PROPERTIES PRESERVED UNDER HOMOMORPHISM

RoGer C. LYNDON

1. Introduction. The main result of this paper is a characteriza-
tion of those sentences of the predicate caleculus whose validity is pre-
served under passage from an abstract algebraic system to any homo-
morphic image of the system. An algebraic system is here construed
to be a set together with certain operations and relations, including
identity, defined for elements of the set. The sentences under con-
sideration will contain symbols for these operations and relations, and
variables whose range is the set of elements of the system, together
with the usual logical symbols, but will contain no variables whose range
consists of sets, relations, or functions. Such a sentence will be called
positive if it contains the logical symbols for conjunction, disjunction
and quantification only, but not the symbol for negation. It will be
shown that:

(*) A sentence of the predicate calculus is preserved under homo-
morphism +f and only if it is equivalent to a positive sentence.

An example is provided by the usual statement of the commutative
law for multiplicative systems:

vay - oy = Y .

This is a positive sentence, and indeed every homomorphic image of a
commutative system in commutative. As a second example, upon

eliminating the symbol for ‘“if - .. then’’, the left cancellation law takes
the form

Veyz - ~(xy =x2) V Yy = 2.

This sentence is not positive, and, indeed, from the fact that the left
cancellation property is not preserved under homomorphism we conclude
that it is not expressible by any positive sentence.

It is not difficult to show that every sentence equivalent to a positive
sentence is preserved under homomorphism; although the converse seems
nearly as obvious intuitively, to prove the converse appears to be a
matter of considerable difficulty. That positive sentences are preserved
was noted by the author [6], and also by E. Marezewski [9], who raised
the question of the converse. A proof, by methods quite different from
those used here, was announced by J. Fos$ [5], but such a proof has
not been published. The result has also been stated by A. I. Malcev
[8], who appears to indicate a method of proof.
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The central result of this paper, Theorem 5, is in fact a stronger
form of the assertion (*) above. Some consequences and variants of
this theorem are given, and examples to show that it can not be
strengthened further in certain obvious ways.

The content of this paper lies within the theory of elementary
classes as formulated by A. Tarski [12, 13]'. We define and use here
numerous concepts due to him, and, in particular, that of elementary
extension, due to Tarski and R. Vaught [15]. We have tried to make
this paper self contained to the extent that the main line of reasoning
should be intelligible and convincing under any reasonable interpretation
of the concepts employed; for the technical definitions necessary for
rigor in the details of the proofs, we refer to an earlier paper [7].
Further, we borrow from that paper the relevant definitions and a proof
for the following theorem, which is the cornerstone of the present paper:

INTERPOLATION THEOREM. If S and T are sentences of the predicate
calculus, and S tmplies T, then there exists a sentence M such that S
implies M and M implies T, and that a relation symbol occurs positively
(negatively) in M only if it occurs positively (negatively) im both S and
T.

The author has profited from many discussions with L. Henkin and
A. Tarski.? The relativization embodied in Theorem 5 was suggested
by A. Robinson.?

2. Sentences increasing in a relation symbol. Roughly, a property
of a relation may be called increasing if, whenever it holds for a given
relation it holds for any larger relation. Passing from properties to the
sentences that express them, we make a precise definition. Let Q be
a subset of the set R of all relation symbols in a language L, and let
Q' be a set of new and distinct relations symbols ¢ in one-to-one
correspondence with the symbols ¢ of @ in such a way that ¢’ has the
same rank as ¢. Let I be the set of all sentences

I(q, q,) = VYL o0 Ty ¢ q@, ---, wp(q)) ) q'(xlv ey xp(q)) y

for all ¢ in Q. Let I" be a set of formulas of L, and /" the result of
replacing the symbols ¢ in /' by the corresponding ¢'. We call I”
ncreasing in Q if ', I=1".

1 We use the word ‘ elementary ’ in preference to ‘arithmetical ’, and, by an ‘elementary
class’, mean always what is commonly called an ‘arithmetical class in the wider sense
(ACa)'.

