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In this paper* we consider analytic continuation of power series by
matrix methods in arbitrary fields complete with respect to a valuation.
In the complex field continuation can generally be achieved by a formal
expansion of the given power series about a point in its circle of con-
vergence. The new series (with power series coefficients) generally
exists and converges over a circle extending beyond the circle of con-
vergence of the original series.

When the field is non-Archimedean however the new circle of con-
vergence is always contained in the old. Hence in this case we need
have recourse to a summability method. In this paper we consider
a certain class of matrix methods which can be applied to the power
series coefficients appearing in the formal expansion of the original
series about points outside the original circle of convergence. The methods
will be applicable in Archimedean or non-Archimedean fields.

The work here is based upon Chapter 3 of the author's PhD dis-
sertation written under the direction of Prof. G. K. Kalisch at the
University of Minnesota in 1955.

l Notations and definitions* Throughout the paper k shall be a field
which is complete with respect to a valuation, denoted by | |. Unless
stated explicitely to the contrary the valuation may be either Archimedean
or non-Archimedean. It is useful to note that, by a theorem of Ostrowski,
if the valuation is Archimedean then k is topologically isomorphic with
the real or complex numbers.

We shall designate the collection of all infinite series with terms in
fc by S. Further we introduce an operation, the Cauchy product, into
S. If C — Σ π ^ i a n ( i C = ΣΓ-oβ* &re ίn S then the Cauchy product
CC is defined by

This product is clearly in S; so Sis closed relative to this multiplication.
The subset of S consisting of all unconditionally convergent series

will be denoted by T. When k is non-Archimedean T coincides with the

* This paper was originally accepted by the Trans. Amer. Math. Soc, received by
the editors of the Trans. Amer. Math. Soc. January 16, 1957, in revised form April 18,
1958. The author wishes to express his thanks to the referee who through his extensive
comments on the first version has changed the character of the whole paper and has
increased its generality in certain respects.
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set of all convergent series since in this case a series converges if and
only if its nth term goes to 0. When k is Archimedean T coincides
with the collection of all absolutely convergent series. A theorem of
Mertens in the Archimedean case (which remains true in the non-
Archimedean case) assures us that T is closed relative to the multipli-
cation defined in S. Further by the same theorem if C, C converge
respectively to c,c' then CC converges to ccr.

The set of series in T which converge to non-zero limits will be
denoted by T*. From the last sentence of the preceding paragraph we
see that ϊ 7 * is closed under multiplication.

The set of infinite matrices (atJ), i = 0,1, 2, j = 0,1, 2, where
ai5 is in k for all ί, j will be denoted by M. We introduce into M two
operations—addition and multiplication. Addition is unrestictedly defined
by the following:

w&i = (aίj)> m2 = Φij) then mλ + m2 = (aυ + btJ) .

Clearly m1 + m2 is in M.
Multiplication is not unrestrictedly defined. We have the following

definition (m1 and m2 as above):

mxm2 — (c^) providing ci} = ^aiqbqj converges for all i, j .

We shall be interested in mappings from subsets of S into M. A mul-
tiplicative homomorphism from a subset V of S into M is a mapping / of
V into M such that when Clf C2 and C,C2 are in V then f{Cλ)f{C2) is
defined and

2 The matrices Ao and Bo.

DEFINITION 1. Let C = Σ«°=o^ be in S.
(a) Bσ = (bij) where biό = Cj_4 and c ^ is taken to be 0 when j < i;
(b) If C converges to c Φ 0 then A^ = Boic)'1 where (c) is the

diagonal matrix with all diagonal elements c.

LEMMA 1. The map C -> Bo is a multiplicative homomorphism of
S into M.

Proof. Let C=ΣΓ-oC 4, C' = ΣΓ-Oc{ be in S. Then
where cl = Σ'-oCjC{_i,. Thus jβσσ/ =(cj-t). Since β σ and 5^, each have
only finitely many non-zero terms in each column BCBG, is defined. Fur-
ther BoBOr — (dtJ) where

j j-i

q=0 ς=i 5=0
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Hence BCBO, = Bco, and the lemma is proved.

