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l Introduction* In this paper we prove some theorems about non-
abelian o-groups, and give some methods of constructing such groups.
Most of the literature on o-groups is concerned with abelian o-groups,
and the examples in print of non-abelian o-groups are few. Iwasawa [8]
proves that any free group can be ordered, and he also gives some
additional examples of o-groups. Vinogradov [15] shows that the free
product of two o-groups A and B can be ordered so as to preserve the
given orders. Chehata [1] gives an example of an o-group that is simple.
[3] and [11] contain examples of o-groups. Most of the theorems in
this paper give methods for constructing o-groups. For example, in §3
we study the o-automorphisms of an o-group G. For every group A of
o-automorphisms of G that can be ordered we can construct a new o-group
H that contains A and G. H is the natural splitting extension of G by
A. In § 5 the relationship between central extensions and bilinear map-
pings is exploited. It is shown that any skew-symmetric real matrix can
be used to construct o-groups. In §6 some o-groups of rank 2 are con-
structed. In § 4 a study is made of the ordered extensions of a subgroup
of the reals. One of the main results is a necessary and sufficient
condition for such an extension to split. The principal tool used through-
out is the extension theory of Schreier [14].

2. Notation and Terminology. The notation of [3] is used through-
out. In particular, the notation and results from § 2 [3, pp. 517-518] are
used repeatedly. Unless otherwise stated the group operation will always
be addition and 0 will denote a group identity. N and Nf are o-groups
with elements α, 6, c, and α', bf, c', respectively. G is a normal
o-extension of N by JV\ We identify G with its representation G' =
N' x N, where

(α', a) + (&', b) = (af + δ',/(α', V) + αr(δ') + b)

and (α', α) is positive if a! > 0 or a! = 0 and a > 0. See [3] for the
properties of the factor mapping / and the representative function r.

θ will always denote a trivial homomorphism of a group onto the
identity element of some other group. For an o-group H, let A(H) be
the group of all o-automorphisms of H. For an abelian o-group K, let
D{K) be the ^-closure or completion of K. In particular, D(K) is a vector
space over the rationale and there is a natural extension of the order
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of K to an order of D(K). Finally let R be the additive group of all
real numbers, P be the multiplicative group of all positive real numbers,
R be the additive group of all rational numbers, P be the multiplicative
group of all positive rational numbers, and / be the additive group of
integers—all with their natural order,

3, Order preserving automorphisms of G» If H is an o-group and
A is a group of o-automorphisms of H that can be ordered, then the
group Hr = A x H, where (a, a) + (β, b) — {aβ, aβ + 6) for a, β in A and
a, b in JET, can be ordered. Simply define (a, a) positive if a is positive
in A or a is the identity and a is positive in H. Then clearly Hr is a
splitting o-extension of H by A. Thus if A contains more than one
element, then Hr is a non-abelian o-group. If A is the group of all
o-automorphisms of H, then W is called the o-holomorph of H. In [5]
it has been shown that a certain class of o-groups with well ordered
rank have ordered o-holomorphs. In this section we investigate the
o-automorphisms of G.

Let π be an o-automorphism of G for which (0 x N)π = 0 x N. and
let S/ be the group of all these o-automorphisms. If G has well ordered
rank or if Nf or N has finite rank, then Ssf = A(G). For (α', a) and
ψ y b) in G we have

(a', a)π = [(a', 0) + (0, a)]π = («', O)ττ + (0, α)τr

= (α'α, α'/?) + (0, aγ) = (α'α, α'/ί + αr) ,

where

(1) 0/9=0.

[(α', α) + (δf, 6)]τr = (α' + &',/(α', 6') + arψ) + b)π

= ((α' + 6')^, (α' + V)β + (f(a'9 V) + arψ) + b)γ) .

(α', α)τr + (6', δ)τr = (α'α, α'/5 + αr) + (6'Λ, δ'iS + 6r)

= (a'a + b'a,f(a'a9 Va) + (a'β + ar)r{b'a) + b'β + bγ) .

Thus a e A{N') and

(α' + V)β + (f(af, 60 + arψ) + δ)r

= f(a'a, Va) + (a'β + aγ)r{Va) + Vβ + bγ .

When a' = V = 0 this reduces to (α + b)γ = aγ + bγ. Thus γ e A(N).
The following two equations are the result of letting ol = b = 0(α = δ =0).

( 2 ) 6'/? + ar(V)γ = αrr(δ' α) + δ'/3

( 3 ) (αf + δ')/5 + J\a', V)γ = f(a'a, Va) + a'βrψa) + δ'/9 .