2 In particular, while the author was visiting at the University of California, Berkeley.

3 At the American Mathematical Society Summer Institute, Ithaca, 1957.
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ProrosiTioN 1. If a set I' of formulas is positive wn all the relation
symbols in a set Q, then I' is imcreasing n Q.

Proof. It suffices to treat the case that I” consists of a single
formula F. If F is an atomic formula or, vacuously, the negation of
an atomic formula, the conclusion is immediate. The general case
follows by an obvious induction.

The converse is contained in the following.

PROPOSITION 2. Let L, Q, @ and I be as before. Let 3, I', 4 be
sets of sentences L, and let X' result from 3, and 4" from 4, by replacing
each q by the corresponding ¢'. If 3, X', I', I= 4, then there exists a
set II of sentences P, positive in all the symbols of Q and mot containing
the symbols of Q, such that ¥, I' = Il and %, Il = 4.

Proof. It suffices to treat the case that 4 consists of a single
sentence D. By the Compactness Theorem (Corollary 4.1 of [1]), the
hypothesis will hold with X, I, I replaced by finite subsets, and hence,
taking conjunctions, by single sentences: S,S’,C,J =D', where C is
positive in all the ¢ in @, and J is a conjunction of sentences I(q, q').
It follows directly that S, C=J A S" D D'. The symbols ¢’ do not occur
at all in S or C. The symbols ¢ occur only in the part J of J A S" D D',
and since each occurrence of a symbol ¢ is negative in J, it is positive
in J AS D D. By the Interpolation Theorem there exists a sentence
P, not containing the ¢’ and positive in the ¢, such that S, C= P and
P=JASDD'. From S, C= P we have ¥, "= P. From P=>JAS DD,
replacing each ¢’ by ¢, it follows that P= J* A S D D where J* is the
result of replacing each ¢’ by ¢ in J. In fact, J* is a theorem, whence
P=8S > D, hence P,S= D, and ¥, P= D.

COROLLARY 2.1. A set I' of sentences is increasing in the symbols
of Q if and only if 4t is equivalent to a set Il of sentences positive in the
symbols of Q.

3. Q-maps. If I' is a set of sentences of the language L, let I'* be
the set of all models of L in which all sentences of /" hold. If Kisa
set of models of L, let K* be the set of all sentences of L that hold
in all models in K. It follows that 7"** is the ‘logical closure’ of I,
the set of all sentences S such that /"= S. The elementary closure of
K is K**, and K is an elementary class if K = K**, thatis, if K =I*
for any I". Two models U and B are elementarily equivalent if A* =B*,
that is, if exactly the same sentences hold in 2 as in 8.

A model A is submodel of a model B if the domain A of A is a
subset of the domain B of B and if each Aw, UAr is the restriction of



146 ROGER C. LYNDON

the corresponding Bw, Br to the subset A of B. If p¢is any interpreta-
tion in A, there is a unique interpretation A in B such that ¢ and 2
agree on all variables of L. B is an elementary extension of A if for
all ¢, 2 as above, and F' a formula of L, if F holds in ¢ then F holds
in 2. In particular, U and B are elementarily equivalent.

If 2 and B are models with domains A and B, a mapd of A onto
B will be called a @Q-map, for @ = R a set of relation symbols, if, first
of all, ¢ ‘preserves’ all operations and relations:

0[(21?'0) (alv ctty ap(w))] = (%@U) (0(1’1’ ) 0a’p('w)) ’ all win W )
Ar)(ay, « -+, @) = (Br)(0ay, «--, 0a,,) , all » in R,

and, moreover, the implication in the last line is an equivalence for all
r not in Q. More concigely, 0(Aw) = Bw, 0QAr) = Br, with 6(Ar) = Br
for » not in Q. If 0 is one-to-one, we speak of a Q-isomorphism. An
O-isomorphism, for O the empty set, is an <somorphism in the usual
sense.*

