
PROPERTIES PRESERVED UNDER HOMOMORPHISM
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l Introduction. The main result of this paper is a characteriza-
tion of those sentences of the predicate calculus whose validity is pre-
served under passage from an abstract algebraic system to any homo-
morphic image of the system. An algebraic system is here construed
to be a set together with certain operations and relations, including
identity, defined for elements of the set. The sentences under con-
sideration will contain symbols for these operations and relations, and
variables whose range is the set of elements of the system, together
with the usual logical symbols, but will contain no variables whose range
consists of sets, relations, or functions. Such a sentence will be called
positive if it contains the logical symbols for conjunction, disjunction
and quantification only, but not the symbol for negation. It will be
shown that:

(*) A sentence of the predicate calculus is preserved under homo-
morphism if and only if it is equivalent to a positive sentence.

An example is provided by the usual statement of the commutative
law for multiplicative systems:

\/xy - xy = yx .

This is a positive sentence, and indeed every homomorphic image of a
commutative system in commutative. As a second example, upon
eliminating the symbol for " if then ", the left cancellation law takes
the form

\fxyz ~-(xy — xz) V y = z .

This sentence is not positive, and, indeed, from the fact that the left
cancellation property is not preserved under homomorphism we conclude
that it is not expressible by any positive sentence.

It is not difficult to show that every sentence equivalent to a positive
sentence is preserved under homomorphism; although the converse seems
nearly as obvious intuitively, to prove the converse appears to be a
matter of considerable difficulty. That positive sentences are preserved
was noted by the author [6], and also by E. Marczewski [9], who raised
the question of the converse. A proof, by methods quite different from
those used here, was announced by J. Los [5], but such a proof has
not been published. The result has also been stated by A. I. Malcev
[8], who appears to indicate a method of proof.
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The central result of this paper, Theorem 5, is in fact a stronger
form of the assertion (*) above. Some consequences and variants of
this theorem are given, and examples to show that it can not be
strengthened further in certain obvious ways.

The content of this paper lies within the theory of elementary
classes as formulated by A. Tarski [12, 13]1. We define and use here
numerous concepts due to him, and, in particular, that of elementary
extension, due to Tarski and R. Vaught [15]. We have tried to make
this paper self contained to the extent that the main line of reasoning
should be intelligible and convincing under any reasonable interpretation
of the concepts employed; for the technical definitions necessary for
rigor in the details of the proofs, we refer to an earlier paper [7].
Further, we borrow from that paper the relevant definitions and a proof
for the following theorem, which is the cornerstone of the present paper:

INTERPOLATION THEOREM. If S and T are sentences of the predicate
calculus, and S implies Γ, then there exists a sentence M such that S
implies M and M implies T, and that a relation symbol occurs positively
(negatively) in M only if it occurs positively (negatively) in both S and
T.

The author has profited from many discussions with L. Henkin and
A. Tarski.2 The relativization embodied in Theorem 5' was suggested
by A. Robinson.3

2* Sentences increasing in a relation symbol. Roughly, a property
of a relation may be called increasing if, whenever it holds for a given
relation it holds for any larger relation. Passing from properties to the
sentences that express them, we make a precise definition. Let Q be
a subset of the set R of all relation symbols in a language L, and let
Qr be a set of new and distinct relations symbols qf in one-to-one
correspondence with the symbols q of Q in such a way that q' has the
same rank as q. Let I be the set of all sentences

for all q in Q. Let /7 be a set of formulas of L, and Γ' the result of
replacing the symbols q in Γ by the corresponding q'. We call Γ
increasing in Q if Γ,

1 We use the word ' elementary ' in preference to 'arithmetical', and, by an ' elementary
class ', mean always what is commonly called an ' arithmetical class in the wider sense
(AC*)'.

2 In particular, while the author was visiting at the University of California, Berkeley.
3 At the American Mathematical Society Summer Institute, Ithaca, 1957.
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PROPOSITION 1. If a set Γ of formulas is positive in all the relation
symbols in a set Q, then Γ is increasing in Q.