Conversely suppose that a e A(Nf), γ e A(N), β:Nf ->N, and (1), (2), (3)
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are satisfied. For (a' a) in G define (α', a)π = (a'#, α'/3 + αr). Then by
straightforward computation it follows that π e jtf

For mappings u and v of JV' into N and α' 6 Nf we define α'(w- + v) =
α'% + α'v. Then each TΓ e j y has a matrix representation

where 0 is the trivial homomorphism of N, into JV', and the mapping
of π onto its matrix representation is an isomorphism of j>/ onto

a e AN), γ e A(N')9 β:N'-> N, and (1), (2), (3) are satisfied[ .

For, let π = (a, β, γ) and π = (a, β, γ), then

(a'jβ)ππ = (α'α, α'J9 + αf)τr = (a'act, a'aβ + (a'~β + af)γ)

= (α'αα, a'(aβ + βγ) + aγγ)

and

(4) [aJjaβΛYάa aβ + ~βr

Iθf \[βr \-\_θ fr

We shall frequently identity the elements of j y with their matrix
representation. Let & be the set of all β: Nf-> N that satisfy (1), (2), (3)
when a and γ are the identity automorphisms of Nr and N respectively.

LEMMA 3.1. ,O9 is an additive group that can be ordered.

Proof. From the matrix representation of s$7 it follows that &
is a group. Well order the elements of Nr and define β e ,ζ& positive
if β φ θ and a'β > 0, where oJ is the first element in the well ordering
for which a'β Φ 0. It is easy to check that this definition orders &.

COROLLARY I. The group of all mappings of a set onto an o-group
can be ordered.

COROLLARY II. The group of all o-automorphisms of G that induce
the identity automorphism on G/(0 x N) and on 0 x N can be ordered.

Now suppose that &, A(N') and A(N) are o-groups and let

be elements of Ĵ Γ Then

1 _ Γ^"1 ~ a^βΓ1! λ - _ \a-ιaa a~\aβ + βγ) - a^βγ^γγl
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DEFINITION 3.1. π is positive if a is positive in A(Nf) or a is the
identity and γ is positive in A(N) or a ond γ are identity automorphisms
and β is positive in &.

Let ^ be the set of all positive elements in Sf. It follows from
(4) that & is closed with respect to multiplication. It follows from the
first part of (5) that for each π e S$ζ either π is the identity or π e & or
π'1 e ^ Unfortunately & is not in general normal. For suppose that
π e tϊ] then if a is positive or f is positive, then π'ιππ is positive.
Finally assume that a and f are identity automorphisms, then

φ

where φ'(φ) is the identity of A(N')(A(N)). Thus our definition orders

j>r if and only if a~\β + βγ - β) = a^β + a~% - a~λβ is positive. If

we use the ordering of & defined in the proof of Lemma 3.1, then it

suffices to show that a'a"1 β > 0, where ar is the first element in the

well ordering of Nr such that α/αr1/? Φ 0.

THEOREM 3.1. If A(N) can be ordered, then the group of all o-auto-
morphisms π of G such that (0 x N)π = 0 x N and π induces the identity
automorphism on G/(0 x N) can be ordered.

We next consider the special cases where G is a central extension
of N or where G is a splitting extension of N. First assume that JV
(actually 0 x JV) is in the center of G. Then r = θ and N is abelian.
In particular, (1), (2), (3) reduce to

(α' + b')β +f(a', V)γ =f(a'a9 b'a) + a'β + b'β

and 0/9 = 0. Thus & is the torsion free abelian group H{N'9 N) of all
homomorphisms of N' into N. Let Γ be the set of all ordered pairs
of convex subgroups iV'\ N'y of JV' such that Nn covers JVV

THEOREM 3.2. Suppose that G is a central extension of N, A(N) can
be ordered, Γ is well ordered, and for each pair a e A(Nr) and γ e Γ there
exists a pair of positive integers m and n such that nga == mg modulo N\
for all g e N'y. Then A(N') and s^/ can be ordered.

Proof. By the theorem in [5], A(Nf) can be ordered. As in the
proof of Theorem 3 [4 p. 388] we well order the elements of Nf so that

0jτ>g u j->gu-^ •_•_ #2L->022L-> . . . 0»i->qrtz* " ' . . .
JV'1 " iV/2\iV'2 iV'ω\iV'ω

For each θ Φ β e & there exists a least element L(β) in this well
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ordering such that L(β)β Ψ 0. Define β positive if L(β)β > 0. As before
this orders &. Thus to complete the proof it suffices to show that if
β is positive, then aβ is positive for all a e A(N'). Let g e NryIN'y.
Then there exist positive integers m and n such that n(ga) = mg + d,
where d e N'y, hence d-> g. If g -+ L(β), then

n(gaβ) = (m<? + <2)/9 = m(<?/9) + d/9 = 0.

Thus gaβ = 0. If # = L(/3), then

n{L{β)aβ) = (mL(/9) + d)/3 = m(L(β)β) + dβ = m{L{β)β) > 0 .