If 0 is any map of 9 onto B, its kernel k, defined by k(a, a’) if
and only if fa = 6a’, is an equivalence relation on 4. If 4 is a O-map
of A onto B, then k is a congruence relation on A, that is, it is sub-
stitutive with respect to all the 2w and Ar. For any congruence k on
a model A, the operations Ww and relations Ar of A induce operations
Nw/k and relations Ar/k on the set A/k of equivalence classes in A
under k; the quotient model UA/k is defined to have domain Ak, opera-
tions (A/k)yw = Aw/k, and relations (A/k)r = Ar/k. It is immediate that
the natural projection of A onto A/k is a O-map, and that if ¢ is any
O-map of A onto B, with kernel %k, then 6 induces a naturally an iso-
morphism of A/k onto B.

We proceed to the statement of a proposition that contains all that
we require about elementary extensions. For 2 a model of the language
L, with domain A, define a language L, by adjoining to L new and
distinet constants (operations of rank 0) w, for all @ in 4, and a new
relation e, of rank two. Extend 2 to a model A, of L, by defining
N, w, = a, that is, A, w, is the constant operation with value a, and
A e, to be the identity relation on A. Then ¥ is the set of all sentences
of L, that hold in 2.

ProprosITION 3. If U and B are models of L, and B has an ex-
tension B’ to L, wn which all sentences of W% hold, then B has an
O-tmage that is an elementary extension of A.

4 The concept of @-map and that of elementary extension, as well as various results
mentioned here, are special cases of more far-reaching ideas developed recently by H. J.
Keisler [4]. The use of constants w,, in the paragraph after next, derives from the
‘diagrams’ of A. Robinson [11]. Proposition 3 in contained in Th. 1.11 of [15].
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Proof. Let k = B'e,. Since the sentences expressing that % e,, the
identity on A4, is a congruence on A, are in A%, they hold in ¥, whence
k is a congruence on ¥B'. The quotient system €' = B'/k then also
satisfies A%, and @'e, is- the identity on the domain C of €'. The
restriction € of €' to L is Bk, an O-image of B.

Define a map6d from A into C by setting 0a = €'w,  Now,
Aaw(ay, «++, Gyy) = ' if and only if e (w(w,,, «--, wap(w)), Wy) 18 in Wy,
hence if and only if this sentence holds in €', that is, if

@,w(aalr %y Ha/p(w)) =fa’ .

The same reasoning shows that 2 »r(a,, «--, ¢x) holds in A if and only
if €r(0ay, .-, ba,,,) in €. This establishes that is an O-map of 2, onto
a subsystem 602(, of €', and, in fact, taking »r above to be e,, a = a’ if
and only if fa = 6a’, whence ¢ is an isomorphism.

Since 02, is a submodel of €', taking restrictions to L, 6% is a
submodel of €. Let ¢ be an interpretation in 62(, and A the interpreta-
tion in € that agrees with ¢ on all variables. Let F' be a formula of
L with free variables %, ---, x,, and D the sentence that results from
F by replacing each x; by w, where px;, = 2x, = 0a,. If p and 2 are
extended to L' in such a way that each 1wy, = Jw,, = 0a,;, then pF = pD
and AF = AD. Now, if pF =1, #D =1, and, since D is a sentence, D
holds in 6#2,, hence in A,. Then D is in A, and hence holds in €',
whence 4D =1 and AF = 1. This establishes that € is an elementary
extension of 4,. ‘

It is now a trivial matter to construct ® from € by replacing each
element fa in € by a. Then © is an elementary extension of U itself,
and the O-map of € onto B induces an O-map of D onto B.

We come now to the main result concerning @Q-maps.

THEOREM 4. Let U be a model of the language L, and K an ele-
mentary class of models of L. Then the following are equivalent:
(1) all Q-positive sentences of L that hold in K also hold in U,
(2) some elementary extension of U is a Q-image of a model in K.