Proof. It suffices to treat the case that Γ consists of a single
formula F. If F is an atomic formula or, vacuously, the negation of
an atomic formula, the conclusion is immediate. The general case
follows by an obvious induction.

The converse is contained in the following.

PROPOSITION 2. Let L, Q, Q' and I be as before. Let Σ, Γ, A be
sets of sentences L, and let Σ' result from Σ, and Δ' from Δ, by replacing
each q by the corresponding q'. If Σ, Σ', Γ, I=^Δf

y then there exists a
set Π of sentences P, positive in all the symbols of Q and not containing
the symbols of Q\ such that Σ, Γ ==> Π and Σ, Π =φ Δ.

Proof. It suffices to treat the case that Δ consists of a single
sentence D. By the Compactness Theorem (Corollary 4.1 of [1]), the
hypothesis will hold with Σ, Γ, I replaced by finite subsets, and hence,
taking conjunctions, by single sentences: S, S', C, J =$D', where C is
positive in all the q in Q, and J is a conjunction of sentences I(q, qf).
It follows directly that S, C==> J A S' ID D''. The symbols q' do not occur
at all in S or C. The symbols q occur only in the part J of J Λ Sf u Df,
and since each occurrence of a symbol q is negative in J, it is positive
in J Λ Sf z> Dr. By the Interpolation Theorem there exists a sentence
P, not containing the qf and positive in the q, such that S, C=$ P and
P^JASrZ)D\ FromS, C^P we have Σ,Γ^ P. From P^Jf\SfZ)D'y
replacing each q' by q, it follows that P =φ J* Λ S D D where J* is the
result of replacing each q' by q in J. In fact, J* is a theorem, whence

z) D, hence PfS^Df and Σf

COROLLARY 2.1. A set Γ of sentences is increasing in the symbols
of Q if and only if it is equivalent to a set Π of sentences positive in the
symbols of Q.

3. Q-maps If Γ is a set of sentences of the language L, let F* be
the set of all models of L in which all sentences of Γ hold. If K is a
set of models of L, let if* be the set of all sentences of L that hold
in all models in K. It follows that Γ** is the ' logical closure' of Γ,
the set of all sentences S such that Γ =φ S. The elementary closure of
K is ϋΓ**, and K is an elementary class if K — if**, that is, if K = Γ*
for any Γ. Two models 51 and S3 are elementarily equivalent if 31*=33*,
that is, if exactly the same sentences hold in 3ί as in 93.

A model 31 is submodel of a model 33 if the domain A of 31 is a
subset of the domain B of S3 and if each 3ίw, 3Ir is the restriction of
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the corresponding 35w, 35r to the subset A of B. If />« is any interpreta-
tion in 31, there is a unique interpretation λ in 95 such that μ and λ
agree on all variables of L. 35 is an elementary extension of 31 if for
all μ, λ as above, and F a formula of L, if F holds in μ then F holds
in λ. In particular, SI and 35 are elementarily equivalent.

If SI and 35 are models with domains A and B, a map# of A onto
B will be called a Q-map, for Q g ί a set of relation symbols, if, first
of all, θ ' preserves' all operations and relations:

)(aL, , αp(w))] - (35w)(ft*!, , 0αp(w)) , all w in T7 ,

(Sir) (αx, , αp(r)) =φ (35r) {θa,, , 0α,(r)) , all r in 22 ,

and, moreover, the implication in the last line is an equivalence for all
r not in Q. More concisely, θ(%w) = 35w, #(3Ir) E 35r, with #(3Ir) = 35r
for r not in Q. If 0 is one-to-one, we speak of a Q-isomorphism. An
O-isomorphism, for 0 the empty set, is an isomorphism in the usual
sense.4

If θ is any map of SI onto 35, its kernel k, defined by k(a, a') if
and only if θa = θa!, is an equivalence relation on A. If θ is a O-map
of SI onto 35, then k is a congruence relation on 31, that is, it is sub-
stitutive with respect to all the SIw and Sir. For any congruence k on
a model SI, the operations %w and relations Sir of 31 induce operations
%w\k and relations 3Ir/& on the set A\k of equivalence classes in A
under k; the quotient model 31/fc is defined to have domain Ajk, opera-
tions (3I/fc)w = Stw/fc, and relations (SI/fc)r = 3Ir//b. It is immediate that
the natural projection of A onto A\k is a O-map, and that if θ is any
O-map of SI onto 35, with kernel k, then θ induces a naturally an iso-
morphism of 2I/& onto 35.