Thus L(,3)α:/? > 0.

COROLLARY. If N is in the center of G, A(N) can be ordered and
N' = R, then A(G) can be ordered.

One should be careful not to place too many restrictions on G. For
A(G) may become trivial (consist of the identity only), de Groot [6] has
shown that exist 2C non-isomorphic archimedean o-groups that admit only
the identity automorphism. Suppose that G admits no proper o-auto-
morphism and that N' and N are non-trivial. Then, since an inner
automorphism is an o-automorphism, G is abelian. Hence N is in the
center of G. Thus in order to construct a non-archimedean o-group that
admits only the trivial o-automorphism, it suffices to find non-trivial
subgroups N' and iV of R such that neither admit proper o-automorphisms
and the only homomorphism of iV' into N is θ. Then G = Nf φ N will
do. One such pair is

N = / and N' - {m/2w: m, n e I}e + {pl&:p, g e l } ,

where e is trancendental.
For the remainder of this section assume that G is a splitting extension

of N by N' and that N c R. Without loss of generality f(a', 6') = 0 for
all a', V in Nr and A(N) E P. Thus τ (δ'), r e P , and ar(V), aγ repre-
sent ordinary multiplication, where a e N, br e Nf and γ e A(N). In par-
ticular, (2) and (3) reduce to

(2') rψ) = φ'a), and

(a* + V)β = α'

Pick an element k e N and define #'β = k(r(xf) — 1) for all xf e N'.
a'βrψ) + b'β = k(r(af) - l)r(δ') + k(r(V) - 1) = k(r(a')rφ') - 1) = A<r(αf +
5') — 1) = (<x' + δ')/? Thus β e ^>. Suppose that there exists an ele-
ment a! in the center of Nf such that r(af) Φ 1. Let xr be any other
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element of JV', and let β e &. Then x'βr(af) + a'β = {x' + a!)β —
{af + x')β - a'βφ?) + x'β Thus x'β(r(a') - 1) = a'β(r(xf) - 1) or

(6) ^

Therefore β is determined by a'β.

LEMMA 3.2. if there exists an element a! in the center of Nf such
that r(α') Φ 1, then & is isomorphic to a subgroup of R that contains JV.

Proof. For β e & we define βσ = {afβ)\(r(a!) - 1). Then

af) - 1) = ftσ + ftσ .

If 0 = 0σ = (a'β)l(r(af) - 1), then α'/9 = 0. Thus by (6), /9 = 0. There-
fore σ is an isomorphism of ^ into R? and by the preceding discussion

If r(α') < 1, then 1 < r{a'Yx = r(— αf). Thus we may assume that
r(V) - 1 > 0. Define β e & positive (notation) β > θ) if βσ > 0. Then
& is ordered and A(N) EΞ P has a natural order, βσ = (a'β)l(r(af) —
1) > 0 if and only if α'/9 > 0. Thus β > θ iί and only if α'/9 > 0.
Suppose that A(N') is also ordered. Then Definition 3.1 orders A(G) if
we can show that ~β > θ implies that a'\β + ~βγ — β) > θ for all ~βe ^ ,
and all TΓ = (α, /9, γ) e A(G).- But

~βγ - β) -

-1) - l)/(r(α') - 1)] r = α'J9r .

But since α'/^ > 0 we have a'βγ > 0.

THEOREM 3.3. If G splits over N, NQR, A(Nf) can be ordered and
there exists an element af in the center of N' such that r(af) Φ 1, then A(G)
can be ordered.

COROLLARY. If His a non-abelian splitting o-extension of a subgroup
of R by a subgroup of R, then A(H) can be ordered.

This is an immediate consequence of the theorem. If JV' = R, then
(2') is equivalent to 1 = r(b\a — 1)). Hence either r = θ or a = 1.
Thus if JV' = R, then this corollary is an immediate consequence of
Theorem 3.1.
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4. Ordered extension of subgroups of R. Throughout this section
assume that JVis a subgroup of R and that JV' is abelian. In particular,
r is a homomorphism of JV' into the group A(N)f and without loss of
generality A(N) <= P and ar{br) is ordinary multiplication, where a e N
and V e JV.

(a', a) + (0, b) = (α', a + 6) and (0, 6) + (α', α) = (α', δr(α') + α) .

These are equal if and only if br(αr) — b. Thus G is a central extension
of JV by JV' if and only if r = 0.

LEMMA 4.1. Suppose that Nr is d-closed. Then there exists a non-
central o-extension of N by JV' if and only if there exists 1 φ p e P such
that psN = N for all s e B.

Proof. First suppose that G is a non-central o-extension of N by
N'. Then rΦθ. Pick af e N' so that 1 φ r(a') = p e P. For each positive
integer % there exists bf e JV such that nb' = α'. Hence p = r(α') =
r{nbf) = r(6')w Thus r(δ') = p1 / n. For m e ί , we have r(mbf) = φ')m =
Pm/ra. Thus pm/ΛiV = JV for all rational numbers mln.

