ON ONE-TO-ONE HARMONIC MAPPINGS

Erhard Heinz

In this paper we shall prove the following :
Theorem. Let $z=z(w)(z=x+i y, w=u+i v)$ be a one-to-one harmonic mapping of the disc $|w|<1$ onto the disc $|z|<1$ such that $z(0)=0$. Then we have for $|w|<1$ the estimate

$$
\begin{equation*}
\left|z_{u}\right|^{2}+\left|z_{v}\right|^{2} \geqq \frac{2}{\pi^{2}} . \tag{1}
\end{equation*}
$$

As an improvement of an earlier result established in [1] J. C. C. Nitsche [4] showed that under the above conditions the inequality

$$
\begin{equation*}
\left(\left|z_{u}\right|^{2}+\left|z_{v}\right|^{2}\right)_{w=0} \geqq \frac{1}{2} \tag{2}
\end{equation*}
$$

is satisfied ${ }^{1}$. In contrast to (2) the estimate (1) holds throughout the unit dise $|w|<1$, but the constant involved is smaller than that of Nitsche.

In order to establish (1) we shall make use of a known result on harmonic functions (the analogue of the Schwarz Lemma) ${ }^{2}$. For the sake of completeness the proof of it will be given here.

Lemma. Let $z=z(w)=x(w)+i y(w)$ be a complex-valued harmonic function in the disc $|w|<1$. Furthermore, let $z(0)=0$ and $|z(w)|<1$ for $|w|<1$. Then we have the inequality

$$
\begin{equation*}
|z(w)| \leqq \frac{4}{\pi} \arctan |w| \quad|w|<1 \tag{3}
\end{equation*}
$$

Proof. Let θ be an arbitrary real number, and $f(w)$ be the function, which is regular-analytic in the dise $|w|<1$ and satisfies the relations $f(0)=0$ and

$$
\begin{equation*}
\Re f(w)=x(w) \cos \theta+y(w) \sin \theta . \tag{4}
\end{equation*}
$$

On account of our hypotheses we have

$$
|\Re f(w)|<1
$$

$$
|w|<1,
$$

hence,

[^0]\[

$$
\begin{equation*}
\mathfrak{R}\left(\exp \left[\frac{i \pi}{2} f(w)\right]\right)>0 \quad|w|<1 \tag{6}
\end{equation*}
$$

\]

Consequently the function

$$
\begin{equation*}
g(w)=\frac{\exp \left[\frac{i \pi}{2} f(w)\right]-1}{\exp \left[\frac{i \pi}{2} f(w)\right]+1} \tag{7}
\end{equation*}
$$

satisfies the inequality

$$
\begin{equation*}
|g(w)|<1 \quad|w|<1 \tag{8}
\end{equation*}
$$

and we have $g(0)=0$. Applying now the Schwarz Lemma and the elementary inequality

$$
\left|\begin{array}{l}
e^{i \zeta}-1 \tag{9}\\
e^{i \zeta}+1
\end{array}\right| \geqq \tan \frac{1}{2}|\Re \zeta| \quad|\Re \zeta| \leqq \frac{\pi}{2}
$$

we obtain the estimate

$$
\begin{equation*}
\tan \frac{\pi}{4}|\Re f(w)| \leqq|g(w)| \leqq|w| \tag{10}
\end{equation*}
$$

hence, by (4)

$$
\begin{equation*}
|x(w) \cos \theta+y(w) \sin \theta| \leqq \frac{4}{\pi} \arctan |w| \tag{11}
\end{equation*}
$$

for $|w|<1$.
Since this holds for every real value of θ the inequality (3) follows, which proves the lemma.

Proof of the theorem. (I) We first prove (1) under the additional hypothesis that the function $z(w)$ and its first derivatives are continuous in the closed disc $|w| \leqq 1$. Since the mapping $w \rightarrow z(w)$ is one-to-one and harmonic, its Jacobian $\left|z_{w}\right|^{2}-\left|z_{\bar{w}}\right|^{3}$ cannot vanish, in virtue of a theorem of H. Lewy [3]. Furthermore, since hypothesis and conclusion of our theorem remain unchanged, if $z(w)$ is replaced by $\overline{z(w)}$, we may assume without loss of generality that

$$
\begin{equation*}
\left|z_{w}\right|^{2}-\left|z_{\bar{v}}\right|^{2}>0 \quad|w|<1 \tag{12}
\end{equation*}
$$

