NON-ABELIAN ORDERED GROUPS

Paul Conrad

1. Introduction. In this paper we prove some theorems about nonabelian o-groups, and give some methods of constructing such groups. Most of the literature on o-groups is concerned with abelian o-groups, and the examples in print of non-abelian o-groups are few. Iwasawa [8] proves that any free group can be ordered, and he also gives some additional examples of o-groups. Vinogradov [15] shows that the free product of two o-groups A and B can be ordered so as to preserve the given orders. Chehata [1] gives an example of an o-group that is simple. [3] and [11] contain examples of o-groups. Most of the theorems in this paper give methods for constructing o-groups. For example, in §3 we study the o-automorphisms of an o-group G. For every group A of o-automorphisms of G that can be ordered we can construct a new o-group H that contains A and $G . H$ is the natural splitting extension of G by A. In $\S 5$ the relationship between central extensions and bilinear mappings is exploited. It is shown that any skew-symmetric real matrix can be used to construct o-groups. In § 6 some o-groups of rank 2 are constructed. In $\S 4$ a study is made of the ordered extensions of a subgroup of the reals. One of the main results is a necessary and sufficient condition for such an extension to split. The principal tool used throughout is the extension theory of Schreier [14].
2. Notation and Terminology. The notation of [3] is used throughout. In particular, the notation and results from § 2 [3, pp. 517-518] are used repeatedly. Unless otherwise stated the group operation will always be addition and 0 will denote a group identity. N and N^{\prime} are o-groups with elements a, b, c, \cdots and $a^{\prime}, b^{\prime}, c^{\prime}, \cdots$ respectively. G is a normal o-extension of N by N^{\prime}. We identify G with its representation $G^{\prime}=$ $N^{\prime} \times N$, where

$$
\left(a^{\prime}, a\right)+\left(b^{\prime}, b\right)=\left(a^{\prime}+b^{\prime}, f\left(a^{\prime}, b^{\prime}\right)+a r\left(b^{\prime}\right)+b\right)
$$

and (a^{\prime}, α) is positive if $a^{\prime}>0$ or $a^{\prime}=0$ and $a>0$. See [3] for the properties of the factor mapping f and the representative function r.
θ will always denote a trivial homomorphism of a group onto the identity element of some other group. For an o-group H, let $A(H)$ be the group of all o-automorphisms of H. For an abelian o-group K, let $D(K)$ be the d-closure or completion of K. In particular, $D(K)$ is a vector space over the rationals and there is a natural extension of the order

Received August 25, 1958. This work was supported by a grant from the National Science Foundation.
of K to an order of $D(K)$. Finally let \mathbf{R} be the additive group of all real numbers, \mathbf{P} be the multiplicative group of all positive real numbers, R be the additive group of all rational numbers, \mathbf{P} be the multiplicative group of all positive rational numbers, and I be the additive group of integers-all with their natural order.
3. Order preserving automorphisms of G. If H is an o-group and A is a group of o-automorphisms of H that can be ordered, then the group $H^{\prime}=A \times H$, where $(\alpha, a)+(\beta, b)=(\alpha \beta, a \beta+b)$ for α, β in A and a, b in H, can be ordered. Simply define (α, a) positive if α is positive in A or α is the identity and a is positive in H. Then clearly H^{\prime} is a splitting o-extension of H by A. Thus if A contains more than one element, then H^{\prime} is a non-abelian o-group. If A is the group of all o-automorphisms of H, then H^{\prime} is called the o-holomorph of H. In [5] it has been shown that a certain class of o-groups with well ordered rank have ordered o-holomorphs. In this section we investigate the o-automorphisms of G.