LEMMA 2. Let C, C be in S and suppose they converge respectively
to the non-zero sums c, c\ Then AOAC, exists and AcAa, — Aco, pro-
viding CC converges to cc'.

Proof. AG = Bc(c)-\ Ac = Bc^c')'1 and therefore

AoAo, = BcίcY'Bcic'Y1 = Bccicc')-1 = AΌΌ. .

COROLLARY. The map C —• Ao is a multiplicative homomorphism
of T* into M.

We now introduce a norm into T and two topologies into M.

DEFINITION 2. The norm of C, denoted by \C\T, for C = Σί°=o^ in
Γ is defined by:

[max | c t | for k non-Archimedean

' C ' Γ = I Σ k<| for k Archimedean .
U = 0

By restricting our C to be in T we insure that this norm is defined.
The following properties are valid for arbitrary k.

\C + C'\T<\C\T + \C'\T;

\CC'\T<\C\T\C'\T;

\aC\τ = \a\ \C\T for a in k .

If k is non-Archimedean the first two properties can be strengthened
to read

, \C'\T)\

Defining addition in T to be componentwise addition we see that T
is a normed ring.

DEFINITION 3. (a) The weak topology in M is the topology induced
on M by making the sequence mn = (aif) of matrices converge to the
matrix (ai3) if and only if for all i, j we have a[f -> ai}. When this is
true we say that the sequence mn converges weakly to {ai3).

(b) If, for an arbitrary positive real number r, we denote the set
of all matrices {aiό) with \ai3\ < r, for all ΐ, j , by Mr then the set of
Mr gives a basis system for the open sets about the additive identity
0 in Λf. This induces on M the topology of the additive group of M
and is called the uniform topology.
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We note that addition and multiplication (when the latter is defined)
are continuous in both topologies in M. Also if a sequence of matrices
converges in the uniform topology it converges in the weak topology.

We shall denote by M the collection of matrices m = (ai3) for which

max \atJ\ exists. For m in M we define \m\ = max \atJ\. This induces

the same topology on M which the uniform topology of M induces on M.

LEMMA 3. The map C -+ Bc is a continuous map of T into M under
either the uniform or weak topologies of M.

Proof. Since C is in T, max \ct\ exists and is < \C\T. As Bc =

(cj-i) the norm of Bo, in M, is given by

\B0\ = max Jcj-il = max \ct\ < \C\T.

Therefore the map of T into M is continuous with respect to the

norm topology of M. Since this topology is induced by the uniform
topology of M this map is continuous relative to the uniform topology.
This then implies continuity relative to the weak topology and the lemma
is proved.

LEMMA 4. The map C -> Ao is a continuous map of T* into M un-
der either the uniform or weak topologies of M.

Proof. Ao = Bc{c)~ι where c Φ 0 is the sum of C. Since multipli-
cation in M is continuous in either topology as is the map C -> BG (by
previous lemma) we need only show that the map C —> (c)"1 is continuous.
This is the product of three maps C -> c -> c~λ -> (c)"1.

The first is continuous since it is an additive homomorphism and \c\ <

\C\T. The second is a continuous map on k* (the non-zero elements of

k). The third map is a ring isomorphism into M preserving norms. I.e.

\c~λ\ = max jc"1! = I ( c 1 ) | . Hence this map is continuous into Mrelative

to the norm in M. As in the proof of Lemma 3 this concludes the proof.
We define the convergence of an infinite product Πn-iC n , Cn in T,

in the usual way. That is, ΠΓ=iCM converges providing l i m ^ Π L Cn

exists and is not the additive identity of T. Making use of the theorem:
Π~=i Cnf Cn in T9 converges if and only if |1 — Cn\τ -> 0 as n -> OD

(where 1 is the multiplicative identity in T).
We deduce from Lemma 4 the following immediate consequence.

