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1. Introduction. A characterization is obtained of those sentences
S of the predicate calculus such that S holds for a subdirect product
of general algebraic or relational systems1 whenever it holds for each
component system. We consider formulas in a first order language
equipped with symbols for the operations and relations of the systems
under consideration, and, in particular, with a symbol for the identity
relation. An atomic formula is one obtained by inserting terms in the
argument places of a relation symbol. A positive formula is one that
can be built up from atomic formulas by means of conjunction, tdis-
junction, and of universal and existential quantification (but without
using negation). A special Horn formula is one of the from P Z) F
where P is a positive formula and F is an atomic formula, or any
formula obtained from such formulas by conjunction and universal quanti-
fication. A sentence is a formula without free variables. As a corol-
lary to our main theorem we obtain the following :

A sentence has the property that it holds for a subdirect product of
systems whenever it holds for each component system if and only if it is
equivalent to a special Horn sentence.

An example of a special Horn sentence is provided by the condition
for an associative ring to be semisimple in the sense of Jacobson [7,
Proposition 1, p. 9], which is expressed by the following sentence :

+ u = xzyu A uxzy — xzyu] ID z = 0 .
We admit among subdirect products the subdirect product of an

empty set of systems, which, from the definition, proves to be a trivial
system with a single element and all relations universal. The sole effect
of excluding this trivial case would be to admit in special Horn sentences
clauses ~ P along with the clauses P D F.

A. Horn [6] considered the more general class of all sentences
obtained by universal and existential quantification from conjunctions of
formulas of the type P ID F (or ~ P), where P is a conjunction of atomic
formulas and F an atomic formula. Horn showed that all such sentences
are preserved under (full) direct products, while C. C. Chang and Anne
C. Morel [4] showed that there are sentences preserved under direct
product that are not equivalent to any such Horn sentence. The problem
of characterizing syntactically those sentences preserved under direct
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i This concept is due to Tarski; see [13], [14].
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product, as well as that of determining under what algebraic processes
Horn sentences are preserved, remains open. That the general Horn
sentence is not preserved under subdirect product is shown by a simple
example : the family of all finite subsets of an infinite set constitutes,
in the usual sense, a ring without unity, that is, in which the Horn
sentence jxyy xy = y fails, although it is a subdirect product of two-
element fields, in which this sentence holds.

The earliest result of the kind under consideration is that of G.
Birkhoff [3] who showed that those classes of algebras that are closed
under formation of direct products, subsystems, and homomorphic images
are precisely those classes definable by universally quantified equations.
In addition to the work of Horn, Chang, and Morel, properties preserved
under direct products have been studied by K. Bing [2], K. Appel [1],
and A. I. Taimanov [12], while subdirect products have been studied by
A. Malcev [11].

We first proved the result stated above by means of the theory of
Natural Inference of G. Gentzen [5]. The proof offered here seems
preferable in that it is simpler, despite the fact that it contains a double
induction (which could, with some artificiality, be removed), and in that
it presupposes less. We have tried to make the present exposition
readable as it stands to one familiar with the general ideas but for
various details, in particular, for precise definitions, and for an Interpo-
lation Theorem which plays a central role in the argument, we refer to
our earlier papers [9], [10].

2. Preliminaries, Let L be a first order language, with operation
symbols w of prescribed ranks p(w), and relation symbols r of ranks
p(r), among which is the symbol e for the identity relation, of rank
p(e) = 2. A model 21 for L consists of a set of operations %w on a
certain non-empty domain A, and of relations Sir on A, indexed by the
operation symbols w and relation symbols r of L, and of corresponding
ranks. A relational system is a model such that 2Ie is the identity
relation on the domain A of 31.