Conversely suppose that there exists l ^ p e P such that psN = JV
for all s e B. Pick 0 Φ b' e N'. Then Nr = i » f © A where ita' is the
one dimensional subspace of Nr that contains a' and D is a subspace
of N'. Each α' 6 iV' has a unique representation α' = sb' + d, where
seR and deD. Define q(a') = ps. Then H = N' x N, where (α', α) +
(6', b) = (af + V, ag{b') + b) is a splitting extension of JV by JV' that is
not a central extension.

COROLLARY. // JV' is d-closβd and N^R, then Gisa central extension
of N by N'.

THEOREM 4.1. Suppose that r Φ θ. Then G splits over N if and only
if there exist a' e N' and a e N such that

(a) r(a>)Φl
(b) [lf(r(a') - l)][a(r(b>) - 1) + f(a\ b>) - f(b\ a')] e N for all V e N\

Proof. First suppose that G splits. Choose a group H of repre-
sentatives of G/N, and pick one element (a', a) of H such that r(af)Φ 1.
Let (6', b) be any other element of H. Then since H is abelian,

(6' + a',f{b', a') + br{af) + a) - {V, b) + (α', a) = (α', α) + (6', 6)

= ( α ' + &SΛ< &') + αK&') + &)

Thus
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b(φ') - 1) = a(r(V) - 1) +/(α', V) -/(&', a>) .

(b) is satisfied because

[l/(r(α') - l)][α(r(6') - 1) + /(α', 6') -/(&', α')] = 6

Note that

') - 1) + /(α', V) -/(&', αf)]):

Thus H is uniquely determined by (α', α).
Conversely suppose that af e Nr and a e N satisfy (a) and (b).
Let

S = {(6', b) 6 G: (6', 6) + (α', α) - (a9, a) + (6', 6)} .

Clearly S is a group. By the above computation it follows that (6', b) e S
if and only if

b = [l/(r(α') - l)][α(r(&') - 1) +/(α', 6') -/(&', α')] .

Thus for each bf e iV' there is one and only one (6', b) in £. Therefore
S is a group of representatives for G/N.

The factor mapping / is symmetric (skew-symmetric) if f(a', b') =
f(V,σ!)<J(a'9V) = -f{bf,a')) for all α', δ' in 2V'.

COROLLARY I. If r Φθ and f is symmetric, then G splits. Moreover
/(α', 6') = 0 for all a'\ b' in N'.

Proof. Pick a! e Nf such that r{a') Φ 1 and let a = 0. Then (a)
and (b) are satisfied, hence G splits. Also by the proof of the converse
of the theorem, S = {(&', 0): 6' e iV'} is a group of representatives.
Thus « 0) + (6', 0) = (a' + b',f(ar, b')) e S. Therefore f(a', V) = 0

Let f(Nf, N') denote the range of /.

COROLLARY II. If there exists an a' e Nr such that r(ar) Φ 1 and
[l/(r(α')-l)]/(iV', N') £ N, then G splits.

Proof. Let a = 0. Then (a) and (b) are satisfied. Moreover,
{(&', [l/(r(α') - l)][/(α', &') -/(&', α')])} is a group of representatives.

COROLLARY I I I . If N is a field and r Φ θ, then G splits.

Proof. Pick af eNr such t h a t r(af) φ 1. Since leN and r(a')N =

N, r(a') 6 N. Thus l/(r(α') - 1) e N and

REMARK. Rich [13] proved that if N <= R, N' = R and r =£ /?, then
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G splits. This is a special case of Corollary III. Corollary III can be
stated independently of the representation of G as follows: If H is an
o-group, C is a convex subgroup of H that is o-isomorphic to the additive
group of a subfield of R, and HjC is abelian, then either H is a splitting
extension of C or H is a central extension of C.

COROLLARY IV. If there exists an a' e N' such that r(a') = (n + l)jn
for some positive integer n, then G splits.

Proof. ll(r(a')-l)^n. Thus [l/(r(α')-l)]/(iV', N') = nf(N', N')SN.

COROLLARY V. Jf N is d-closed and there exists an a' e Nf such
that 1 Φ r(af) is rational, then G splits.

Proof. l/(r(α') - 1) is rational, hence [l/(r(α') - 1)]NCZN.
By Theorem 3.3 [3, p. 522] there exists an α-extension H oΐ G such

that the convex subgroup K of H that covers 0 is o-isomorphic to R and
H/K is o-isomorphic to Nr. Thus by Theorem 4.1 either His & splitting
extension of K or H is a central extension of K.