Proof. Assume (1). Let I"=K* and 4 =% Let Q, @, and I
be as before. Let 4’ result from 4 by replacing each relation symbol
g in @ by the corresponding ¢’ in @'. Suppose I', I, 4’ inconsistent.
By the Compactness Theorem, I', I, D' =0 where D is a finite con-
junction of sentences from 4, hence itself belongs to 4. Then I',I=
~D', and, by Proposition 2, and Compactness, there exists a Q-positive
sentence P, not containing the symbols ¢', w,, e,, that is, in L, such
that L=P and P=~D. But I"= P implies that P holds in K, and,
since P is a Q-positive sentence of L, that P holds in . Therefore P
holds in 2,, and P=>~D gives a contradiction.
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It has been shown that 7, I, 4’ is consistent, hence holds for some
model € of the language L’ obtained from L by adjoining the symbols
q, ws e4. Let ® be the restriction of € to the language L/, excluding
the symbols ¢; since € satisfies 4', so does D. Define a model B’ of
L, to agree with ® except that B'q = D¢'; then B’ satisfies 4. By
Proposition 3, some O-image B* of the restriction B of B’ to L is an
elementary extension of .

Let & be the restriction of € to L; since € satisfies /7, so does &,
and € is in K. Now Cw = Cw = Bw for all w in W, and Gr = Cr =
Br for all r not in @, while, for ¢ in @, ¢ = ¢ while Bg = D¢’ = €¢’,
and, since € satisfies the seetences I, ¢ = Bg. It follows that the
identity map 6 on the common domain C of & and B is a Q-map of €
onto B. It follows that the O-image B* of the Q-image B of € is a
Q-image of @: the elementary extension B* of U is the Q-image of &
in K.

To show that (2) implies (1), it suffices to show that if A is a Q-
image of some B in K, and P in I' is Q-positive, then P holds in 2.
Define a model € of the language L', obtained from L by adjoining the
symbols ¢', by taking as domain the common domain A of ¥ and B;
setting Cw equal to the common value 2w = Bw; for » not in Q, setting
Cr = Ar = Br; and defining €q = Bq, €¢' = Aq. Since B is in K, B
satisfies P and so does €. Since U is a Q-image of B, each Bg = Uq,
that is, each €q = €¢’, whence € satisfies the sentences I. Since P is
Q-positive, it follows by Proposition 1 that P, I=>P', whence P’ holds
in €, and, since €P' = 9P, P holds in 2.

COROLLARY 4.1. An elementary class K is closed under Q-maps if
and only if it is the set of all models for some set of Q-positive sentences.

Proof. Assume K closed under Q-maps. Let K = I'*, and let /I be
the set of all @-positive consequences of I'. If U is in II*, some ele-
mentary extension B of U is a Q-image of a model € in K. But then
B and therefore A are in K. Thus [I* < ['*; since Il < I" implies
r*c i*, K=1I*=I1I*. The converse is immediate.

COROLLARY 4.2. A set of sentences is preserved under Q-maps if
and only if it is equivalent to a set of Q-positive sentences.

4, The Main Theorem. We now choose once and for all a relation
symbol e of rank two, and consider henceforth only languages L that
contain this symbol. A model A of L will be called a relational system
provided e is the identity relation on the domain A of A. We sghall
speak of the set of all relational systems in an elementary class as an
elementary class of relational systems.
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The term homomorphism will be taken in the broad sense, for a
map that preserves all functions and relations, that is, an R-map. The
term projection will be used for the narrower concept of O-map: B is
(the image under) a projection of 2 if and only if B is isomorphic to a
quotient system of . The other component of the concept of homo-
morphism in contained in that of enlargement, or R-isomophism: B is
(the image under) an enlargement of 2 if and only if B is isomorphic
to a system obtained from 2 by replacing its relations by more ex-
tensive relations. It is easily seen that if ¢ is any homomorphism of
A onto B, then A has an enlargement A’, defined by taking UA'r = 6-Br
for all » except, e, such that 0 induces a projection of A’ outo B.