THEOREM 1. Let Σ"- i Cn converge and suppose Cn is in T* for all
n. Then ΠίΓ«i Ao converges relative to both weak and uniform topologies
of M and its limit is
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3 T2 matrices and C(x)-continuation Each infinite matrix m can
be thought of as a mapping defined over a subset of S and mapping
this subset into S. In fact, let m = (ai}) and suppose C = ΣΠ=A is in
S. Then if, for all j , the series ΣΓ-oCiflίj exists and equals c'ό we shall
say that the matrix m maps C onto C' = ΣΓ-<>cJ. We shall write
mC - C".

(If we let C* be the " vector " (c0, cx, c2, •) derived in the obvious
way from C then C * = (mC)* = C* m where the right side is the
ordinary matrix product of C* and m.)

When C has sum c then C" has sum c we call m a Γ2 matrix.
Necessary and sufficient conditions in order that an infinite matrix be
a T2 matrix will be found in [2] for k Archimedean and in [8ab] for k
non-Archimedean. (In the reference [2] the T2 matrix is called an a
matrix.)

Now suppose C = ΣΓ-oco C — ΣΓ-o^ί a r e ίn ϊ1 with sums <?, & re-
spectively. Then CC exists and

where Bo is as defined in § 2.
Since in this case CC converges to ccf we see that BG maps con-

vergent series onto convergent series but alters the sum by a factor of
c. Thus for C in Γ*, Aσ = ^(c)" 1 will map convergent series onto con-
vergent series with the same sum. This proves the following.

LEMMA 5. If C is in T* then Ao is a T2 matrix.

We wish now to consider series of functions. Let C(x) — £Γ=oΦ)
and U(x) — Σ ΐ l o ^ W where x ranges over some subset X of k. Sup-
pose in addition that C(x) is in T* for all x in D where D is a subset
of X. Further suppose there is a non-empty subset Δ of D on which
U(x) converges. Then, by Lemma 5, Ac<ix^ is a T2 matrix for x in D
and therefore transforms U(x)9 for x in Δ, into a new series with the
same sum. However it may be true that AG{x^U(x) is defined and con-
verges for some x in D — Δ.

The sum function u'(x), considered over the largest portion of D on
which Aoίχ)U(%) exists and converges, will be called the C(x)-continuation
of U(x) (or more accurately the C(#)-continuation of the sum function
u(x) of U(x)). The C(#)-continuation will be called efficient for U(x) if
there exists an x in D — Δ for which A0Cx:> exists and converges.

In Archimedean fields it is possible for an infinite series to converge
conditionally. If C(x) converges conditionally for some x then Acw is
defined but is not necessarily a T2 matrix (since the Cauchy product of
conditionally convergent series may not converge). Considering X now
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to be a topological space we can speak of the closure D of D in X. Let

x be in D and suppose that when y in D converges to x in certain pre-

scribed ways then C(x), U(x), ACCx:>U(x) converge respectively to

^ c(y), lim^x u(y), l i m ^ u\y)

when these limits exist. When x is in D we know u(x) = u'(x) so A0{7i)U(x)
converges when U(x) does. Thus if c(x), u(x), u\x) are continuous over D
then for x in Ό1 whatever the prescribed ways y in D tends to x, we
have C(x), U(x), Acίx), U(x) converging respectively to

l i m ^ c(y), l i m ^ u(y)9 l i m ^ u\y).

Let D* be the set of all x in B for which C($), Ϊ7(aj), A0(z)U(x) have
the respective limits specified above as y -> x in one of the prescribed
ways. Then Z) c D* c D when φ θ , tt(αj), ̂ '(#) a r e continuous over D.
The function w'(ce), considered over I?*, will be called a generalized
C(x)-continuatίon of £/"($) (relative to the allowed modes of convergence
of y in D to <c in D*).