REMARK. If H is a splitting o-extension of K, then without loss of
generality H = Nf x R, where (a', a) + (&', b) = (af + V, as(b') + b).
s is a homomorphism of Nf into P. For each x in D(N) there exists
a positive integer n such that nxeN'. Define t(x) = [s(nx)Jln. Then t
is the unique extension of s to a homomorphism of D{N') into P.
D(N'), R and t determine a splitting o-extension M of R by D(N). M
is an α-extension of H and M is d-closed. Thus by Theorem 3.2 [3 p. 519]
there exists an α-closed a-extension Q of M with each component
o-isomorphic to R. Q is an α-extension of G.

A mapping g of N' x Nf into N is called bilinear if for all x, y> z
in N'

g(x + y,z) = g(x, z) + g(y, z) ,

and

g(xf y + s) = 0(#, ?/) + # 0 , z) .

Yamabe [16] and the Neumanns [12] have shown that if N — I, and the
cardinality of N' is at most ^Γi, and g is bilinear and satisfies g(x, x) = 0
only if x = 0, then JV' is a free abelian group. Hughes [7] has classified
the groups of class 2 in terms of some special bilinear mappings. Iwasawa
gives an example ([8] Example 2, p. 7) of an o-group that is determined
by a bilinear mapping. For let Nf=1x1 and N=I. Define g((a,b), (x,y)) =
ay. Then G — / x / x /, where (α, 6, c) + (a?, 2/, 2) = (α + a?, b + y, ay + c + z),
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and (α, 6, c) is positive if a > 0 or a = 0 and 6 > 0 or α = δ = 0 and c > 0,
is an o-group of rank 3 that is isomorphic with Iwasawa's example. In
fact, G is generated by a = (0, 0, 1), b = (0, 1, 0) and c = (1, 0, 0) and has
generating relations a + b — b + a, a + c = c + a and c + b — c = a + b.

The last example can be generalized because the bilinear form is
a product of homomorphisms. For example, let JV be the additive group
of an ordered ring, and let σ and τ be homomorphisms of JV' into
JV. For a', V in JV' define g(a', b') = er(α'M&'). Then if = JV' x JV,
where (<z', α) + (6', 6) = (ar + &', #(α', &') + a + &) is a central extension
of JV by JV'.

LEMMA 4.2. If f is bilinear, then G is a splitting extension of N or
G is a central extension of JV.

Proof. For x, y, z in N' we have

A*, v) + A*,

Therefore jT[a?, y) =f(x, y)r(z). Thus either r(z) = 1 or f(x, y) = 0.

COROLLARY. // JV ώ abelian (not necessarily a subgroup of R),
/ is bilinear and f(N', Nf) generates N, then G is a central extension of N.

5 Central extensions and bilinear mappings* Throughout this section
assume that N is in the center of G. Thus G is determined by the o-group
N', the abelian o-group JV, and the factor mapping / : JV' x Nf -+N that
satisfies

(1) / ( 0 , & ' ) = / « 0 ) - 0 , and

( 2 ) f(a' + b\ c') + A*', V) - f(a', V + c') + /(&', <f) .

In particular, any central extension of JVby N' can be ordered. A central
extension H of JV by JV' with factor mapping h is equivalent to G (nota-
tion H^G) if there exists an isomorphism a of H onto G such that
(0, a)a = (0, a) and (α', α)# = (a', a) modulo 0 x JV for all a in JV and all
α' in JV'. If H is ordered in the usual way, then a is an o-isomorphism.
It is well known that H ~ G if and only if there exists t: JV' -> JV such
that ί(0) = 0 and

f(a', V) = h(a', V) - t{a' + 6') + ί(α') + t{V)

for all α', δ' in JV'. In particular, G ~ JV' φ JV if and only if there
exists t: JV'~> JV such that ί(0) - 0 and /(α', &') = -t(af + 6') + ί(αf) +«(&')
for all α', &' in JV'.
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It is easy to verify that if g is a bilinear mapping of N' x N' onto
N, then g satisfies (1) and (2). Moreover, such a g exists if and only
if we can choose a representative function r: Nr -> G such that

r{ar + V + cf) = r{a' + V) + r(af + cf) + r(b' + c') - r{af) - r(V) - r(cf)

for all af, bf', & in Nf. From (2) we have

f{af + V, c') - / « c') -JXV, c') =/(α', V + c') -f(a'9 V) -j\a', C) .

Thus / is bilinear if it is linear in one variable.

LEMMA 5.1. Suppose that f is bilinear, then for a,b in Nand a1,bf,c'
in Nr we have:

(i) -j\a>, V) =f(- a', V) =f(a'f - V).
(ii) Λa',b')=Λ-a',-V).
(iii) (α', a) + (6', 6) - (α', α) - (V, b) = (a' + b'-a'- 6',/(α', V) -/(&', a')).

