ON A THEOREM DUE TO SZ.-NAGY

R. S. Phillips

B. Sz.-Nagy [4] has proved the following theorem:

TheOrem A. Let $\left[T_{t} ; t \geqq 0\right]$ be a strongly continuous semi-group of contraction operators on a Hilbert space H. Then there exists a group of unitary operators $\left[\mathbf{U}_{t},-\infty<t<\infty\right]$ on a larger Hilbert space \mathbf{H} such that

$$
\begin{equation*}
T_{t} y=\mathbf{P U}_{t} y, \quad y \in H, t \geqq 0 ; \tag{1}
\end{equation*}
$$

here \mathbf{P} is the projection operator with range H. Then space \mathbf{H} can be chosen in a minimal fashion so that $\left[\mathbf{U}_{t} H ;-\infty<t<\infty\right]$ spans H. In this case $\left[\mathbf{U}_{t}\right]$ is strongly continuous and the structure $\left\{\mathbf{H}, \mathbf{U}_{t}, H\right\}$ is determined to within an isomorphism. ${ }^{1}$

The infinitesimal generator L of the semi-group $\left[T_{t}\right]$ is defined by

$$
\begin{equation*}
\lim _{\delta \rightarrow 0+} \delta^{-1}\left[T_{\delta} y-y\right]=L y \tag{2}
\end{equation*}
$$

for all $y \in H$ for which this limit exists. The operator L is linear and closed with dense domain, $\mathfrak{D}(L)$ (see [1]). It is shown in [2] that L is maximal dissipative in the sense that

$$
\begin{equation*}
(y, L y)+(L y, y) \leqq 0, \quad y \in \mathfrak{D}(L) \tag{3}
\end{equation*}
$$

and L being maximal with respect to this property. Since $\left[\mathbf{U}_{t}\right]$ is a semi-group as well as a group of operators, the infinitesimal generator \mathbf{L} of $\left[\mathbf{U}_{t}\right]$ also shares these properties; however in the case of a group of unitary operators $i \mathbf{L}$ is in addition self-adjoint.

The purpose of this note is to study the relation between L and L. It turns out that L is a restriction of L only when L is maximal symmetric. In general L is neither a restriction nor a projection of L; in fact $\mathfrak{D}(\mathrm{L}) \cap H$ may contain only the zero element. Nevertheless we shall obtain \mathbf{H}, \mathbf{L}, and $\left[\mathrm{U}_{t}\right]$ directly from L, our principal tool being the discrete analogue of the above theorem, which is also due to Sz.-Nagy [4], namely

Theorem B. Let J be a contraction operator on a Hilbert space H. Then there exists a unitary operator \mathbf{J} on a larger Hilbert space \mathbf{H} such that

$$
\begin{equation*}
J^{n} y=\mathbf{P J}^{n} y \tag{4}
\end{equation*}
$$

$$
y \in H, n \geqq 0
$$

here \mathbf{P} is the projection operator with range H. The space \mathbf{H} can be

[^0]chosen in a minimal fashion in the sense that $\left[\mathbf{J}^{n} H ;-\infty<n<\infty\right]$ spans \mathbf{H}. In this case the structure $\{\mathbf{H}, J, H\}$ is determined to within an isomorphism.

For a maximal dissipative operator L with dense domain, it is shown in $[2, \S 1.1]$ that $(I-L)$ is one-to-one with range $\Re(I-L)=H$ and that

$$
\begin{equation*}
J=(I+L)(I-L)^{-1} \tag{5}
\end{equation*}
$$

is a contraction operator with $\mathfrak{D}(J)=H$ and such that $(I+J)$ is one-toone. Applying Theorem B we obtain the unitary operator \mathbf{J} on the enlarged space \mathbf{H} spanned by $\left[\mathbf{J}^{n} H ;-\infty<n<\infty\right]$ with \mathbf{J} satisfying the property (4).