We proceed to the statement of a proposition that contains all that
we require about elementary extensions. For 31 a model of the language
L, with domain Λ, define a language LA by adjoining to L new and
distinct constants (operations of rank 0) wa for all a in A, and a new
relation eA of rank two. Extend 31 to a model 31^ of LA by defining
Sl^α = α, that is, %Awa is the constant operation with value α, and
3 1 ^ to be the identity relation on A. Then 31^ is the set of all sentences
of LA that hold in 31A.

PROPOSITION 3. If 31 and 35 are models of L, and 58 has an ex-
tension 35' to LA in which all sentences of 313 hold, then 35 has an
0-image that is an elementary extension of 31.

4 The concept of Q-map and that of elementary extension, as well as various results
mentioned here, are special cases of more far-reaching ideas developed recently by H. J.
Keisler [4]. The use of constants wa, in the paragraph after next, derives from the
'diagrams' of A. Robinson [11]. Proposition 3 in contained in Th. 1.11 of [15].
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Proof. Let k = 33'e .̂ Since the sentences expressing that $lAeA, the
identity on A, is a congruence on UA are in SIJ, they hold in 33', whence
& is a congruence on SB'. The quotient system (£' = 33'/& then also
satisfies SI*, and &eA is the identity on the domain C of (£'. The
restriction © of (£' to L is 33/fc, an O-image of β.

Define a map 0 from A into (7 by setting θa = &wa. Now,
St^ίαx, - — ,ap(w)) = α' if and only if eA(w(wai, , wβp(fo)), wα,) is in SIA*,
hence if and only if this sentence holds in (£', that is, if

The same reasoning shows that SIAr(aly , αp(r)) holds in SI if and only
if fS,'r(θal9 , 0αp(r)) in E\ This establishes that is an O-map of 31̂  onto
a subsystem 02I4 of (£', and, in fact, taking r above to be eΛf a = α' if
and only if #α = #α', whence θ is an isomorphism.

Since θ$ίA is a submodel of (£', taking restrictions to L, #31 is a
submodel of (E. Let μ be an interpretation in #21, and Λ the interpreta-
tion in (E that agrees with μ on all variables. Let F be a formula of
L with free variables xl9 , a?n, and D the sentence that results from
F by replacing each xi by wα. where μxt — λx% — θat. If μ and /i are
extended to LI in such a way that each μwa. — λwa. — θaiy then μF = μD
and λF — W. Now, if μF = 1, /̂ D = 1, and, since D is a sentence, D
holds in 02I4, hence in 31 .̂ Then D is in SI,** and hence holds in (£',
whence λD — 1 and Λ.F = 1. This establishes that £ is an elementary
extension of ΘA.

It is now a trivial matter to construct © from (E by replacing each
element to in K by α. Then ® is an elementary extension of SI itself,
and the O-map of K onto 33 induces an O-map of ® onto 33.

We come now to the main result concerning Q-maps.

THEOREM 4. Let 31 be a model of the language L, and K an ele-
mentary class of models of L. Then the following are equivalent:

(1) all Q-positive sentences of L that hold in K also hold in 21;
(2) some elementary extension of SI is a Q-image of a model in K.