For O=f(a'-a',b')=f(a',br)+f(--a',b'). Thus -f(a',bf) =/(-a',V)
and similarly —f{ar,bf) =/(α' , — &')• (ii) is an immediate consequence of
(i), and (iii) follows by computing the left hand side.

Let D(N) be the d-closure of N, and let H=N' x D(N). For (a', a)
and (6', 6) in H define (αf, α) + (V, b) = (αf + &' ,/« &') + α + 6). Then H
is a central extension of Z)(iV) by Nr, and G is a subgroup of H. There
is a natural extension of the ordering, of G to an ordering of H. If
G ~N'ζ&N, then H ~ iV' φ D(iV), but the converse is false. For in [2]
there is an example where N' = D(N) = R, H^N' ®N and GxN'®N
[2, p. 862].

THEOREM 5.1. Suppose that N' is abelian and let H = D(N') x D(N).
Also suppose that for all af,V in Nf and for all positive integers n,f
satisfies

( 3 ) nf(a', V) =f(na', V) = f(a', nb') .

Then there exists a unique g: D(N') x D(N') -> D(N) that satisfies (3) and
such that g(σJ, br) = f{a'y V) for all α', b' in N'. For (x, y) and (u, v) in
H define (x, y) + (u, v) = (x + u, g(x, u) + y + v).

(a) H is a central extension of D(N) by D(Nf), and G is a subgroup

of H.
(b) H is d-closed.
(c) For each h in H there exists a positive integer n — n(h) such

that nh e G.
(d) There exists a unique extension of the ordering of G to an ordering

of H. H will be called the d-closure of G.

Proof. For each pair x, y in D(N') there exists a positive integer
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n = nx>y such that nx, ny e N', define g(x, y) = (l/n2)f(nxf ny). This defini-
tion is independent of the particular choice of n. For if mx, my e N',
then m2f(nx, ny) =f(mnx, mny) — n2f(mx, my). Thus (ljnz)f(nx, ny) =
(ljm?)f(mx, my). Let x,y,ze D(N') and choose a positive integer n such

that nx, ny, nz, n(x + y), and n(y + z) belong to Nf. Then

g(x + y,z) + g(x, y) = (Iln2)[f(nx + ny, nz) + f(nxf nz)]

= (l/n2)[f(nx, ny + nz) + f(ny, nz)] = g(x, y + z) + g(y, z) .

By a similar argument # satisfies (1) and (3). Also if g' is any other
extension of / to D(N') x D(N') that satisfies (3), then n?g'(x, y) =
0'(wa?, ny) — f(nx, ny). Therefore g\x, y) = (ljn?)f(nx, ny) = g{x, y) for all
x, y in D(N').

Clearly (a) is satisfied. To prove (b) it suffices to show that n(x, y) ~
(a, b) has a solution in H, where n is a positive integer and (α, b) e H.
By induction

φΰf V) — (n®> [ ( ^ — l

Thus x = (l/w)α and

is a solution. Consider {x, y) in ίί, and let m be a positive integer such
that mx e N' and my e N Then
is a solution. Consider {x, y) in
that mx e N' and my e N. Then

2m\x, y) = (2m(mx), (2m2 — l)m2g(xf x) + 2m(my))

= (2m(mx), (2m2 — l)/(ma?, m?/) + 2m(my)) e G .

Thus (c) is satisfied. The orderings of iV and iV' can be uniquely ex-
tended to orderings of D(N) and D(N'). Define (x, y) e H positive if
x > 0 or x = 0 and y > 0. This extends the ordering of G to an order-
ing of H. But for any extension of the order of G, h e H is positive
if and only if nh is positive in G, where n is a positive integer such
that nh e G. Thus this extension is unique.

REMARK. If / is bilinear or symmetric or skew-symmetric, then so is
g. By Theorem 3.2 [3, p. 519] there exists an α-closed α-extension of
H with each component o-isomorphic to R.

Suppose that / is bilinear. Let x,y,ze Nr and let w = x + y — x — y.
Then

flw, z) +f(y, z) +f(x, z) =f(w + y + x,z) =f(x + y, z) =/(a?, z) +f(y, z) .

Thus f(w, z) = 0. Similarly flz, w) = 0. Therefore f(c, z) =f(z, c) = 0 for
all z in Nr and all c in the commutator subgroup of N'.

LEMMA 5.2. Iff is bilinear and Nf coincides with its commutator
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group, then G — Nf ® iV.

Newmann [11] exhibits an o-group that coincides with its commuta-
tor group.

Suppose that 2N = N and / is bilinear. Let p(x, y) = (l/2)[/(a?, y) +
f(y,x)'\ and let q(x,y) = (l/2)[/(α?, y) -f(y, x)] for all x,y in iV'. Then
p(q) is a symmetric (skew-symmetric) bilinear mapping of Nf x Nr into
JV, and f(x, y) — p(x, y) + q(x, y). Moreover, as in matrix theory, this
representation is unique.