Lemma 1. The operator $(\mathbf{I}+\mathbf{J})$ is one-to-one.
Proof. Let S be a contraction operator, set $\mathcal{Z}(S)=[y ; S y+y=\theta]$, and denote the projection operator with range $3(S)$ by P_{S}. Then the ergodic theorem (see [3, pp. 400-406]) asserts that

$$
\text { st. } \lim _{n \rightarrow \infty}(n+1)^{-1} \sum_{n=0}^{n}(-S)^{k}=P_{S}
$$

and that $S P_{S}=P_{S} S=-P_{S}$. We apply this result first to J and then to J. Making use of (4) we see that

$$
\mathbf{P P}_{\mathbf{J}} y=P_{J} y, \quad y \in H
$$

As noted above $P_{J}=\Theta$, so that $\mathbf{P P}_{\mathbf{J}} \mathbf{P}=\Theta$. Actually $\mathbf{P}_{\mathbf{J}} \mathbf{P}=\Theta$; for otherwise there would exist a $y \in H$ with $\mathbf{P}_{\mathbf{J}} y \neq \theta$ so that

$$
\left(\mathbf{P P}_{\mathbf{J}} \mathbf{P} y, y\right)=\left(\mathbf{P}_{\mathbf{J}} y, y\right)=\left\|\mathbf{P}_{\mathbf{J}} y\right\|^{2}>0
$$

which is impossible. Thus $\mathbf{P}_{\mathbf{J}} \mathbf{P}=\Theta$ and hence $\mathcal{Z}(\mathbf{J})$ is orthogonal to H. But this means that

$$
\mathbf{P}_{\mathbf{J}} \mathbf{J}^{n} H=\mathbf{J}^{n} \mathbf{P}_{\mathbf{J}} H=\theta
$$

and we infer that $\mathbf{J}^{n} H$ is orthogonal to $\mathcal{Z}(\mathbf{J})$ for all n. The minimal property of \mathbf{H} therefore requires that $\mathcal{B}(\mathbf{J})=\theta$.

Remark. Associated with \mathbf{J} is the resolution of the identity [$\mathbf{E}(\sigma)$; $-\pi<\sigma \leqq \pi]$ and the integral representation

$$
\mathbf{J}^{n}=\int_{-\pi}^{\pi} \exp (i n \sigma) d \mathbf{E}(\sigma)
$$

Setting the restriction of $\operatorname{PE}(\sigma)$ to H equal to $F(\sigma)$ we see by (4) that

$$
J^{n}=\int_{-\pi}^{\pi} \exp (i n \sigma) d F(\sigma)
$$

The argument used in Lemma 1 applied to $S=\exp (i \mu) J$ shows that if
J has no eigenvalues of absolute value one, then neither does \mathbf{J} and hence that both $\mathrm{E}(\sigma)$ and $F(\sigma)$ are strongly continuous in σ. Conversely, $F(\sigma)$ is strongly continuous then as is readily verified

$$
\begin{array}{rlr}
(n & +1)^{-1} \sum_{k=0}^{n}[\exp (i \mu) \cdot J]^{k} y \\
& =\int_{-\pi}^{\pi} K_{n}(\sigma+\mu) d F(\sigma) y \rightarrow \theta, & y \in H
\end{array}
$$

here

$$
K_{n}(\sigma)=(n+1)^{-1} \exp (i n \sigma / 2) \sin \left[\begin{array}{cc}
n+1 & \sigma \\
2 & \sigma
\end{array}\right]\left[\begin{array}{ll}
\sin & \sigma \\
2
\end{array}\right]^{-1} .
$$

It then follows from the ergodic theorem that $3\{-\exp (i \mu) J\}=\theta$ and hence that J has no eigenvalues of absolute value one.

Theorem. Set

$$
\begin{equation*}
\mathbf{L}=(\mathbf{J}-\mathbf{I})(\mathbf{J}+\mathbf{I})^{-1} . \tag{6}
\end{equation*}
$$

Then L generates a strongly continuous group of unitary operators $\left[\mathbf{U}_{t} ;-\infty<t<\infty\right]$ such that

$$
\begin{equation*}
T_{t} y=\mathbf{P U}_{t} y \tag{7}
\end{equation*}
$$

$$
y \in H, t \geqq 0
$$

and $\left[\mathbf{U}_{t} H ;-\infty<t<\infty\right]$ spans \mathbf{H}.
Proof. It follows from the above lemma that $(\mathbf{I}+\mathbf{J})$ is one-to-one and hence that L is well-defined. Morever $\mathscr{L}(L)=\Re(\mathbf{I}+\mathbf{J})$ is necessarily dense in \mathbf{H} since otherwise ($\mathbf{I}+\mathbf{J}^{*}$) would nullify some non-zero vector and since $\mathbf{J}^{-1}=\mathbf{J}^{*}$ the same would be true of $(\mathbf{I}+\mathbf{J})$. Further it is clear that $i \mathbf{L}$ is the Cayley tranform of $i \mathbf{J}$ and hence \mathbf{L} generates a strongly continuous group of unitary operators which we shall denote by $\left[\mathbf{U}_{t}\right]$. In order to verify (7) we proceed to represent the resolvent $R(\lambda, L)=(\lambda I-L)^{-1}$ in terms of J for $\lambda>0$. We see from (5) that

$$
\begin{equation*}
y=2^{-1}(J u+u) \text { and } L y=2^{-1}(J u-u), \quad u \in H \tag{8}
\end{equation*}
$$