Proof. Assume (1). Let Γ = K* and Δ = SI*. Let Q, Q', and /
be as before. Let Δ' result from Δ by replacing each relation symbol
q in Q by the corresponding qf in Qr. Suppose Γ, I, Δ' inconsistent.
By the Compactness Theorem, Γ, I, Df => 0 where I) is a finite con-
junction of sentences from Δ, hence itself belongs to A. Then ΓfI^>
~Df, and, by Proposition 2, and Compactness, there exists a Q-positive
sentence P, not containing the symbols q'', wa, eA, that is, in L, such
that L =φ P and P =φ ~Zλ But Γ => P implies that P holds in K, and,
since P is a Q-positive sentence of L, that P holds in SI. Therefore P
holds in 31 ,̂ and P=φ~D gives a contradiction.
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It has been shown that Γ, 7, Δ' is consistent, hence holds for some
model (£ of the language LI obtained from L by adjoining the symbols
Qr, wa, &A- Let 3) be the restriction of (£ to the language UA excluding
the symbols g; since (£ satisfies Δ\ so does ®. Define a model 33' of
LA to agree with ® except that 33'g = ®g'; then 33' satisfies Δ. By
Proposition 3, some O-image 33* of the restriction 33 of 33' to L is an
elementary extension of 3ί.

Let © be the restriction of (£ to L; since & satisfies Γ, so does @,
and © is in K. Now @w = Sw = 33w for all w in W, and @r = (£r =
33r for all r not in Q, while, for q in Q, @g = &g while 33g = Φg' = Eg',
and, since (£ satisfies the seetences 7, @g £ 33g. It follows that the
identity map θ on the common domain C of @ and 33 is a Q-map of ©
onto 33. It follows that the O-image 33* of the Q-image 33 of @ is a
Q-image of @: the elementary extension 33* of 31 is the Q-image of @
in K.

To show that (2) implies (1), it suffices to show that if SI is a Q-
image of some 33 in K, and P in Γ is Q-positive, then P holds in 2ί.
Define a model (£ of the language Z/, obtained from L by adjoining the
symbols g', by taking as domain the common domain A of §1 and 33;
setting &w equal to the common value %w — 93w; for r not in Q, setting
g r = Sir = 33r; and defining Kg = 3Bg, Sg' = Stg. Since 33 is in iί, 33
satisfies P and so does (£. Since Si is a Q-image of 33, each 33g S SIg,
that is, each Kg g Kg', whence & satisfies the sentences /. Since P is
Q-positive, it follows by Proposition 1 that P,I=^Pf, whence P' holds
in K, and, since KP' = SIP, P holds in 31.

COROLLARY 4.1. An elementary class K is closed under Q-maps if
and only if it is the set of all models for some set of Q-positive sentences.

Proof. Assume K closed under Q-maps. Let K — Γ*, and let Π be
the set of all Q-positive consequences of Γ. If 31 is in /7*, some ele-
mentary extension 33 of 31 is a Q-image of a model & in K. But then
33 and therefore 3ί are in K. Thus 77* s Γ*; since 77 £ Γ implies
Γ* s 77*, if = Γ* = 77*. The converse is immediate.

COROLLARY 4.2. A seί o/ sentences is preserved under Q-maps if
and only if it is equivalent to a set of Q-positive sentences.

4. The Main Theorem* We now choose once and for all a relation
symbol e of rank two, and consider henceforth only languages L that
contain this symbol. A model SI of L will be called a relational system
provided Sle is the identity relation on the domain A of 31. We shall
speak of the set of all relational systems in an elementary class as an
elementary class of relational systems.
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The term homomorphism will be taken in the broad sense, for a
map that preserves all functions and relations, that is, an iϋ-map. The
term projection will be used for the narrower concept of O-map: S3 is
(the image under) a projection of 31 if and only if 33 is isomorphic to a
quotient system of 31. The other component of the concept of homo-
morphism in contained in that of enlargement, or iϋ-isomophism: S3 is
(the image under) an enlargement of SI if and only if S3 is isomorphic
to a system obtained from SI by replacing its relations by more ex-
tensive relations. It is easily ,seen that if θ is any homomorphism of
31 onto 33, then SI has an enlargement 31', defined by taking SIV = θ^f&r
for all r except, e, such that θ induces a projection of 31' outo 33.