Let π be an o-automorphism of G for which $(0 \times N) \pi=0 \times N$. and let \mathscr{A} be the group of all these o-automorphisms. If G has well ordered rank or if N^{\prime} or N has finite rank, then $\mathscr{A}=A(G)$. For $\left(a^{\prime}, a\right)$ and $\left(b^{\prime}, b\right)$ in G we have

$$
\begin{aligned}
& \left(a^{\prime}, a\right) \pi=\left[\left(a^{\prime}, 0\right)+(0, a)\right] \pi=\left(a^{\prime}, 0\right) \pi+(0, a) \pi \\
& \quad=\left(a^{\prime} \alpha, a^{\prime} \beta\right)+(0, a r)=\left(a^{\prime} \alpha, a^{\prime} \beta+a r\right)
\end{aligned}
$$

where

$$
\begin{equation*}
0 \beta=0 \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& {\left[\left(a^{\prime}, a\right)+\left(b^{\prime}, b\right)\right] \pi=\left(a^{\prime}+b^{\prime}, f\left(a^{\prime}, b^{\prime}\right)+a r\left(b^{\prime}\right)+b\right) \pi} \\
& \quad=\left(\left(a^{\prime}+b^{\prime}\right) \alpha,\left(a^{\prime}+b^{\prime}\right) \beta+\left(f\left(a^{\prime}, b^{\prime}\right)+a r\left(b^{\prime}\right)+b\right) \gamma\right) \\
& \left(a^{\prime}, a\right) \pi+\left(b^{\prime}, b\right) \pi=\left(a^{\prime} \alpha, a^{\prime} \beta+a \gamma\right)+\left(b^{\prime} \alpha, b^{\prime} \beta+b \gamma\right) \\
& \quad=\left(a^{\prime} \alpha+b^{\prime} \alpha, f\left(a^{\prime} \alpha, b^{\prime} \alpha\right)+\left(a^{\prime} \beta+a \gamma\right) r\left(b^{\prime} \alpha\right)+b^{\prime} \beta+b \gamma\right)
\end{aligned}
$$

Thus $\alpha \in A\left(N^{\prime}\right)$ and

$$
\begin{aligned}
& \left(a^{\prime}+b^{\prime}\right) \beta+\left(f\left(a^{\prime}, b^{\prime}\right)+a r\left(b^{\prime}\right)+b\right) \gamma \\
& \quad=f\left(a^{\prime} \alpha, b^{\prime} \alpha\right)+\left(\alpha^{\prime} \beta+a_{\gamma}\right) r\left(b^{\prime} \alpha\right)+b^{\prime} \beta+b \gamma
\end{aligned}
$$

When $a^{\prime}=b^{\prime}=0$ this reduces to $(a+b) r=a r+b r$. Thus $\gamma \in A(N)$. The following two equations are the result of letting $a^{\prime}=b=0(a=b=0)$.

$$
\begin{equation*}
b^{\prime} \beta+a r\left(b^{\prime}\right) \gamma=\operatorname{ar} r\left(b^{\prime} \alpha\right)+b^{\prime} \beta \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left(a^{\prime}+b^{\prime}\right) \beta+f\left(a^{\prime}, b^{\prime}\right) \gamma=f\left(\alpha^{\prime} \alpha, b^{\prime} \alpha\right)+a^{\prime} \beta r\left(b^{\prime} \alpha\right)+b^{\prime} \beta \tag{3}
\end{equation*}
$$

Conversely suppose that $\alpha \in A\left(N^{\prime}\right), \gamma \in A(N), \beta: N^{\prime} \rightarrow N$, and (1), (2), (3)
are satisfied. For ($\left.a^{\prime} a\right)$ in G define $\left(a^{\prime}, a\right) \pi=\left(a^{\prime} \alpha, a^{\prime} \beta+a r\right)$. Then by straightforward computation it follows that $\pi \in \mathscr{A}$.

For mappings u and v of N^{\prime} into N and $a^{\prime} \in N^{\prime}$ we define $a^{\prime}(u+v)=$ $a^{\prime} u+a^{\prime} v$. Then each $\pi \in \mathscr{A}$ has a matrix representation

$$
\left[\begin{array}{c}
\alpha \beta \\
\theta \gamma
\end{array}\right]
$$

where θ is the trivial homomorphism of N, into N^{\prime}, and the mapping of π onto its matrix representation is an isomorphism of \mathscr{A} onto

$$
\left\{\left[\begin{array}{l}
\alpha \beta \\
\theta \gamma
\end{array}\right]: \alpha \in A(N), \gamma \in A\left(N^{\prime}\right), \beta: N^{\prime} \rightarrow N, \text { and (1), (2), (3) are satisfied }\right\}
$$