Suppose next that $\lambda y-L y=f$. Replacing y by u as in (8) we obtain

$$
2^{-1} \lambda(J u+u)-2^{-1}(J u-u)=f
$$

so that

$$
u=2(1+\lambda)^{-1} \sum_{n=1}^{\infty}\left[(1-\lambda)(1+\lambda)^{-1}\right]^{n} J^{n} f, \quad \lambda>0
$$

Again making use of (8) we get

$$
y=2^{-1}(J u+u)=\sum_{n=0}^{n} a_{n}(\lambda) \cdot J^{n} f
$$

where

$$
a_{0}(\lambda)=(1+\lambda)^{-1} \text { and } a_{n}(\lambda)=2(1-\lambda)^{n-1}(1+\lambda)^{-n-1} \text { for } n>0 .
$$

Thus $R(\lambda, L)$ can be represented by an absolutely convergent series in powers of J for $\lambda>0$. Taking powers of $R(\lambda, L)$ we see that

$$
[R(y, L)]^{k}=\sum_{n=0}^{\infty} a_{n}^{(k)}(\lambda) J^{n},
$$

where again the series is absolutely convergent. Similarly

$$
\mathbf{R}(\lambda, \mathbf{L})^{k}=\sum_{n=0}^{\infty} a_{n}^{(k)}(\lambda) \mathbf{J}^{n},
$$

and it follows from (4) that

$$
\begin{equation*}
[R(\lambda, L)]^{k} y=\mathbf{P}[\mathbf{R}(\lambda, \mathbf{L})]^{k} y, \quad y \in H, k \geqq 0, \lambda>0 . \tag{9}
\end{equation*}
$$

According to Yosdia's proof of the Hille-Yosida theorem (see [1]),

$$
\begin{equation*}
T_{t}=\operatorname{st.}_{\lambda \rightarrow \infty} \lim \exp \left(t B_{\lambda}\right) \text { and } \mathbf{U}_{t}=\operatorname{st.}_{\lambda \rightarrow \infty} \lim \exp \left(t \mathbf{B}_{\lambda}\right), \quad t \geqq 0, \tag{10}
\end{equation*}
$$

where

$$
B_{\lambda}=\lambda^{2} R(\lambda, L)-\lambda I \text { and } \mathbf{B}_{\lambda}=\lambda^{2} R(\lambda, \mathbf{L})-\lambda \mathbf{I} .
$$

Thus for $y \in H$ the relation (9) implies

$$
\exp \left(t B_{\lambda}\right) y=\mathbf{P} \exp \left(t \mathbf{B}_{\lambda}\right) y, \quad y \in H, \lambda>0,
$$

and this together with (10) gives (7).
It remains to prove that \mathbf{H} is the same as

$$
\mathbf{H}_{0}=\text { closed linear extension of }\left[\mathbf{U}_{t} H ;-\infty<t<\infty\right] .
$$

Let \mathbf{P}_{0} be the projection of \mathbf{H} onto \mathbf{H}_{0}. Then clearly $\mathbf{U}_{t} \mathbf{H}_{0} \subset \mathbf{H}_{0}$ for all real t, and since $\mathbf{U}_{t}{ }^{*}=\mathbf{U}_{-t}$ the same is true of the orthogonal complement to \mathbf{H}_{0}. As a consequence $\mathbf{P}_{0} \mathbf{U}_{t}=\mathbf{U}_{t} \mathbf{P}_{0}$ for all real t. Hence for $y \in \mathscr{D}(\mathbf{L})$

$$
\mathbf{P}_{0} \mathbf{L} y=\lim _{\delta \rightarrow 0+} \delta^{-1}\left(\mathbf{P}_{0} \mathbf{U}_{\delta} y-\mathbf{P}_{0} y\right)=\lim _{\delta \rightarrow 0+} \delta^{-1}\left(\mathbf{U}_{\delta} \mathbf{P}_{0} y-\mathbf{P}_{0} y\right)=\mathbf{L} \mathbf{P}_{0} y .
$$