THEOREM 5. Let U be a relational system of the language L, and
K an elementary class of systems of L. Then the following are
equivalent:
(1) A satisfies all sentences of L that hold in K and are
positive in all relation symbols
{positive wn the symbol e
positive in all relation symbols except e
(2) A has an elementary extension that is
a homomorphic image
{a projection } of a system in K.
an enlargement

Proof. Let @, =R, Q,= {e}, Q; = R — {e}.

If 9 satisfies (2) it is a @Q;-image of a system in K & K**, and hence,
by Theorem 4, U satisfies all @,-positive sentences in K*** = K*,

For the converse, suppose that 2 is a relational system that satisfies
all the Q;-positive sentences in K*. By Theorem 4, there exists a model
€ (not necessarily a relational system) in K** and a Q;-map 6 of € onto
a model B that is an elementary extension of . Since K is a class of
relational systems, K* contains sentences requiring that ¢ be interpreted
as a congruence, whence €¢ is a congruence on €. Since 2 is a rela-
tional system, e is a congruence, and, indeed, the identity on the
domain A of A. Since B is an elementary extension of A, hence
elementarily equivalent to 2, Be is a congruence on B, and its restric-
tion to A is the identity on A. It follows that 8B/Be is an elementary
extension of 2.

The map 6 induces a Q;-isomorphism 6 of €/Ce onto B/Ce. Since
Ce < Be, there is a canonical projection & of B/Ce onto B[Be. Hence
k0 is a Q;-map of the relational system €/Ce onto the relational system
B/Be. This completes the case of @, =FR. For Q,= {e}, € and B
differ only in their values €e and Be, whence €/Ce = B/Ce¢, and « is a
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projection of €/Ce onto B/Be. For Q;, = R — {e}, Ce = Be, whence
B|Ce = B[BVe and 0 is a Q,isomorphism, that is, an enlargement, from
€/Ce onto B/Be.

It would be possible, by the same arguments, to generalize Theorem
5 to @Q-maps, where @ S R may contain ¢ or not, and indeed to maps
increasing in one set @ of relation symbols and decreasing in a second
set . But, for simplicity, we shall rather restrict our attention to the
entirely typical case of homomorphisms.

COROLLARY 5.1. Let K be an elementary class of relational systems.
A sentence S is true for all homomorphic images of systems in K if
and only if S is a consequence of some positive sentence that holds for
all systems in K.

Proof. If S is a consequence of a positive sentence P that holds
for all systems in K, it follows by the theorem that P, and therefore
also S, hold for all homomorphic images of systems in K. Conversely,
if S holds for all homomorphic images of systems in K, and hence for
all systems having such images as elementary extension, it follows by
the theorem that S holds for all systems that satisfy the set I7 of all
positive sentences that hold for every system in K. Thus /7 =S, and
by the Compactness Theorem P, ---,P,=S for some finite set of
P,+--,P,in II, whence P=>S for P=P, A --- AP, in II.

COROLLARY 5.2. Let K be an elementary class of relational systems.
Every homomorphic image of a system in K itself belongs to K if and
only if K is the class of all systems satisfying a certain set of positive
sentences.

Proof. Let K = I'*, and suppose that H(K) < K, where H(K) is
the class of all homomorphic images of systems in K. Let II be the
set of all positive sentences in I'. Since IT < I', it is immediate that
I'* < 1[1*. By Corollary 5.1, every sentence S in I" is a consequence of
some sentence P in II, whence I'* = IT*. It follows that II* = I'* = K.

COROLLARY 5.3. A sentence has the property that whenever it holds
for a system 2 it holds for every homomorphic image of U if and
only if it is equivalent to a positive sentence.

Proof. In Corollary 5.2, take K to be the class characterized by a
single sentence.