THEOREM 5. Let SI be a relational system of the language L, and
K an elementary class of systems of L. Then the following are
equivalent:

(1) SI satisfies all sentences of L that hold in K and are
(positive in all relation symbols \
\ positive in the symbol e >
\positive in all relation symbols except e J

(2) 31 has an elementary extension that is
(a homomorphic image \
\a projection \ of a system in K.
mn enlargement >

Proof. Let Qx = R, Q2 = {e}, Q3 = R - {e}.
If 31 satisfies (2) it is a QΓimage of a system in K s ϋΓ**, and hence,

by Theorem 4, SI satisfies all QΓpositive sentences in i£*** = i£*.
For the converse, suppose that 31 is a relational system that satisfies

all the QΓpositive sentences in J5Γ*. By Theorem 4, there exists a model
K (not necessarily a relational system) in i£** and a QΓmap θ of (£ onto
a model 33 that is an elementary extension of SI. Since if is a class of
relational systems, iΓ* contains sentences requiring that e be interpreted
as a congruence, whence (Eβ is a congruence on (£. Since SI is a rela-
tional system, Sle is a congruence, and, indeed, the identity on the
domain A of SI. Since S3 is an elementary extension of SI, hence
elementarily equivalent to SI, S3e is a congruence on S3, and its restric-
tion to A is the identity on A. It follows that 33/S3β is an elementary
extension of SI.

The map θ induces a QΓisomorphism θ of (£/(£e onto 33/Ke. Since
Kβ g 33e, there is a canonical projection /c of 33/(£e onto S3/33e. Hence
KΘ is a Qj-map of the relational system (£/©e onto the relational system
33/33e. This completes the case of Qτ = R. For Q2 = {β}, (£ and S3
differ only in their values (£e and S3e, whence K/Ee = 33/(£e, and K is a
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projection of (£/(£e onto 33/33e. For Qz — R— {e}, (£e = 33e, whence
SS/(£e = 33/33e and θ is a Q3-isomorphism, that is, an enlargement, from
<E/(£β onto S3/93e.

It would be possible, by the same arguments, to generalize Theorem
5 to Q-maps, where Q g R may contain e or not, and indeed to maps
increasing in one set Q of relation symbols and decreasing in a second
set Q\ But, for simplicity, we shall rather restrict our attention to the
entirely typical case of homomorphisms.

COROLLARY 5.1. Let Kbe an elementary class of relational systems.
A sentence S is true for all homomorphic images of systems in K if
and only if S is a consequence of some positive sentence that holds for
all systems in K.

Proof. If S is a consequence of a positive sentence P that holds
for all systems in K, it follows by the theorem that P, and therefore
also S, hold for all homomorphic images of systems in K. Conversely,
if S holds for all homomorphic images of systems in K, and hence for
all systems having such images as elementary extension, it follows by
the theorem that S holds for all systems that satisfy the set 77 of all
positive sentences that hold for every system in K. Thus 77 =φ S, and
by the Compactness Theorem Plf , Pn => S for some finite set of
P19 , Pn in 77, whence P =φ S for P = Pτ Λ Λ Pn in 77.

COROLLARY 5.2. Let Kbe an elementary class of relational systems.
Every homomorphic image of a system in K itself belongs to K if and
only if K is the class of all systems satisfying a certain set of positive
sentences.

Proof. Let K= Γ*, and suppose that H(K) g K, where H{K) is
the class of all homomorphic images of systems in K. Let 77 be the
set of all positive sentences in Γ. Since 77 g Γ, it is immediate that
Γ* g 77*. By Corollary 5.1, every sentence S in Γ is a consequence of
some sentence P in 77, whence Γ* g 77*. It follows that 77* = Γ* = K.

COROLLARY 5.3. A sentence has the property that whenever it holds
for a system Si it holds for every homomorphic image of SI if and
only if it is equivalent to a positive sentence.

Proof. In Corollary 5.2, take K to be the class characterized by a
single sentence.