For, let $\pi=(\alpha, \beta, \gamma)$ and $\bar{\pi}=(\bar{\alpha}, \bar{\beta}, \bar{\gamma})$, then

$$
\begin{aligned}
\left(a^{\prime}, \bar{\prime}\right) \bar{\pi} \pi & =\left(a^{\prime} \bar{\alpha}, a^{\prime} \bar{\beta}+a \bar{\gamma}\right) \pi=\left(a^{\prime} \bar{\alpha} \alpha, a^{\prime} \bar{\alpha} \beta+\left(a^{\prime} \bar{\beta}+a_{\bar{\gamma}}\right) \gamma\right) \\
& =\left(a^{\prime} \bar{\alpha} \alpha, a^{\prime}(\bar{\alpha} \beta+\bar{\beta} \gamma)+a \bar{\gamma} \gamma\right)
\end{aligned}
$$

and

$$
\left[\begin{array}{l}
\bar{\alpha} \bar{\beta} \tag{4}\\
\theta \bar{\gamma}
\end{array}\right]\left[\begin{array}{l}
\alpha \beta \\
\theta \gamma
\end{array}\right]=\left[\begin{array}{cc}
\bar{\alpha} \alpha & \bar{\alpha} \beta+\bar{\beta}_{\gamma} \\
\theta & \bar{\gamma} \gamma
\end{array}\right]
$$

We shall frequently identity the elements of \mathscr{A} with their matrix representation. Let $\mathscr{\mathscr { S }}$ be the set of all $\beta: N^{\prime} \rightarrow N$ that satisfy (1), (2), (3) when α and γ are the identity automorphisms of N^{\prime} and N respectively.

Lemma 3.1. T is an additive group that can be ordered.
Proof. From the matrix representation of \mathscr{A} it follows that \mathscr{B} is a group. Well order the elements of N^{\prime} and define $\beta \in \mathscr{S}$ positive if $\beta \neq \theta$ and $a^{\prime} \beta>0$, where a^{\prime} is the first element in the well ordering for which $\alpha^{\prime} \beta \neq 0$. It is easy to check that this definition orders \mathscr{B}.

Corollary I. The group of all mappings of a set onto an o-group can be ordered.

Corollary II. The group of all o-automorphisms of G that induce the identity automorphism on $G /(0 \times N)$ and on $0 \times N$ can be ordered.

Now suppose that $\mathscr{B}, A\left(N^{\prime}\right)$ and $A(N)$ are o-groups and let

$$
\pi=\left[\begin{array}{l}
\alpha \beta \\
\theta \gamma
\end{array}\right] \quad \bar{\pi}=\left[\begin{array}{l}
\bar{\alpha} \bar{\beta} \\
\theta \bar{\gamma}
\end{array}\right]
$$

be elements of \mathscr{A}. Then

$$
\pi^{-1}=\left[\begin{array}{c}
\alpha^{-1}-\alpha^{-1} \beta \gamma^{-1} \tag{5}\\
\theta \\
\gamma^{-1}
\end{array}\right] \quad \pi^{-1} \bar{\pi} \pi=\left[\begin{array}{l}
\alpha^{-1} \bar{\alpha} \alpha \\
\theta
\end{array} \alpha^{-1}(\bar{\alpha} \beta+\bar{\beta} \gamma)_{\gamma^{-1} \gamma}-\alpha^{-1} \beta \gamma^{-1} \bar{\gamma} \gamma\right]
$$

Definition 3.1. π is positive if α is positive in $A\left(N^{\prime}\right)$ or α is the identity and γ is positive in $A(N)$ or α ond γ are identity automorphisms and β is positive in \mathscr{R}.

Let \mathscr{P} be the set of all positive elements in \mathscr{A}. It follows from (4) that \mathscr{P} is closed with respect to multiplication. It follows from the first part of (5) that for each $\pi \in \mathscr{A}$, either π is the identity or $\pi \in \mathscr{P}$ or $\pi^{-1} \in \mathscr{P}$. Unfortunately \mathscr{P} is not in general normal. For suppose that $\bar{\pi} \in \mathscr{O}$, then if $\bar{\alpha}$ is positive or $\bar{\gamma}$ is positive, then $\pi^{-1} \bar{\pi} \pi$ is positive. Finally assume that $\bar{\alpha}$ and $\bar{\gamma}$ are identity automorphisms, then

