ON A THEOREM DUE TO SZ.-NAGY

R. S. PHILLIPS

B. Sz.-Nagy [4] has proved the following theorem:

THEOREM A. Let [T,; t = 0] be a strongly continwous semi-group of
contraction operators on o Hilbert space H. Then there exists a group of
unitary operators [U,, — oo <t < o] on a larger Hilbert space H such that

(1) Ty = PUy, yeH,t=0;

here P is the projection operator with range H. Then space H can be
chosen in a minimal fashion so that [UH; — o <t< o] spans H. In
this case [U,] is strongly continuous and the structure {H, U, H} 1s de-
termined to within an 1somorphism.’

The infinitesimal generator L of the semi-group [T,] is defined by
(2) lim 6-[Tsw —y] = Ly

80+

for all ye H for which this limit exists. The operator L is linear and
closed with dense domain, ®(L) (see [1]). It is shown in [2] that L is
maximal dissipative in the sense that

(3) (v, Ly) + (Ly, y) = 0, ye (L),

and L being maximal with respeet to this property. Since [U,] is a
semi-group as well as a group of operators, the infinitesimal generator
L of [U,] also shares these properties; however in the case of a group
of unitary operators <L is in addition self-adjoint.

The purpose of this note is to study the relation between L and
L. It turns out that L is a restriction of L only when L is maximal
symmetric. In general L is neither a restriction nor a projection of L;
in fact ®(L)N H may contain only the zero element. Nevertheless we
shall obtain H, L, and [U,] directly from L, our principal tool being the
diserete analogue of the above theorem, which is also due to Sz.-Nagy
[4], namely

THEOREM B. Let J be a contraction operator on a Hilbert space H.

Then there exists a unitary operator J on a larger Hilbert space H such
that

(4) Jy = PJ"y, yeH, n=0;
here P s the projection operator with range H. The space H can be
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1 Two structures {H, U;, H} and {H/, U;, H} are isomorphic if there is a unitary map
V of H onto H’ which is the identity on H and is such that VU = U;Vy for all y€H.
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chosen in o minemal fashion in the sense that [J"H; — oo <n< o] spans
H. In this case the structure {H,J, H} s determined to within an iso-
mor phism.

For a maximal dissipative operator L with dense domain, it is shown
in [2, §1.1] that (I — L) is one-to-one with range R(I — L) = H and that
(5) J=U+ L)I— L)'

is a contraction operator with ©(J) = H and such that (I + J) is one-to-
one. Applying Theorem B we obtain the unitary operator J on the
enlarged space H spanned by [J"H; — oo <t < o] with J satisfying the
property (4).

LeMMA 1. The operator (I 4+ J) is one-to-one.

Proof. Let S be a contraction operator, set 3(S) =[y; Sy + v = 0],
and denote the projection operator with range J(S) by Ps. Then the
ergodic theorem (see [3, pp. 400-406]) asserts that

st. lim (1 4 1)) (—S)* = P;
700 n=0

and that SPy; = P,S = —P;. We apply this result first to J and then to
J. Making use of (4) we see that
PP,y = Py, ye H.

As noted above P, =0, so that PP;P = 0. Actually PP = ®; for
otherwise there would exist a y e H with Pyy + 6 so that

(PP;Py, y) = (Pyy, ) = lIPgl* >0,

which is impossible. Thus PyP = ® and hence 3(J) is orthogonal to H.
But this means that

PJ'H =J"P;H=10,

and we infer that J*H is orthogonal to Z(J) for all ». The minimal
property of H therefore requires that 3(J) = 6.

REMARK. Associated with J is the resolution of the identity [E(s);
—n < o < 7] and the integral representation

I = S exp (ino)dE(o) .
Setting the restriction of PE(c) to H equal to F(o) we see by (4) that
Jn = S exp (ino)dF (o) .

The argument used in Lemma 1 applied to S = exp (4#)J shows that if
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J has no eigenvalues of absolute value one, then neither does J and
hence that both E(s) and F(s) are strongly continuous in «. Converse-
ly, F(c) is strongly continuous then as is readily verified

(n + 1)‘1§O[exp (i) Ty
= S K.(o + m)ydF(c)y — 0, ye H;

here
Ky(o) = (n + 1) exp (ino/2) sin [ n 12L 1 a][sin - ]1 .