THEOREM 5.2. If 2N = N and f is bilinear, then G ~ H, where H
is the central extension of N by Nf that is determined by the skew-sym-
metric part q of. If f is symmetric, then G ~ Nr φiV. Thus if G is
abelian, then G ~ NfφJV.

Proof. For each x in N' define t(x) = ( - lβ)f{x,x). Then

- t(x + y) + t(x) + t(y) + q(x, y)
+ y,χ + y) -f(Xj x) -f(y, y) +f(χ, y) -f(y, χ)~\ = f(χ, y) .

Thus G — JEZ". If / is symmetric, then H=N'®N, and if G is
abelian, then / is symmetric.

Suppose that N and Nf are abelian and that / is bilinear. Then by
Theorem 5.1, we can embed G into its cZ-closure H— D(N') x D(N). The
factor mapping g associated with H is bilinear, and by Theorem 5.2 we
may choose g so that it is skew-symmetric and bilinear. Moreover,
sg(x, y) = g{sxy y) = g(x, sy) for all s e R and for all x, y in D(N). For

ng((mln)x, y) = g(n(m\n)x, y) = g(mx, y) = mg(x, y) .

Thus (mln)g(x, y) = g((mjn)x, y). Let au α2, be a basis for the rational
vector space D(Nf) and consider X~xLaSi + ••• + xmctSm and Y~
. + 2/nαίn in D(N'). Then

Thus β' is determined by the skew symmetric matric A = [̂ (α ,̂ αj)] with
components in D(N). Conversely any such matric determines a bilinear
skew-symmetric factor mapping of D(N') x D(N') into D(N).

THEOREM 5.3. If N' is abelian and f is bilinear, then G is a sub-
group of its d-closure H and H is completely determined by N, Nf and
a skew symmetric matrix with entries from D(N). The dimension of this
matrix is equal to the rank of the vector space D(Nf).

If the rank of D(N') is finite, say n, and D(N) = R, then by a suitable
choice of coordinates for D(N') we can get a canonical form for A.
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- o
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1
0

1

0 •
1
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Thus H is determined by n and the rank of A. For example if Nr =
R x R x R and N—R, then we have two non-trivial choices for /. One
of which is

/((#i, X

= b

2, a?3),

** X X ~\

0

-1

0

2, 2/3))

1

0

- 1

0"

1

0 .

"2/1"

2/2

- 2 / 3 -

then (n - 1) A + (n - l)B>(n - 1)(B + A) . If

B) + A = n(B + A) > nB

and the other is obtained by using the cannonical matrix of rank 2.
Thus for any ordering of Nf we have at least two non-trivial central
o-extensions of N by N'.

LEMMA 5.3. If A and B are elements of an ordered semigroup S and
A + B <B + A, then nA + nB< n(A + B)< n(B + A )< nB + nA for
all integers n greater than 2.

Proof. If

A + (n - 1)A + (n - 1)B + B = nA + nB > n(A + B)

= A + (w - 1)(5 + A) + B ,

nA

then (n - 1)(A + B)>(n- 1)5 + (n - 1)A. Thus the lemma follows
immediately by induction on n.

THEOREM 5.4. If 1 e N' c: Ry then G is abelian.

Proof. By a simple induction argument (see [9] p. 265), f(x, y) =
f(yf x) for all integers x and y. Let A = (α', α) and 5 = (6f, 6) be ele-

, ments of G. Then since a' and 6' are rational numbers, there exists
a positive integer n such that %A = (#', #) and wi? = (yf, y), where x'
and yf are integers.

^A + nB = (a;f + 2/',/(a?', 2/f) + a? + y)

= (2/' + ^,/(?/', a?') + 2/ + a?) = nB + nA .

Thus by Lemma 5.3, we have A + B = B + A.
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6. o'groups of rank 2. Throughout this section we assume that
N and Nf are subgroups of R. By Theorem 3.5 [3 p. 523] there exists
an α-closed α-extension H of G such that both components are o-isomor-
phic to R. By Theorem 4.1, either if is a central extension of R or H
is a splitting extension of R. A splitting o-extensiόn of R by R is
determined by a homomorphism of R into P. If H is a central extension
of R by R with a bilinear factor mapping, then H is determined by
a skew-symmetric real matrix.