$$
\pi^{-1} \bar{\pi} \pi=\left[\begin{array}{cc}
\phi^{\prime} & \alpha^{-1}(\beta+\bar{\beta} \gamma-\beta) \\
\theta & \phi
\end{array}\right]
$$

where $\phi^{\prime}(\phi)$ is the identity of $A\left(N^{\prime}\right)(A(N))$. Thus our definition orders \mathscr{A} if and only if $\alpha^{-1}(\beta+\bar{\beta} \gamma-\beta)=\alpha^{-1} \beta+\alpha^{-1} \bar{\beta} \gamma-\alpha^{-1} \beta$ is positive. If we use the ordering of \mathscr{O} defined in the proof of Lemma 3.1, then it suffices to show that $a^{\prime} \alpha^{-1} \bar{\beta}>0$, where a^{\prime} is the first element in the well ordering of N^{\prime} such that $a^{\prime} \alpha^{-1} \bar{\beta} \neq 0$.

Theorem 3.1. If $A(N)$ can be ordered, then the group of all o-automorphisms π of G such that $(0 \times N) \pi=0 \times N$ and π induces the identity automorphism on $G /(0 \times N)$ can be ordered.

We next consider the special cases where G is a central extension of N or where G is a splitting extension of N. First assume that N (actually $0 \times N$) is in the center of G. Then $r=\theta$ and N is abelian. In particular, (1), (2), (3) reduce to

$$
\left(a^{\prime}+b^{\prime}\right) \beta+f\left(a^{\prime}, b^{\prime}\right) \gamma=f\left(a^{\prime} \alpha, b^{\prime} \alpha\right)+a^{\prime} \beta+b^{\prime} \beta
$$

and $0 \beta=0$. Thus \mathscr{B} is the torsion free abelian group $H\left(N^{\prime}, N\right)$ of all homomorphisms of N^{\prime} into N. Let Γ be the set of all ordered pairs of convex subgroups $N^{\prime \gamma}, N^{\prime}{ }_{\gamma}$ of N^{\prime} such that $N^{\prime \gamma}$ covers $N^{\prime}{ }_{\gamma}$.

Theorem 3.2. Suppose that G is a central extension of $N, A(N)$ can be ordered, Γ is well ordered, and for each pair $\alpha \in A\left(N^{\prime}\right)$ and $\gamma \in \Gamma$ there exists a pair of positive integers m and n such that ng $\alpha \equiv m g$ modulo $N^{\prime}{ }_{\gamma}$ for all $g \in N^{\prime \gamma}$. Then $A\left(N^{\prime}\right)$ and \mathscr{A} can be ordered.

Proof. By the theorem in [5], $A\left(N^{\prime}\right)$ can be ordered. As in the proof of Theorem 3 [4 p. 388] we well order the elements of N^{\prime} so that

$$
\frac{0 \rightarrow g_{11} \rightarrow g_{12} \rightarrow \cdots}{N^{\prime 1}} \frac{g_{21} \rightarrow g_{22} \rightarrow \cdots}{N^{\prime 2} \backslash N^{\prime}{ }_{2}} \ldots \frac{g_{\omega 1} \rightarrow g_{\omega 2} \rightarrow \cdots}{N^{\prime \omega} \backslash N^{\prime}{ }_{\omega}^{\prime}} \cdots
$$

For each $\theta \neq \beta \in \mathscr{B}$ there exists a least element $L(\beta)$ in this well
ordering such that $L(\beta) \beta \neq 0$. Define β positive if $L(\beta) \beta>0$. As before this orders \mathscr{B}. Thus to complete the proof it suffices to show that if β is positive, then $\alpha \beta$ is positive for all $\alpha \in A\left(N^{\prime}\right)$. Let $g \in N^{\prime \gamma} / N_{\gamma}^{\prime}$. Then there exist positive integers m and n such that $n(g \alpha)=m g+d$, where $d \in N^{\prime}{ }_{\gamma}$, hence $d \rightarrow g$. If $g \rightarrow L(\beta)$, then

$$
n(g \alpha \beta)=(m g+d) \beta=m(g \beta)+d \beta=0
$$

Thus $g \alpha \beta=0$. If $g=L(\beta)$, then

$$
n(L(\beta) \alpha \beta)=(m L(\beta)+d) \beta=m(L(\beta) \beta)+d \beta=m(L(\beta) \beta)>0
$$

Thus $L(\beta) \alpha \beta>0$.
Corollary. If N is in the center of $G, A(N)$ can be ordered and $N^{\prime}=R$, then $A(G)$ can be ordered.