If a relational system 2 satisfies the set of all positive sentences
true for a system 9B, it follows from the theorem, with K = B**, that
some elementary extension A’ of A is a homomorphic image of a system
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B' that is elementarily equivalent to B. In fact, by passing from the
originally given language L to the language L, there is no difficulty
in establishing a stronger proposition, as follows: U satisfies all posi-
tive sentences true for B if and only if A has an elementary exten-
ston W and B an elementary extension B such that AW is a homo-
“morphic image of B'.

Let H an elementary class of relational systems, and call a system
in H an H-system. The following relativized version of Theorem 5 is
contained directly in that theorem.

THEOREM 5. If U is an H-system and K an elementary class of
H-systems, then the following are equivalent:
(1) A satisfies all positive sentences that hold in K;
(2) A has an elementary extension that is a homomorphic image of
a system i K.
The relativized forms of the corollaries now follow as before, provided
the relation P= T is replaced by that of H-implication: H,P= T,
and equivalence by H-equivalence. As an example, the relativized
version of Corollary 5.3 asserts the equivalence of the following pro-
perties of a first order sentence S of group theory:
1) of A and B are torsionfree groups, if B is a homomorphic image
of A, and S holds for A, then S holds for B;
(2) there exists a positive sentence P such that, for each torsionfree
group A, S holds if and only i1f P holds;
and hence, further,
(2) there exists a positive sentence P such that the equivalence of S
and P follows from the axioms for torsionfree groups.

5. Complementary examples. We first note that the conclusion of
Theorem 5 does not follow without the requirement that the class K be
elementary. For this, let L be the language of elementary identity
theory, without operation symbols and without relation symbols other
than e. The relational systems for this language are simply sets. Let
K be the class of all finite systems; clearly H(K) < K. It is well known
and easily seen that K* consists only of those sentences that are true
in all models. A fortiori, every system, infinite or finite, satisfies all
positive sentences that hold for K. But an elementary extension of an
infinite system is itself infinite, hence cannot belong to H(K).

Next we show that, even if K is elementary, the class H(K) of all
homomorphic images of systems in K need not be elementary; hence
the reference to elementary extensions in Theorem 5 can not be deleted.
For this, let L contain no operation symbols, and only a single binary
relation symbol » in addition to e. Let S be the following sentence:
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S = seayyeat: 7@, ¥) A - 7@, 2) D r(@, ) A e, 1) .
For n=1,2,..-, let S, be the following sentence:

Sn = JXLy v+ Ly * 1"(%0, xl) AN 7‘(9(:0, xz) VASRRE VAN ’Y'(ZUD, xn)
A r(xl, 902) AN 1"(%2, .’/Us) N eee A 1"(9(?”_1, xn) .

We shall establish the following:

If S=P, and P is positive, then S,= P for some n=1,2, «--;
hence, defining K = S*, H(K)* = {S,, S,, ---}**.

We use the Main Theorem of [7], with S' =S and S* = ~P. The
Skolem matrix M* of S has the form

lr(so: 81) /\ * V(Soy z) -] ’i"(Sg, S(Z)) /\ /r(z’ S(Z)) ’

where s;, s, are Skolem functions of rank 0, and s of rank 1, in an ex-
tension L' of L. The Skolem matrix M? of ~P is negative. If N*', N*
are the Skolem matrices of U?!, U? as in the Main Theorem of [7],
evidently N? is negative, whence N' and hence U' are positive. We
have that U= P, and, from the relation of U* to S', that U® follows
from a universal sentence with positive matrix M, where M follows by
propositional calculus alone from a set Y of instances of M*'. Define a
sequence of terms &, ¢, --- in L' by setting ¢, = s, ¢, = s, and, induc-
tively, t,., = s(¢,) for all n = 1. Define a substitution y on the atomic
formulas F of L' by setting yF = F if F is 7(t,, tner) O 7(fy, t,ye1), for
some n=20,1,2, --., and setting yF = 0 otherwise. Since M is positive
and each yF=F, yM= M. Since Y= M by propositional calculus,
¥2 =M. Thus y>= M. Now y2 is evidently equivalent to the set
of all formulas (¢, t,.;) and =(t,, t,.,), whence, by the Compactness
Theorem, M is a consequence of a finite set of them, and hence, for
some %, of

’r(tOy tl) VANEREIVAN T(to, tn) A T(tly tz) VANRERIVAN T(tn—ly tn) .