Let SIj, for all i in an index set I, be relational systems for a
language L. The direct product 31 of the 3I« is defined as follows. The
domain A of 3ί is the Cartesian product of the domains A% of the 31*.
For each i in / we denote by πt the projection carrying each a in 31
onto its component πta in 31*. The operations %w of 21 are defined by
specifying their components : for each i, and alf , apCw^ in 31,

π%[^ίw(al9 , αp(w))] = S^wfotti, , π4αp(M,))

the relations Sir of 21 are defined by taking %r(aλJ , αp<») to hold, for
Ui, , αPo) in 21, if and only if S I ^ T Γ ^ , , 7r,ap(r)) holds in 21, for each
i in /. It must be noted that this last criterion is satisfied by the
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identity relation. A system 2Γ is a subdirect product of the systems
Sΐt if it is a subsystem of the direct product 21 such that, for each i in
/, the projection πt maps the domain A! of 21' onto the domain A% or 21$.

The usual criterion for an algegraic system to be isomorphic to a
subdirect product of systems from a given collection carries over directly
to relational systems, and takes the following form.

CRITERION. A relational system 2ί is isomorphic to a subdirect product
of systems belonging to a given collection K if and only if there exists
a family Θ of homomorphisms θ of 21 onto systems #2ί in K such that
for all r and aL, •••,apCr) in 2ί, [(θ^ί)r](θau •• ,0αp(r)) for all θ in Θ
implies that Sir (au « ,αp(>)) in 21.

Before turning to the main theorem we establish a series of lemmas.

LEMMA 1. Let F be a formula with distinct free variables xly , xn,
and F' the result of replacing in F the xi by new and distinct constants
{operation symbols of rank zero) wt. If C is any formula that does not
contain the wi} and C^Ff, then C^y^x1 ••• xnF.

Proof.* Let F being to a language L that does not contain the u\
then F' belongs to the language L' obtained from L by adjoining the
symbols w%. Let μ be an interpretation of L such that μC = 1, and λ
an interpretation of L that agrees with μ except on the variables
xl9 , xu. We must show that λF = 1. Extend μ and λ to interpreta-
tions μr and λ' of L' by defining μ'wt — λ' wt = λxίt Since C belongs to
L, μ'C = μC=l. Since C ^ F , and μ'C = 1, μ'F' = 1. Since Fr does
not contain the xif λ'Ff = μ'F', and λ'F' = 1. By the construction of
Ff and of λ', λF = λ'F', whence λF = 1.

Let 21 be a model for the language L, and L(A) the language
obtained from L by adjoining new and distinct constants wa for each
element a of the domain A of 21. Let 21 be the extension of 21 to L(A)
defined by setting %wa = a for all a in 21. Let μ be an ordinal number,
and Lμ the language obtained from L(A) by adjoining new and distinct
relations symbols rv of rank p(r^) = p(r), for all r in L and v < μ. If
2ίμ is any model for Lμ, and v < μ, let 2Iμ>v be the model for L defined
by taking §lμtVw = 2Iμw for all w, and 2Iμ)vT = 2Iμrv for all r.

Let i£ be an elementary class3 of relational systems. We shall say
that a model 2Iμ of Lμ has the property (*) if

( 1 ) the restriction of 2ϊμ to the language L(A) is an elementary

extension of 21
2 For concepts appearing in this paper without definition, see [9], [10].
3 As in [10], we use " elementary class" in the sense of Tarski's "arithmetical class

in the wider sense (ACA) " .



158 R. C. LYNDON

( 2 ) the restriction to L of 3Iμ>v is in K, for all v < μ
( 3 ) 3Iμr <Ξ 3ίμ,vr /or αM r in L and all v < //.

LEMMA 2. .For μ = 0, ί/̂ e model 3I0 =
 SΛ o/ ί/̂ e language Lo —

Λαs ίfcβ property (*).

Proof. Condition (1) is trivial, and (2) and (3) are vacuous.
Let Σ be the class of all special Horn sentences that hold for K,

and Σ* the class of those models that satisfy all sentences in Σ.

LEMMA 3. Let 3X be in 21*, and F an atomic sentence, that is, an
atomic formula without free variables, of L(A) that fails in 31. Let 31 μ

be a model for Lμ with property (*). 27&ew ί/^ere exists a model 3Iμ+1

/or Lμ + 1 witt property (*) swc/z, £λα£

(1') £Ae restriction of 3Iμ+1 £o Lμ is α^ elementary extension of 3ίμ

(4) F/αife m 2Iμ+1.