If a relational system SI satisfies the set of all positive sentences
true for a system 33, it follows from the theorem, with K = S3**, that
gome elementary extension SI' of SI is a homomorphic image of a system
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S3' that is elementarily equivalent to S3. In fact, by passing from the
originally given language L to the language LB, there is no difficulty
in establishing a stronger proposition, as follows: 31 satisfies all posi-
tive sentences true for S3 if and only if 31 has an elementary exten-
sion SI' and S3 an elementary extension S3' such that SI' is a homo-
morphic image of 33'.

Let H an elementary class of relational systems, and call a system
in H an H-system. The following relativized version of Theorem 5 is
contained directly in that theorem.

THEOREM 5'. / /SI is an H-system and K an elementary class of
H-systems, then the following are equivalent:

(1) 31 satisfies all positive sentences that hold in K;
(2) SI has an elementary extension that is a homomorphic image of

a system in K.
The relativized forms of the corollaries now follow as before, provided
the relation P=$T is replaced by that of H-implication: H,P=$>T,
and equivalence by H~equivalence. As an example, the relativized
version of Corollary 5.3 asserts the equivalence of the following pro-
perties of a first order sentence S of group theory:

(1) if SI and S3 are torsionfree groups, if S3 is a homomorphic image
of SI, and S holds for SI, then S holds for S3;

(2) there exists a positive sentence P such that, for each torsionfree
group 31, S holds if and only if P holds;

and hence, further,
(2) there exists a positive sentence P such that the equivalence of S

and P follows from the axioms for torsionfree groups.

5* Complementary examples* We first note that the conclusion of
Theorem 5 does not follow without the requirement that the class K be
elementary. For this, let L be the language of elementary identity
theory, without operation symbols and without relation symbols other
than e. The relational systems for this language are simply sets. Let
K be the class of all finite systems; clearly H(K) g K. It is well known
and easily seen that if* consists only of those sentences that are true
in all models. A fortiori, every system, infinite or finite, satisfies all
positive sentences that hold for K. But an elementary extension of an
infinite system is itself infinite, hence cannot belong to H(K).

Next we show that, even if K is elementary, the class H{K) of all
homomorphic images of systems in K need not be elementary; hence
the reference to elementary extensions in Theorem 5 can not be deleted.
For this, let L contain no operation symbols, and only a single binary
relation symbol r in addition to e. Let S be the following sentence:
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S = 3X3yyz3t: r(x, y) A r(x, z) z> r(x, t) A r{z, t) .

For n — 1, 2, •••, let Sn be the following sentence:

Sn = g a ^ i •••&»• r(ίc0, αJx) Λ r(x0, x2) A Λ r(a?0, αn)

Λ r ( ^ , x2) A r(x2, x3) A Λ r(xw_x, xn) .

We shall establish the following:

If S^P, and P is positive, then Sn=^P for some n = 1, 2, •••;

Λewce, defining K= S*, H{K)* = {S19 Si9 •••}**.

We use the Main Theorem of [7], with S1 = S and S2 = ~ p . The
Skolem matrix M 1 of S has the form

r(s0, sO Λ r(s0, z) D r(s0, s(«)) Λ φ , s(«)) ,

where s0, s1 are Skolem functions of rank 0, and s of rank 1, in an ex-
tension V of L. The Skolem matrix M2 of ^ P is negative. If N\ N2

are the Skolem matrices of U\ U\ as in the Main Theorem of [7],
evidently JVa is negative, whence Nι and hence U1 are positive. We
have that Uι ^ P, and, from the relation of U1 to S\ that U1 follows
from a universal sentence with positive matrix M, where M follows by
propositional calculus alone from a set Σ of instances of M1. Define a
sequence of terms ί0, tτ in L' by setting ί0 = s0, ίx = §i, and, induc-
tively, ίn+1 = s(ίn) for all n ^ 1. Define a substitution χ on the atomic
formulas F of L' by setting χF = F if .F is r(ίn, ίΛ+1) or r(ί0, ίΛ+1), for
some w = 0, 1, 2, , and setting χF = 0 otherwise. Since ikf is positive
and each χF=$>F, χM^M. Since I ^ i k f by propositional calculus,
χΣ =#> χikf. Thus χΣ =φ> M. Now χiJ is evidently equivalent to the set
of all formulas r(ί0, tn+1) and r(ίro, ίra+i), whence, by the Compactness
Theorem, M is a consequence of a finite set of them, and hence, for
some n, of

r(t0, tx) A Λ r(ί0, ίn) Λ rfo, ί2) Λ Λ r(tn-l9 tn) .