If Nf is cyclic, then G is a splitting extension of N. Thus if N' is
cyclic and N admits no proper o-automorphisms, then G = Nr φ JV. In
particular, if N' = N = /, then G = Nf φ iV. In fact, as Loonstra [9]
shows, there are only two normal extensions of / by / (not necessarily
ordered) For if H is a normal extension of / by /, then H splits over
/. Thus H = / x / and (α'f α) + (6', 6) = (a' + 6', αs(δ') + 6), where s is
a homomorphism of I into the multiplicative group {1, — 1}. Either
s(l) = 1 or 8(1) = - 1. If 8(1) = 1, then s = θ and # = / © / . If s(l) =
— 1, then s(2n) = l and s(2n+l) = — 1 for all we/. Thus the addition
rule for i ί is

(x, y) + (2m, n) = (a? + 2m, y + n)

(x, V) + (2m + 1, w) = (a? + 2m + 1, w — y) .

In this case H can^t be ordered because -(1,0) + (0,1) + (1,0) = - (0,1).
Thus (0, 1) can't be positive or negative.

If N = N' = R, then G is o-isomorphic to R φ R. For by Lemma
4.1, G is a central extension of N and by Theorem 5.4, 6? is abelian.
Thus G is an abelian o-group of rank 2 with both components o-isomor-
phic to R. By Hahn's embedding theorem (see [2]) G is o-isomorphic to

Example of a non-abelian o-group of rank 2 that is isomorphic to its

group of o-automorphims. Let N — Nf = R. For a', b' e Nr define f(af, b') =

0 and r(α') = βα', where β is transcendental. Then (αf, a) + (6', 6) =

(α' + b', aehr + 6). By the remark at the end of § 3, an o-automorphism

7r of G has a representation π = i ^ , where C e P and α'/ί = lβ(ext —

l)/(β - 1) = ^σ(βx/ - 1) for all x' e N'. The mapping of π onto ΓJ ^ σ Ί

is an isomorphism of Λ(G) onto the multiplicative group A =

| [ ] 5 6 R and C e P f The m a P P i n £ of (α'^ α) Γ ]
isomorphism of G onto the multiplicative group 5 = 1 ^ j L e P and

y e R | . The mapping of Γ J onto \x Λ is an isomorphism of A onto

B. Therefore G is isomorphic to A(G). In particular, there exists a non-
trivial splitting o-extension of G by G.
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We conclude by giving an example of an o-group of rank 2 that is
not a central extension nor a splitting extension of its convex subgroup.
Let G be the o-group of the last example, and let H be the subgroup of
G that is generated by {(α, a): a e R}. We have (— 1, - 1) + (1, 1) =
(0,1 - e). Thus H has rank 2.

(1, 1) + (0, 1 - e) = (1, 2 - β) Φ (1, e - e2 + 1) = (0, 1 - e) + (1, 1) .

Thus H is not a central extension.

LEMMA. // (&', 6) e H, then b = ΣΓ M% wλerβ b^^eR and ΣΓ &4 = &'.
ί b r (£>', 6) = Px + P 2 + + Pnf where Pt or — Pi is a generator. A simple
induction on n proves the lemma. In particular, (&', 0) 6 H only if b' — 0.
It can be shown that H = {(α, Σ α«β & ί) : α> αi> bt e R and Σ ^ = ^}

Now suppose (by way of contradiction) that H is a splitting ex-
tension of its convex subgroup C. Pick a group K of representatives
of fl/C, and let (1, a) be the element in K with first component 1.
a = χ } α / ί , where Σί^i = 1. In particular, a Φ 0. By the proof of
Theorem 4.1

# - {(&', α(β6' - l)/(β - 1)): 6' e i2} .

Let d be the least common multiple of the denominators of the at and
let bf — ljpy where p is a prime and p > d . Then d ( Σ ^ δ 0 = Σ c i g δ i has
integral coefficients. By the above lemma

( 1 )
e — 1

where e<( di € i2. Let q be a positive common multiple of p and the
denominators of the &4 and the dt. Then

)' - 1] *

(2) ^ ^ T

where utfwifv e I. Without loss of generality we may assume that the
ut and the wt are positive integers (multiply both sides of (2) by a suitable
power of ellq). ellq is trancendental. Thus (2) is essentially an equality
of elements in the simple transcendental field extension R(X) of R.

( 3 )
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bf = 1/p = v/g = v/pv. Thus there exists a positive integer n such that
pn divides q, but pw does not divide v. The cyclotomic polynomial

J\X) = 1 + JC*""1 + JΓ3*n~ι + + xv-v**'1

is an irreducible factor of Xq — 1, but it does not divide Xυ — 1.
Therefore/(X) divides Σ M ^ Thus Y.cJC^ =j\X)g(X)f where <?(X)
is a polynomial with integral coefficients. Now let X— 1. Then cϋ —
ΣΊ^i =/(l)flr(l) — P#(l) Thus since p and d are positive and #(1) is
an integer, d > p. But this contradicts our choice of p.

Note that the example on page 526 of [3] is a splitting extension
of N by N'; and that {(α', - 1): 0 ^ α' e JV'} U {0, 0)} is a group of
representatives.
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