Consequently, the function z_{w} does not vanish in the disc $|w|<1$. Furthermore, because of $z_{w \bar{w}}=0$, it is regular-analytic. From these facts it follows that for $|w| \leqq 1$ the inequality

3 Here and in the following considerations $\frac{\partial}{\partial w}=\frac{1}{2}\left(\frac{\partial}{\partial u}-i \frac{\partial}{\partial v}\right)$ and

$$
\frac{\partial}{\partial \bar{w}}=\frac{1}{2}\left(\frac{\partial}{\partial u}+i \frac{\partial}{\partial v}\right) \text { are the complex derivatives. }
$$

$$
\begin{equation*}
\left|z_{w}\right| \geqq \min _{|w|=1}\left|z_{w}\right| \tag{13}
\end{equation*}
$$

holds.
We shall now estimate the right-hand side of (13) from below by using our lemma. Let φ and r be two real numbers and $0<r<1$. Since by hypothesis the equation $|z(w)|=1$ holds for $|w|=1$ we have

$$
\left|\begin{array}{c}
z\left(e^{i \varphi}\right)-z\left(r e^{i \varphi}\right) \tag{14}\\
1-r
\end{array}\right| \geqq \frac{1-\mid z\left(r e^{i \varphi}\right)}{1-r} \geqq \begin{gathered}
1-4 / \pi \arctan r \\
1-r
\end{gathered}
$$

If we let r tend to 1 , we obtain

$$
\begin{equation*}
\left(\left|\frac{\partial z\left(r e^{i \varphi}\right)}{\partial r}\right|\right)_{r=1} \geqq \frac{2}{\pi} \quad 0 \leqq \varphi<2 \pi \tag{15}
\end{equation*}
$$

Furthermore, on account of (12) we have

$$
\left|\begin{array}{c}
\partial z\left(r e^{i \varphi}\right) \tag{16}\\
\partial r
\end{array}\right|=\left|z_{w}\left(r e^{i \varphi}\right) e^{i \varphi}+z_{\bar{w}}\left(r e^{i \varphi}\right) e^{-i \varphi}\right| \leqq\left|z_{w}\right|+\left|z_{\bar{w}}\right| \leqq 2\left|z_{w}\right|
$$

for $0<r \leqq 1$. Combining this with (15) we infer that for $|w|=1$ the estimate

$$
\begin{equation*}
\left|z_{w}\right| \geqq \frac{1}{\pi} \tag{17}
\end{equation*}
$$

holds.
Hence, by (13) we obtain for $|w| \leqq 1$ the inequality

$$
\begin{equation*}
\frac{1}{\pi} \leqq\left|z_{w}\right|=\frac{1}{2}\left|z_{u}-i z_{v}\right| \leqq 2^{-1 / 2}\left(\left|z_{u}\right|^{2}+\left|z_{v}\right|^{2}\right)^{1 / 2} \tag{18}
\end{equation*}
$$

which yields (1).
(II) Now let the mapping $z=z(w)$ merely satisfy the hypotheses of our theorem. Obviously there exists a sequence of numbers $\left\{R_{n}\right\}(\mathrm{n} \geqq 2)$ such that the following conditions are satisfied:
(i) We have $0<R_{n}<1$ for all $n \geqq 2$, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} R_{n}=1 \tag{19}
\end{equation*}
$$

(ii) The disc $|z|<R_{n}$ is mapped by the inverse transformation $z \rightarrow w$ onto a simply-connected domain D_{n} such that

$$
\begin{equation*}
\left\{|w| \leqq 1-\frac{1}{n}\right\} \subset D_{n} \subset\{|w|<1\} \tag{20}
\end{equation*}
$$