Thus \mathbf{P}_{0} commutes with \mathbf{L} and hence with \mathbf{J}. But since H is obviously contained in \mathbf{H}_{0} we have

$$
\mathbf{J}^{n} H=\mathbf{J}^{n} \mathbf{P}_{0} H=\mathbf{P}_{0} \mathbf{J}^{n} H \subset \mathbf{H}_{0} .
$$

The minimal property of \mathbf{H} asserted in Theorem B therefore implies that $\mathbf{H}=\mathbf{H}_{0}$. This concludes the proof of the theorem.

It should be noted that since $i \mathbf{L}$ is self-adjoint, the largest restriction to H of $i \mathbf{L}$ will be symmetric. On the other hand if $i L$ is symmetric then it is easily verified that J is an isometry and hence that \mathbf{J} is an extension of J; in this case then \mathbf{L} will be an extension of L. However in general if $u \in H$ and $y=\mathbf{J} u+u$, then $z=\mathbf{P} y=J u+u \in \mathfrak{D}(L)$
and $L \mathbf{P} y=\mathbf{P L} y$; each $z \in \mathfrak{D}(L)$ can be so represented. A simple example shows that $\mathfrak{D}(L) \cap H$ may contain only the zero element. ${ }^{2}$

References

1. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Coll. Publ., XXXI (1957).
2. R. S. Phillips, Dissipative operators and hyperbolic systems of partial differential equations, Trans. Amer. Math. Soc., (1959).
3. F. Riesz and B. Sz.-Nagy, Lecons d'analyse fonctionnelle, 3rd edition Budapest (1955).
4. B. Sz.-Nagy, Transformations de l'espace de Hilbert. fonctions de type positif sur un groupe, Acta Sci. Math. Szeged, 15 (1954) 104-114.
The University of California,
Los Angeles
[^1]
[^0]: Received September 24, 1958. This paper was written under the sponsorship of the National Science Foundation, contract NSF G-4231.
 ${ }^{1}$ Two structures $\left\{\mathbf{H}, \mathbf{U}_{t}, H\right\}$ and $\left\{\mathbf{H}^{\prime}, \mathbf{U}_{t}^{\prime}, H\right\}$ are isomorphic if there is a unitary map \mathbf{V} of \mathbf{H} onto \mathbf{H}^{\prime} which is the identity on H and is such that $\mathbf{V U}_{t} y=\mathbf{U}_{t}^{\prime} \mathbf{V} y$ for all $y \in \mathbf{H}$.

[^1]: ${ }^{2}$ Suppose H is one-dimensional and $T_{t}=\exp (-t)$. The Sz.-Nagy construction for \mathbf{H} in Theorem B then results in $\mathbf{H}=l_{2}$, the space of complex-valued sequences $y=\left\{\eta_{n}\right.$; $-\infty<n<\infty\}$ with

 $$
 (y, z)=\sum_{n=-\infty}^{\infty} \bar{\eta}_{n} \bar{\xi}_{n}
 $$

 $\mathbf{J}\left\{\eta_{n}\right\}=\left\{\eta_{n-1}\right\}$, and $\mathbf{P}\left\{\eta_{n}\right\}=\left\{\eta_{n}^{\prime}\right\}\left(\eta_{0}^{\prime}=\eta_{0} ; \eta_{n}^{\prime}=0\right.$ for $\left.n \neq 0\right)$. Then relation (8) as applied to \mathbf{J} and \mathbf{L} asserts that for each $\left\{\eta_{n}\right\} \in \mathfrak{D}(\mathbf{L})$ there is a $\left\{\mu_{n}\right\} \in \mathbf{H}$ such that

 $$
 2 \eta_{n}=\mu_{n-1}+\mu_{n}, \quad 2\left[\mathrm{~L}\left\{\eta_{n}\right\}\right]_{n}=\mu_{n-1}-\mu_{n}
 $$

 If we also require that $\left\{\eta_{n}\right\} \in H$, then $\mu_{n-1}+\mu_{n}=0$ for all $n \neq 0$ and this together with the condition $\sum\left|\mu_{n}\right|^{2}<\infty$ implies that $\mu_{n}=0$ for all n. It follows that $\mathfrak{D}(L) \cap H=\theta$.