But now Z71, which follows from Λf, follows equally from the Skolem
matrix of Sn, hence from Sn itself, and Sn =φ P.

Let SI be a relational system for L. The sentence S evidently
requires that the domain A of 2ί contain an infinite chain of elements,
not necessarily distinct, α0, alf , such that SIr(α0, an) and 5Ir(αw_χ, αw)
for all n ^ l . Since the image of such a chain in any homomorphic
image of 21 is again such a chain, every 21 in H(K) contains such a
chain. On the other hand, each condition Sn requires of a system 21
that it contain a finite chain α0, αx , an related in this fashion, whence
a system 21 is in H(K)* if it contains such chains of unbounded lengths.
If 21 is a system with domain A = {α0, alf •••} and 2tr(α«, α,) is true if

only if j < i, evidently 21 contains chains an,an-u * ,α 0 for all w,
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but no infinite chain of the kind required by S, whence §1 is in H(K)*
but not in H(K).

We conclude by showing that it is not in general decidable whether
a sentence of a first order language is equivalent to some positive
sentence.5 A first order theory T may be taken as consisting of a
language L together with a consistent logically closed set Γ = Γ** of
sentences of Lf the theorems of T. The theory T is undecidable if
there is no effective method of deciding, for all sentences S of L,
whether S is a theorem of T, that is, if the set Γ is not recursive;
this concept is of interest primarily in the case that there exists a
finite, or at least recursive, set ΓQ of axioms, such that Γo** = Γ. We
shall confine our attention to finitely axiomatizable undecidable theories
that have the following additional property:

(*) every model in which Γ holds has as homomorphic image some
one-element model in which Γ holds.

Two important examples of such theories are the following:
(1) L contains at least one relation symbol (other than the identity

symbol) of rank greater than one, Γ empty;6

(2) L contains the identity symbol and an operation symbol w of
rank 2, and Γ is a set of axioms for group theory with e interpreted
as equality and w as the group composition.7

Let Σ be the set of all sentences S of L such that S holds in every
one-element model in which Γ holds. Clearly Γ £Ξ Σ, Moreover, it is
easily decidable, for C the conjunction of all axioms in Γ09 whether
C D S holds in all one-element models, and hence whether S is in Σ.
Consequently, it is not decidable whether a sentence in I7 is a theorem.

Let S be in Σ. Suppose first that S is a theorem. Then Γ =̂> S,
whence ^S is T-equivalent to the false sentence 0, which is positive;
that is, Γ =φ ~S D O Λ O D ~ S . Suppose now that S is not a
theorem. Then there exists a model δί in which Γ holds while S fails,
and hence ^ S holds. In view of the assumption (*) 21 has as homo-
morphic image some one-element system 33 in which Γ holds. Since S
is in Σ, S holds in S3, that is, ~S fails in S3. Since Γ and ^ S both
hold in 21, while Γ holds and ^S fails in the homomorphic image S3 of
21, it follows from Theorem 5' that ~S is not T-equivalent to any posi-
tive sentence. We have shown that, for S in Σ, ^ S is equivalent to
a positive sentence (and, indeed, to the positive sentence 0) if and only
if S is a theorem. It follow that there exists no effective method of
deciding, for sentences S such that ~ S is in Σ, nor, therefore, for all
sentences of L, whether S is T-equivalent to a positive sentence.

5 For the main concepts of this paragraph, see [14].
6 See Church [1].
7 For the undecidability of the elementary theory of groups, see [14, p. 84] and the

reference to Tarski given there; see also [10].
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