One should be careful not to place too many restrictions on G. For $A(G)$ may become trivial (consist of the identity only). de Groot [6] has shown that exist 2^{c} non-isomorphic archimedean o-groups that admit only the identity automorphism. Suppose that G admits no proper o-automorphism and that N^{\prime} and N are non-trivial. Then, since an inner automorphism is an o-automorphism, G is abelian. Hence N is in the center of G. Thus in order to construct a non-archimedean o-group that admits only the trivial o-automorphism, it suffices to find non-trivial subgroups N^{\prime} and N of \mathbf{R} such that neither admit proper o-automorphisms and the only homomorphism of N^{\prime} into N is θ. Then $G=N^{\prime} \oplus N$ will do. One such pair is

$$
N=I \text { and } N^{\prime}=\left\{m / 2^{n}: m, n \in I\right\} e+\left\{p / 3^{q}: p, q \in I\right\},
$$

where e is trancendental.
For the remainder of this section assume that G is a splitting extension of N by N^{\prime} and that $N \subseteq \mathbf{R}$. Without loss of generality $f\left(a^{\prime}, b^{\prime}\right)=0$ for all a^{\prime}, b^{\prime} in N^{\prime} and $A(N) \subseteq \mathbf{P}$. Thus $r\left(b^{\prime}\right), \gamma \in \mathbf{P}$, and $a r\left(b^{\prime}\right)$, ar represent ordinary multiplication, where $a \in N, b^{\prime} \in N^{\prime}$ and $\gamma \in A(N)$. In particular, (2) and (3) reduce to

$$
\begin{align*}
r\left(b^{\prime}\right) & =r\left(b^{\prime} \alpha\right), \text { and } \\
\left(a^{\prime}+b^{\prime}\right) \beta & =a^{\prime} \beta r\left(b^{\prime}\right)+b^{\prime} \beta .
\end{align*}
$$

Pick an element $k \in N$ and define $x^{\prime} \beta=k\left(r\left(x^{\prime}\right)-1\right)$ for all $x^{\prime} \in N^{\prime}$. $a^{\prime} \beta r\left(b^{\prime}\right)+b^{\prime} \beta=k\left(r\left(a^{\prime}\right)-1\right) r\left(b^{\prime}\right)+k\left(r\left(b^{\prime}\right)-1\right)=k\left(r\left(a^{\prime}\right) r\left(b^{\prime}\right)-1\right)=k\left(r\left(a^{\prime}+\right.\right.$ $\left.\left.b^{\prime}\right)-1\right)=\left(a^{\prime}+b^{\prime}\right) \beta$. Thus $\beta \in \mathscr{B}$. Suppose that there exists an element a^{\prime} in the center of N^{\prime} such that $r\left(a^{\prime}\right) \neq 1$. Let x^{\prime} be any other
element of N^{\prime}, and let $\beta \in \mathscr{O}$. Then $x^{\prime} \beta r\left(\alpha^{\prime}\right)+\alpha^{\prime} \beta=\left(x^{\prime}+\alpha^{\prime}\right) \beta=$ $\left(a^{\prime}+x^{\prime}\right) \beta=a^{\prime} \beta r\left(x^{\prime}\right)+x^{\prime} \beta$. Thus $x^{\prime} \beta\left(r\left(a^{\prime}\right)-1\right)=a^{\prime} \beta\left(r\left(x^{\prime}\right)-1\right)$ or

$$
x^{\prime} \beta=\left[\begin{array}{c}
\alpha^{\prime} \beta \tag{6}\\
r\left(\alpha^{\prime}\right)-1
\end{array}\right]\left[r\left(x^{\prime}\right)-1\right]
$$

Therefore β is determined by $a^{\prime} \beta$.
Lemma 3.2. If there exists an element a^{\prime} in the center of N^{\prime} such that $r\left(a^{\prime}\right) \neq 1$, then \mathscr{S}_{3} is isomorphic to a subgroup of \mathbf{R} that contains N.