Proof. Let F be the set of all sentences of L that hold in if.
Let Δ be the set of all sentences of the language L^(Aμ) that hold in
2tμ. Let Γ' result from Γ and F' from F by replacing each r by the
corresponding rμ. Let / be the set of all sentences

for all r in L.
Suppose the set Δ, /, Γr, <^ Ff is inconsistent. By the Compactness

Theorem, there exists a conjunction of sentences from Γ, and hence a
single sentence C from Γ, such that J, I, C, ̂ F " is inconsistent. Thus
Δ,I=^C ZD F', where C ID ί7' contains only the relation symbols rμ,
while Δ does not contain the rμ, and / contains the rμ only positively.
By the Interpolation Theorem of [9], there exists a positive sentence P'
containing only the rμ such that Δ, I=$P' and P'^C z> Ff. If P is
the result of replacing each rμ in P' by the corresponding r, it follows
that Δ^P and P^C 3 F. Thus C =φ P 3 F. Let Po and Fo result
from P and F by replacing all wb. that occur in them by distinct variables
xl9 xn. Since C is in Γ, and belongs to the language L that does
not contain the wb, it follows by Lemma 1 that C^H, where H —
Va?1 £Cn Po:D.iF7o Since H contains only the relation symbols r, and
does not contain the wb9 it belongs to the language L. Since H is a
special Horn sentence, and a consequent of C in Γ, H is in Σ. Since
31 is in 21*, i ϊ holds in W, and hence in 31. It follows that P ID F holds
in 31. On the other hand, from J = > P we have that P holds in 3lμ,
hence in 1. From the fact that P and P 3 F both hold in W it follows
that F holds in 31 which contradicts the hypothesis of the lemma.
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It has been established that the set Δ, I, Γ', ~Fr is consistent, and
therefore holds in some model 33. Let (£ be the restriction of 93 to the
language L. From the fact that 93 satisfies Δ, it follows by Proposition
3 of [10] that the quotient model 3Iμ+1 = (£/(£e is a relational system and
an elementary extension of §Iμ. This establishes (Γ), and, by virtue of
the hypothesis that §Iμ has the property (*), it follows that 3tμ+1 satisfies
(1) and also (2) and (3) for all v < μ. From the fact that 93, and therefore
Slμ+i, satisfies Γ, it follows that the restriction to L of 2Iμ+1, μ is in K,
which completes the proof of (2). From the fact that 93, and therefore
Stμ+1, satisfies /, it follows that, for all r, 3tμ+ir c : 2ίμ+1>μr, which completes
the proof of (3). Finally, from the fact that 93 satisfies ~ F' it follows
that Ff fails in Stμ+1, as required by (4).

LEMMA 4. Let μ be a limit ordinal, and a family of systems 5ίv

for Lv, all v < μ, be given, with the property (*) and such that
( 1 : μ) for all p < v < μ, the restriction of 2tv to Lp is an elementary
extension of §ϊp.

Let Fv, all v < μ, be a set of atomic sentences of L(A) such that
(4 : μ) for all v + 1 < μ, Fv fails in SI^v+i.

Then there exists a model 2ίμ for Lμ with property (*) and such that
( 1 : μ + 1) and (4 : μ + 1) hold.

Proof. By virtue of ( 1 : μ), the Sίv, v < μ constitute an ascending
chain of systems and their union is a well defined system 2Iμ. Let
P < μ, and for all v, p < v ^ μ, let 93, be the restriction of 9ίv to Lp.
Then 93μ is the union of the ascending chain of systems 93V, p < v < μ.
Since each 93,, p < v < μ, is by ( 1 : μ) an elementary extension of §IP,
it follows directly from the definition of elementary extension that 93μ

is an elementary extension of 2IP

4. This suffices to extend ( 1 : μ) to
( 1 : μ + 1). That 2Iμ has property (*) follows from this directly. It
remains only to note that, since μ is a limit ordinal, (4 : μ + 1) is in fact
equivalent to (4 : μ).