4# Power series and the Weierstrass decomposition theorem.. In this
section we take the X of § 3 to be all of k and suppose C(x) and U(x)
to be power series about a in k. Then we may take, without loss of
generality, the set D to be a circle with center a from which have been
excised all zeros of C(x). Then A is the intersection of D with some
circle of center α. When k is non-Archimedean D — D and when k is
Archimedean D is the closed circle about a of the same radius as D.
Thus (by AbeΓs theorem in the Archimedean case) if we prescribe y in
D to converge to x in D — D only radially we can take D* = D.

THEOREM 2. For ^0 Φ 0, n = 0,1, 2, let Cn(x0) = ^ΐ=ΰanixl and
C(x0) = ΣΓ=o^(^o) ί>0 iw Γ T/iβ^ i/ Cn(xQ)-* C(x0) the following are
true.

(i) /or eαc/̂  i there is an at such that lim „_>«, αwί = α̂
(ii) α 4 4 = CiiXo) .

ΓΛαί is, C(x0) is the term by term limit of Cn(x0) when it is the limit
in the T norm.

Proof. Since | Cn(x0) - C(x0) | τ -* 0 we have | Cn(x0) - Cm(x0) | Γ -> 0 as

n,m-> cx> independently. But

α n i - αTOi| |a?0|*

in the cases where k is non-Archimedean or Archimedean respectively.

In either event \ani — ami\ |a?0|* < |Cn(a?0) — CTO(#0)|Γ -> 0. Hence by com-
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pleteness of k there is an at such that ant -> ait This proves (i). To prove

(ii) we have

[αέx* - ct(x0)\ < |αta?J - anix\\ + \anix\ - c4(a?0)l

< |αta?S - anix[\ + \Cn(x0) - C(xo)\τ .

Since both terms on the right tend to zero the proof of (ii) is completed.
We now suppose that k is algebraically closed and is non-Archimedean.

If C(x) = ΣΓ-o0ί#* ^s a n e n t i r e power series (i.e. C(x) is in T for all x
in k) which is not identically zero then by the analogue of the Weierstrass
decomposition theorem in algebraically closed non-Archimedean fields (see
Schobe [10] and Schnirelman [11]) we can express C(x) as the formal
limit of

a^o Π (1 - Φn)

where i0 is the multiplicity of the zero x = 0 of the sum c(x) of C(x)
and where zq ranges over the set of non-zero zeros of c(x), each factor
1 — xjzq occuring a number of times equal to the multiplicity of zq as
a zero of c(x).

Schobe [10] has also proved that |^Q | —> oo as g-*oo. Therefore,
since the terms of the product are power series and 1 + (1 — x/zq) =
x\zq has \xlzq\τ -> 0, the product Πβ-o° (1 — Φ*)> when infinite, converges
for every x in lc, relative to the topology of T. Hence by Theorem 2
above this product converges to C(x). These remarks combined with
Theorem 1 prove the following theorem. The notation is as above.

THEOREM 3. Let C(x) be an entire power series. Then for x a non-
zero of the sum function c(x) of C(x) we have

I I

where, if n is infinite, the right side converges to the left in both the
uniform and weak topologies of M.

In the case of the complex field the original Weierstrass decompo-
sition theorem gives an analogous result where the Aλ-xiz are replaced
by more complicated matrices corresponding to the primary factors of
C(x).

5 Meromorphic functions and C(#)-continuation. If the function
f(x) has a Taylor series expansion X Γ = o Φ ~ aY about a in k which
converges to f(x) in its circle of convergence we shall denote this series
by [f {%)]*• If D is the circle of convergence and y is an interior point
of D we can expand [f(x)]Λ about y to obtain (formally) [f(x)]v. Thus
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[/(*)]» ~ Σ Σ (* t j)ai+J(y - ay(χ - yf .