Since the mapping $z \rightarrow w$ is analytic in x and y, it follows that D_{n} is bounded by an analytic Jordan curve. By the Riemann mapping theorem there exists a uniquely determined function $w=\Phi_{n}(\zeta)$, which maps the disc $|\zeta|<1(\zeta=\xi+i \eta)$ conformally onto D_{n} such that $\Phi_{n}(0)=0$ and $\Phi_{n}^{\prime}(0)>0$. Furthermore, $\Phi_{n}(\zeta)$ is analytic for $|\zeta| \leqq 1$. Consequently, the function

$$
\begin{equation*}
Z(\zeta)=\frac{z\left(\Phi_{n}(\zeta)\right)}{R_{n}} \tag{21}
\end{equation*}
$$

is harmonic for $|\zeta|<1+\delta$, where δ is a positive number, and satisfies all the hypotheses of the above theorem. From the facts established in (I) we conclude

$$
\begin{equation*}
\frac{\left|\varphi_{n}^{\prime}(\zeta)\right|^{2}}{R_{n}^{2}}\left(\left|z_{u}\right|^{2}+\left|z_{v}\right|^{2}\right)=\left|Z_{\xi}\right|^{2}+\left|Z_{\eta}\right|^{2} \geqq \frac{2}{\pi^{2}} \tag{22}
\end{equation*}
$$

Hence we have for $w=\Phi_{n}(\zeta)(|\zeta|<1)$ the inequality

$$
\begin{equation*}
\left|z_{u}\right|^{2}+\left|z_{v}\right|^{2} \geqq \frac{R_{n}^{2}}{\left|\Phi_{n}^{\prime}(\zeta)\right|^{2}} \cdot-\frac{2}{\pi^{2}} . \tag{23}
\end{equation*}
$$

Furthermore, on account of (20) the estimates

$$
\begin{equation*}
\left(1-\frac{1}{n}\right)|\zeta| \leqq\left|\Phi_{n}(\zeta)\right| \leqq|\zeta| \tag{24}
\end{equation*}
$$

hold for $n \geqq 2$ and $|\zeta|<1$. Applying the Schwarz Lemma it follows from (24) that there exists a sequence of integers $\left\{n_{k}\right\}$ such that the relations

$$
\begin{equation*}
\Phi_{n_{k}}^{\prime}(\zeta) \rightarrow 1 \quad(k \rightarrow \infty) \tag{25}
\end{equation*}
$$

hold uniformly in every closed disc $|\zeta| \leqq \rho<1$.
Now let w^{*} be a fixed complex number with $\left|w^{*}\right|<1$ and let us determine two positive numbers k_{0} and ρ such that the inequalities

$$
\begin{equation*}
\frac{\left|w^{*}\right|}{1-\frac{1}{n_{k}}} \leqq \rho<1 \tag{26}
\end{equation*}
$$

are satisfied for $k \geqq k_{0}$. On account of (20) the point w^{*} belongs to $D_{n_{k}}$ for $k \geqq k_{0}$. Hence there exists a sequence of complex numbers $\left\{\zeta_{k}\right\}$ with $\left|\zeta_{k}\right|<1$ such that the equations

$$
\begin{equation*}
w^{*}=\Phi_{r_{k}}\left(\zeta_{k}\right) \tag{27}
\end{equation*}
$$

hold for $k \geqq k_{0}$. By (24) we have

$$
\begin{equation*}
\left|\zeta_{k}\right| \leqq \frac{\left|w^{*}\right|}{1-\frac{1}{n_{k}}} \leqq \rho<1 \tag{28}
\end{equation*}
$$

for $k \geqq k_{0}$. Applying now (23) and (25) we conclude

$$
\begin{equation*}
\left(\left|z_{u}\right|^{2}+\left|z_{v}\right|^{2}\right)_{w=w^{*}} \geqq \frac{R_{n_{k}}^{2}}{\left|\Phi_{n_{k}}^{\prime}\left(\zeta_{k}\right)\right|^{2}} \cdot \frac{2}{\pi^{2}} \rightarrow \frac{2}{\pi^{2}} \tag{29}
\end{equation*}
$$

for $k \rightarrow \infty$. Since w^{*} is an arbitrary point in the disc $|w|<1$, our theorem is established.

References

1. E. Heinz, Uber die Lösungen der Minimalflächengleichung, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. (1952), 51-56.
2. E. Heinz, On certain nonlinear elliptic differential equations and univalent mappings, J. d'Analyse Math. Jerusalem 5 (1956/57), 197-272.
3. H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), 689-692.
4. J. C. C. Nitsche, On harmonic mappings, Proc. Amer. Math. Soc., 9 (1958), 268-271.
5. G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, I, Berlin, 1925.

Stanford University

[^0]: 1 For further references see [2].
 2 See Polya-Szegö [5], p. 140.
 Received October 13, 1958.