LEMMA 5. Let §1 be in I7*. Then there exists an ordinal μ and a
model 2ίμ for Lμ, with property (*) and such that

(4*) if any atomic sentence F of L(A) fails in SΛ, then it fails
in some SCμ,v> v < μ.

Proof. Let the Fv, all v < μ, for some μ, be the set of all atomic
sentences of L(A) that fail in 2ί. Let §I0 = 21 as in Lemma 2. For
some v, v < μ, suppose that systems 2ίp have been constructed for all
p < v with property (*) and satisfying ( 1 : v), (4 : v). If v is not a

See Theorem 1.9 of [15].
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limit ordinal, Lemma 3 with F = Fv and v — 1 for μ assures us of 2IV

with the required properties. If v is a limit ordinal, Lemma 4 yields
the same result. Thus transfinite induction yields a chain of SIV, all
y ^ μ* The condition (4 : μ) now gives (4*).

LEMMA 6. Let 21 δe m 21*. ϊ%en £/^re eris£s cm oridίnal σ and
a system 2Iσ for Lσ with the property (*) cmcϊ swc/z, ί te ί

(4**) if any atomic sentence F of the language L(Aσ) fails in 2Iσ,
then it fails in 2Iσ>v for some v < σ.

Proof. Iteration of Lemma 5 yields a sequence of ordinals

A) = 0 ^ /^ ̂  μ2 ^ such that 2ΐ0 is 2ί each SIμ has the property

(*) for each n, the restriction of 2Iμ + to Lμ is an elementary exten_

tion of 21^ and, finally, that if an atomic sentence F of the language

L(AμJ fails in §Iμ , then it fails in some SĈ  v, v<μn+1. It follows

directly that, for σ — lim μn, the union 2Iσ of the ascending chain of

2ΐμ , n < ω, has the required properties.

3 The Main Theorem*

THEOREM. Let U be a relational system of the language L, and K
an elementary class of systems of L. Then the following are equivalent.

( 1 ) 21 satisfies all special Horn sentences that hold in K;
( 2 ) 2ί has an elementary extension that is a subdirect product of

systems in K.

Proof. To show that (2) implies (1), it clearly suffices to show that
if S is a sentence of the form S — \/x1 xn P D F where P is positive
and F is atomic, and 21 is a subdirect product of systems 21, in which
S holds, then S holds in 21. Suppose then that S holds in all the 2ίέ,
and yet S fails in 21. Then there exists an interpretation μ of L in 21
such that μP=l and μF φ 1. Since each projection πt is a homomorphism
of 21 onto 2Ii, we have that, for all r in L and terms tL, , £p(»,
*Άr(μtlf •• ,Λ*P(r)) implies %r(n^tl9 , πtμtp^). For each 2ί4, define an
interpretation μ% in 21̂  by setting μtx — πtμx. Then μG — 1 implies
μtG — 1 for all i if G is an atomic formula, whence μP = 1 implies
μtP = 1 for all i. Since S holds in each 2^, that μtP = 1 implies ^ έ F = 1,
all i. But F is an atomic formula, and μ%F — 1 implies that μF — 1,
a contradiction.

To show that (1) implies (2), assume that 21 is in 21*, where Σ is
the set of all special Horn sentences true for K. By Lemma 6, for some
ordinal σ there exists a system 2Iσ of Lσ with properties (*) and (4*).
Let 2Γ be the restriction of 2Iσ to the language L by virtue of (1), 2ί'
is an elementary extension of 21. For each v < σ, let 33V be the restric-
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tion of 2ΐσ>v to the language L by virtue of (2), each 23V is in iΓ**, and
consequently the quotient model (£v = S3,/S3.e is a relational system in K.
For each y < σ, SΓ and 93, have the same domain A, whence the canonical
map θv of SI onto 3I/93.e maps A onto the domain Cv of (£v. By virtue
of (3), for each v < σ and each r in L, SΓr == SIσr gΞ SIσiVr = SIvr, whence
#v defines a homomorphism of 21' onto (£v. To complete the proof that
the family of θv, v < σ9 satisfies the Criterion for SI' to be a subdirect
product of the (£v, v < σ, suppose that, for some r in L and αx, , α p ( r )