But now U!, which follows from M, follows equally from the Skolem
matrix of S”, hence from S* itself, and S™ = P.

Let 2 be a relational system for L. The sentence S evidently
requires that the domain A of 2 contain an infinite chain of elements,
not necessarily distinet, a,, a4, ---, such that Ar(a,, a,) and Ar(a,-., a,)
for all » = 1. Since the image of such a chain in any homomorphic
image of U is again such a chain, every U in H(K) contains such a
chain. On the other hand, each condition S, requires of a system A
that it contain a finite chain a, a, ---, a, related in this fashion, whence
a system 2 is in H(K)* if it contains such chains of unbounded lengths.
If A is a system with domain A = {a,, a,, ---} and Ar(a;, a,) is true if
and only if j < %, evidently 2 contains chains a,, @4, < -+, @, for all n,



PROPERTIES PRESERVED UNDER HOMOMORPHISM 153

but no infinite chain of the kind required by S, whence 2 is in H(K)*
but not in H(K).

We conclude by showing that it is not in general decidable whether
a sentence of a first order language is equivalent to some positive
sentence.” A first order theory T may be taken as consisting of a
language L together with a consistent logically closed set I = I'** of
sentences of L, the theorems of T. The theory T is undecidable if
there is no effective method of deciding, for all sentences S of L,
whether S is a theorem of 7T, that is, if the set I" is not recursive;
this concept is of interest primarily in the case that there exists a
finite, or at least recursive, set I'y of axioms, such that I';** = I". We
shall confine our attention to finitely axiomatizable undecidable theories
that have the following additional property:

(*) every model in which 7" holds has as homomorphic image some

one-element model in which I” holds.
Two important examples of such theories are the following:

(1) L contains at least one relation symbol (other than the identity
symbol) of rank greater than one, I" empty;®

(2) L contains the identity symbol and an operation symbol w of
rank 2, and /" is a set of axioms for group theory with e interpreted
as equality and w as the group composition.”

Let Y be the set of all sentences S of L such that S holds in every
one-element model in which 77 holds. Clearly I" £ Y. Moreover, it is
easily decidable, for C the conjunction of all axioms in I';, whether
C D S holds in all one-element models, and hence whether S is in J.
Consequently, it is not decidable whether a sentence in Y is a theorem.

Let S be in Y. Suppose first that S is a theorem. Then I'= S,
whence ~S is T-equivalent to the false sentence 0, which is positive;
that is, '=>~SD>0- A -0>D~S. Suppose now that S is not a
theorem. Then there exists a model U in which /" holds while S fails,
and hence ~S holds. In view of the assumption (*) 2 has as homo-
morphic image some one-element system B in which /" holds. Since S
is in ¥, S holds in B, that is, ~S fails in B. Since I" and ~S both
hold in 2, while I" holds and ~S fails in the homomorphic image 8 of
9, it follows from Theorem 5’ that ~S is not T-equivalent to any posi-
tive sentence. We have shown that, for S in ¥, ~S is equivalent to
a positive sentence (and, indeed, to the positive sentence 0) if and only
if S is a theorem. It follow that there exists no effective method of
deciding, for sentences S such that ~S is in ¥, nor, therefore, for all
sentences of L, whether S is T-equivalent to a positive sentence.

s Fgr {he: main concepts of this paragraph, see [14].
6 See Church [1].

7 For the undecidability of the elementary theory of groups, see [14, p. 84] and the
reference to Tarski given there; see also [10].
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