We shall denote Σ"-o(* \ 3)aι+){y ~ a)} by [/f(y)]e. When the char-
racteristic of A; is 0 we know

(Although much of what we shall say is true for fields of arbitrary
characteristic we confine ourselves to fields of characteristic 0 in order
to simplify the discussion.)

Letting f^y) be the sum function of [fi(y)]a we have

ίf(x)l = tfάv)(x - vY .

It is known that in both the Archimedean and non-Archimedean
case that for all i, [f^y)]* converges for all y in D. However in the
Archimedean case it is often true that there is a circle Dlf not contained
wholly within D, and in which, for all i, [fi(y)~\* converges and
ΣΓ-o [/«(!/)] (% - VY converges in Dλ to f(x).

This allows one to step by step recover the function f(x) from
a power series element [/(x)]* of the function. When k is non-Archi-
medean it can be shown that no such circle as Dλ can ever exist. Thus
the usual method of analytic continuation necessarily fails in such fields.
In this section we shall show how C(#)-continuation can be applied in
the case of the continuation of power series elements of meromorphic
functions with known denominators (see below).

Let D be a circle in k (D open if k is Archimedean) with center α.
A function f(x) defined over some subset of k will be side to be mero-
morphic over D if there exist two series [g(xj] , [h(x)]Λ convergent on D
such that

(i) f(x) is defined for x in D if and only if h(x) Φ 0
(ii) f(%) = g(x)jh(x) everywhere on D where defined.

The function h(x) will be called a denominator of f(x) over D. If D is
the greatest such circle we call it the circle of meromorphy of f{x).

LEMMA 6. If f(x) is meromorphic on D with denominator h(x) and
if a is in D then f(x) is the \hix^\^continuation of

Proof. Let x be in D, h(x) Φ 0. Then there is a g(x) such that
[#(#)]* converges on D and f(x) = g(x)/h(x). Now f(x) is the sum func-
tion of
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and the lemma is proved.

THEOREM 4. Let f(x) be meromorphic on D with denominator
h(x). Further for a in D let

have circle of convergence contained in D. Then

is in D, h(y) Φ 0, and fι(y) is the [h(yy\l+}-continuation of

Proof. As seen above the formal expansion of [/(#)L about /̂ is
given by

Σ

where

But

=

dyι dyι

where t(y) is a polynomial in g(y) and fe(^/). Thus [ί(2/)]Λ converges over
i) and dif(y)ldyί is meromorphic on Z) with denominator (t(y))ί+1. Thus
by Lemma 1, dlf(y)jdyl is the [(^(T/))* ̂ ^continuation of

= ΐ! Σ (l \ j)aί+j(y - ay .

From Theorem 4 and Theorem 1 we have the

COROLLARY. f%{y) is the sum function of AιHy)1 [dίf(y)ldy%.

THEOREM 5. If a function f(x) defined over D is the C(x)-continua-
tion of a power series [f(x)]a then f(x) is meromorphic on D when C(x)
is of the form
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Proof. Let f(x) be the sum function of

which converges on D. Then [g(x)]a = [λ(αj)]Λ[/(a?)]Λ converges on Zλ
Letting #(#), fe(aj) be the sums on D of [#(#)]*, [&(#)]* respectively gives
[/(#)]« the expansion about a of g(x)lh(x) which is meromorphic on D.

There are many further questions which can be asked concerning
these methods of continuation. In view of Theorem 5 one would wish
to concentrate on C(#)-continuations where C(x) is not a power series.

Further we can generalize the method so that instead of restricting
ourselves to the use of C(#)-continuations we allow the use of arbitrary
T2 matrices. Some work has been done in this direction in [8a].

Vermes, making use of series to sequence methods, has dealt with
similar problems for k the field of complex numbers [13abc]. Some of
his results in [13a] overlap some of the work done here. For further
considerations of these and similar problems see the references to
Chabauty, Krasner, Kurshak, Rychlik, Schobe and Strassman cited below.
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