It then follows from the ergodic theorem that 3{—exp (i#)/} = 6 and
hence that J has no eigenvalues of absolute value one.

THEOREM. Set

(6) L=J-DJ+D".

Then L generates a strongly continuous group of wunitary operators
[U;; — o <t < o] such that

(7) Ty = PUy, yeH,t >0
and [UH; — oo <t < co] spans H.

Proof. It follows from the above lemma that (I + J) is one-to-one
and hence that L is well-defined. Morever ®(L) = R(I + J) is neces-
sarily dense in H since otherwise (I + J*) would nullify some non-zero
vector and since J' = J* the same would be true of (I + J). Further
it is clear that iL is the Cayley tranform of iJ and hence L generates
a strongly continuous group of unitary operators which we shall denote

by [U,]. In order to verify (7) we proceed to represent the resolvent
ER(4, L) = (I — L) in terms of J for 2 > 0. We see from (5) that

(8) y =2"Y(Ju + u) and Ly = 2-'(Ju — u), ue H.
Suppose next that iy — Ly = f. Replacing y by % as in (8) we obtain

27 Ju + u) —27(Ju —u) = f
so that

u =21+ z)i [(1— )L + )], 1>0.

Again making use of (8) we get

Y =27(u 4 u) = 3 a,(DIF
where _
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ay(d) = (1 + 2)~* and a,(2) = 2(1 — "1 + )= for n >0 .

Thus R(2, L) can be represented by an absolutely convergent series in
powers of J for 2 > 0. Taking powers of R(1, L) we see that

[Ry, L) = > aP()J"
n=0
where again the series is absolutely convergent. Similarly
R(, L) = 3 a())"
and it follows from (4) that
(9) [R(4, L)]'y = P[R(4, L)'y, wyeH,k=0,2>0,
According to Yosdia’s proof of the Hille-Yosida theorem (see [1]),
(10) T, = st.lim exp (¢B,) and U, = st.lim exp (¢B,), t=0,
A—>00 Ao
where
B, = #R(A, L) — AI and B, = 2?R(1,L)— 1.
Thus for ye€ H the relation (9) implies
exp (tB\)y = P exp (tB.)y, yeH, 2> 0,

and this together with (10) gives (7).
It remains to prove that H is the same as

H, = closed linear extension of [UH; — o <t < x].

Let P, be the projection of H onto H,. Then clearly UH,cH, for all
real ¢, and since U,* = U., the same is true of the orthogonal comple-
ment to H,. As a consequence P,U, = U,P, for all real ¢. Hence for
ye (L)

PLy = 8lilon 07 (PUsy — Py) = lsim 0(UsPy — Pyy) = LPy .
-0+ -0+

Thus P, commutes with L. and hence with J. But since H is obviously
contained in H, we have

Jn.H = JnP()H - PanHCHO .

The minimal property of H asserted in Theorem B therefore implies that
H = H,. This concludes the proof of the theorem.

It should be noted that since <L is self-adjoint, the largest restric-
tion to H of 7L will be symmetric. On the other hand if <L is sym-
metric then it is easily verified that J is an isometry and hence that J
is an extension of J; in this case then L will be an extension of L.
However in general if we H and y = Ju+u, then z = Py = Ju+u € D(L)
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and LPy = PLy; each z¢ D(L) can be so represented. A simple example
shows that ©(L)N H may contain only the zero element.?
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2 Suppogé H is one-dimensional and T} = exp (—t). The Sz.-Nagy construction for H in
Theorem B then results in H =1/, the space of complex-valued sequences ¥y = {77”;
— o <n< oo} with

@, 2) = iin(-n

nez
I} = {n,_;}, and P{y, } = {7} (7, = 7,; 7, = 0 for n #0). Then relation (8) as ap-
plied to J and L asserts that for each {7,}€D(L) there is a {u,} €H such that
29, =ty s+, 20L{7}, =p_,-nr -
If we also require that {,}€H, then u,_ +p =0 for all = 0 and this together with
the condition ] lp,|? < e implies that p, = 0 for all #. It follows that D(L)NH = e.








