D which is conformally equivalent to Δ. By (7.11) and
because of the covariance character of the quadratic differentials under
conformal mapping, we can express (26) in the form

(27) ϊ(*,*) + ~{f,z} =Q(z)
O7Γ
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where Q(z) is the quadratic differential in D which corresponds to Q(t)
under the mapping t = f(z) of D into A and ϊ(z, z) denotes the i-kernel
of D. We have assumed that D has analytic boundaries C3 hence, we
can assert that l(z, z) and Q(z) are analytic in the closed region D + C.
By (7.12), we may now interpret the equation (27) as a linear differential
equation with analytic coefficient in D + C :

(28) μ''(z) + 3π[Q(z) - ϊ(z, z)]μ(z) = 0

for the unknown function

(29) μ(z) =

From the general theory of ordinary differential equations we obtain
that μ(z) is regular analytic in Z) + C and can have only finitely many
zeros on C. Hence, f'(z) is analytic on C except for poles which are at
least of order 2. At such singular points on C,f(z) would have poles
too. But f(z) is univalent in D and has already a pole at infinity. It
cannot have additional poles on C hence, f(z) and f'{z) are regular
analytic on C and the theorem is proved.

In particular, we have now shown that the limit function f(z) of
the maximum sequence fn(z) belongs also to the family J?r considered
and is, therefore, a maximum function of our problem.

Since we know now that the boundary curves Γz of Δ are analytic,
we can combine (26) with (7.7) and find :

(30) 3{f(ί, t)n = 3f{Q(*)*"} = — -J 1

bπ as

But Q(ί) is a quadratic differential of A thus we arrive at

(31) dιc = 0 on each Γ% .

ds
This leads to

THEOREM III. Each boundary curve Γι of the maximum domain
A is a circumference.

Since in each given domain D there exists at least one maximum
sequence fn(z) e ^ , we have given a new proof for the classical theorem
[5,7,8,9,23]:

THEOREM IV. Every plane domain D can be mapped onto a domain
bounded by circumferences.

Since the domain A is the limit of a maximum sequence of domains
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Δn and since it is analytically bounded, the semi-continuity of the
Fredholm determinants leads to

THEOREM V. Among all conformally equivalent domains, the
circular domains have the largest value of the Fredholm determinant
DO).
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