in SI, [evr](^vαi, , ^ α p ( r ) ) holds for all v < σ. If Wr(au , αp ( r 0) failed
in SI', then the atomic sentence F = r(wOl, , wa ) would fail in SI.
By virtue of (4*), F would fail in SI^v, for some v < σ, hence in 33V.
Since 3 3 ^ ^ = <Άσ^ai — 3ίwα< = aif V8»r](alf , αp ( r )) would fail in S v ,
whence [Svr](#vαi, , θyapω) would fail in Kv. This contradicts our
hypothesis, and extablishes the desired conclusion, that 2Pr(αlf * ,αPoo)
holds in SI'.

4 A complementary example^ It will be shown that there exists
an elementary class such that the set of all subdirect products of systems
from this class is not an elementary class. In consequence, the reference
to elementary extensions in the preceding theorem can not be deleted.

If K is any class of systems, let P{K) be the class of all systems
isomorphic to some subdirect product of systems from K, and let Pϋ(K)
be the class of all systems isomorphic to some subdirect product of a
non-empty family of systems from K. As was noted earlier, P{K) will
differ from P0(K) at most in containing all trivial systems, with domain
a single element and all relations universal, which will not belong to
PQ(K) unless K itself contains some trivial system. We suppose now
that the language L contains only a finite number of relation symbols,
whence there is a single sentence T characterizing the class of all trivial
systems. Then

( 1 ) P(K) is an elementary class if and only if P0(K) is an
elementary class.
If K contains a trivial system, then P(K) = P0(K) and there is nothing
to prove. Otherwise P0(K) = P{K) - T. If P{K) is elementary, say
P(K) = Γ*, then evidently P0(K) = {Γ, ~ T}* and P0(K) is elementary.
On the other hand, if P0(K) = Γ*, then P0(K) = {C V T: all C in Γ}*.

If K is any class of systems, let H'(K) be the class of all those
systems of which some homomorphic image lies in K. The following
assertion can be obtained by dualizing the proof of the Main Theorem
of [10], or may be deduced as a corollary to that theorem.

(2) if K is an elementary class, then H'(K)* is the set of all
consequences of all negative sentences that hold in K.
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It is clear from the definitions that PQ(K) s H'{K). To obtain a partial
converse, define an occurrence of a relation symbol in a sentence S to
be universal if no variable that occurs in the atomic formula containing
the given occurrence is existentially quantified in S. Then

( 3 ) if K= Γ*, where no sentence of Γ contains a positive universal
occurrence of any relation symbol, then H'(K)* = P0(K)*.

To establish (3), we first show that the argument used to establish
the Interpolation Theorem in [9] in fact enables us to impose the following
additonal conditions in the conclusion :

(4a) a relation symbol has a positive universal occurrence in S°
only if it has a positive universal occurrence in S

(4b) a relation symbol has a positive non-universal occurrence in
S° only if it has a positive non-universal occurrence in T.
We refer to the proof of the Interpolation Theorem. To prove (4a),
suppose that a relation symbol r has no positive universal occurrence
in S = S1. Then each atomic formula of S1 that contains r positively
also contains some variable that is existentially quantified in S1, whence
the corresponding atomic formula in the Skolem matrix for S1 contains
one of the Skolem functions s}. It follows that each atomic formula in
the Skolem matrix M1 of U1 that contains r positively also contains one
of the functions s], and the same is then true of M°, whence it follows
that the corresponding atomic formula in S° contains an existentially
quantified variable. Since positive occurrences of r in S° can arise only
in this fashion, it follows that all such occurrences are non-universal.

To prove (4b), note first that an atomic formula containing a positive
occurrence of r in S° will correspond to an atomic formula A in M° and
hence in M1, and that, if the occurrence is non-universal, then A will
contain one of the functions sι

oί. Suppose now that every positive
occurrence of r in T is universal then in S2, equivalent to ~ T, we
may suppose that every variable that occurs in an atomic formula con-
taining a negative occurrence of r is existentially quantified. Passing
to the Skolem matrix of S2 and thence to Λf2, it follows that if B is any
atomic formula of M2 that contains a negative occurrence of r, then
each occurrence of a variable of r is subordinate to some one of the s2

0j

in the sense of occurring in a term beginning with this symbol. From
the construction of Ma from M1 and AT it results that an atomic formula
A of M1, as above, will appear also in M° only in case ηA — yB, for
B an atomic formula of M\ as described. But this is impossible, since
every occurrence of a symbol s]k in ηB is subordinate to some slt while
A contains an ocurrence of some sι

Qj that is not subordinate to any s2

0i

in A, which does not contain the s2

0i, and hence this occurrence of sι

Oj is
not subordinate to any s2

0i in ηA.
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Turn now to the proof of (3). From the theorem of § 3 it is easy
to see that Pb(K)* consists of all consequences of ' generalized ' special
Horn sentences that hold in K, that is, of those sentences that hold in
K and are obtained by universal quantification and conjunction from
formulas of the types P Z) F and ~ P, for P positive and F atomic.
From the hypothesis of (3), if Γ =^>T, where T is a generalized special
Horn sentence, then Γ =φ S and S ^ Γ , where S, a conjunction of
sentences from Γ, contains no positive universal occurrence of any
relation symbol. Since T contains no positive non-universal occurrences
of any relation symbol, application of the Interpolation Theorem with
the conditions (4a) and (4b) provides the existence of S° such that S^> S°
and S° =φ T, where S° contains no positive occurrences of any relation
symbol, either universal or non-universal: in short, where S° is negative.
Since Γ ^ S° and S° =φ Γ, it follows by (2) that T e H'{K)*. This
establishes that PQ(K)* S Hf(K)*, while the opposite inclusion follows
from the fact that P0(K) g H\K).

In § 5 of [10] an elementary class K of systems, without operations
and with a single binary relation (other than identity), was constructed,
with the property that H(K) is not elementary. Replacing, in each
system in K, the relation in question by its complementary relation,
yields an elementary class K' of systems such that H'(K!) is not elemen-
tary. More explicitly, K' is characterized by the single sentence

S': ^xyyz^t: ~ r(x, y) Λ : ~ r(x, z) ID ~ r(x, t) Λ ~ r(z, t)

It follows as in [10, § 5], or may be derived from the result there, that
H\K)* - {S(, S£, •••}**, where the S'n result from the Sn by prefixing
a negation sign to each occurrence of the symbol r. If %' is the natural
numbers with the relation x <̂  y, it contains descending chains of arbitrary
length, hence satisfies the S'n and belongs to H'(K')**. If 31' had a
homomorphic image S3 in K', from S' it would follow that
~ 33r(60, 6X), , ~ 33r(6w, 6n+]), for some 60, 6L, in S3, and any set
of inverse images aύ9 au would constitute an infinite descending chain
in 31', which is clearly a contradiction. Thus Sΐ' is not in H'(K'), and
H\Kf) Φ Jff;(ίΓ)**, that is, H'{K') is not elementary.

Finally, the set Γ = {S;} satisfies the hypothesis of (3) indeed,
each atomic formula of S' contains one of the existentially quantified
variables x, y or t. Thus, by (3), P^K')* = H'(Kf)*. It now follows
that P(ϋΓ') is not elementary. For, by (1), this would imply that PQ(K')
were elementary, hence P0(K')** - P0(K'). But P°(ίΓ')* = H'(K')* implies
H'(KT* = P»(KT*, and PoίίΓO S ί ί ' (^ ; ) , which, together with P0(ϋΓ')** =
P0(ίΓ')» w o u l d ^ P 1 ^ H'(K')** s iϊ 'ίί: ') and hence that ίT'OSΓ') were
elementary, a contradiction.
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