Proof. For $\beta \in \mathscr{B}$ we define $\beta_{\sigma}=\left(a^{\prime} \beta\right) /\left(r\left(a^{\prime}\right)-1\right)$. Then

$$
\begin{aligned}
& \left(\beta_{1}+\beta_{2}\right) \sigma=a^{\prime}\left(\beta_{1}+\beta_{2}\right) /\left(r\left(a^{\prime}\right)-1\right)=\left(a^{\prime} \beta_{1}\right) /\left(r\left(a^{\prime}\right)-1\right) \\
& \quad+\left(a^{\prime} \beta_{2}\right) /\left(r\left(a^{\prime}\right)-1\right)=\beta_{1} \sigma+\beta_{2} \sigma
\end{aligned}
$$

If $0=\beta \sigma=\left(\alpha^{\prime} \beta\right) /\left(r\left(\alpha^{\prime}\right)-1\right)$, then $\alpha^{\prime} \beta=0$. Thus by (6), $\beta=\theta$. Therefore σ is an isomorphism of \mathscr{B} into \mathbf{R}, and by the preceding discussion $\mathscr{C} \sigma \supseteq N$.

If $r\left(a^{\prime}\right)<1$, then $1<r\left(a^{\prime}\right)^{-1}=r\left(-a^{\prime}\right)$. Thus we may assume that $r\left(\alpha^{\prime}\right)-1>0$. Define $\beta \in \mathscr{B}$ positive (notation) $\beta>\theta$) if $\beta \sigma>0$. Then \mathscr{D} is ordered and $A(N) \subseteq \mathbf{P}$ has a natural order. $\beta \sigma=\left(a^{\prime} \beta\right) /\left(r\left(\alpha^{\prime}\right)-\right.$ 1) >0 if and only if $\alpha^{\prime} \beta>0$. Thus $\beta>\theta$ if and only if $\alpha^{\prime} \beta>0$. Suppose that $A\left(N^{\prime}\right)$ is also ordered. Then Definition 3.1 orders $A(G)$ if we can show that $\bar{\beta}>\theta$ implies that $\alpha^{-1}(\beta+\bar{\beta} \gamma-\beta)>\theta$ for all $\bar{\beta} \in \mathscr{B}$, and all $\pi=(\alpha, \beta, \gamma) \in A(G)$. But

$$
\begin{aligned}
& a^{\prime} \alpha^{-1}\left(\beta+\bar{\beta}_{\gamma}-\beta\right)=a^{\prime} \alpha^{-1} \bar{\beta}_{\gamma}=\left(\left(a^{\prime} \alpha^{-1}\right) \beta\right) \gamma \\
& =\left[\left(a^{\prime} \bar{\beta}\right)\left(r\left(a^{\prime} \alpha^{-1}\right)-1\right) /\left(r\left(a^{\prime}\right)-1\right)\right] \gamma=a^{\prime} \bar{\beta} \gamma .
\end{aligned}
$$

But since $a^{\prime} \bar{\beta}>0$ we have $a^{\prime} \bar{\beta} \gamma>0$.
Theorem 3.3. If G splits over $N, N \subseteq \mathbf{R}, A\left(N^{\prime}\right)$ can be ordered and there exists an element a^{\prime} in the center of N^{\prime} such that $r\left(a^{\prime}\right) \neq 1$, then $A(G)$ can be ordered.

Corollary. If H is a non-abelian splitting o-extension of a subgroup of \mathbf{R} by a subgroup of \mathbf{R}, then $A(H)$ can be ordered.

This is an immediate consequence of the theorem. If $N^{\prime}=\mathbf{R}$, then (2') is equivalent to $1=r\left(b^{\prime}(\alpha-1)\right)$. Hence either $r=\theta$ or $\alpha=1$. Thus if $N^{\prime}=\mathbf{R}$, then this corollary is an immediate consequence of Theorem 3.1.
4. Ordered extension of subgroups of \mathbf{R}. Throughout this section assume that N is a subgroup of \mathbf{R} and that N^{\prime} is abelian. In particular, r is a homomorphism of N^{\prime} into the group $A(N)$, and without loss of generality $A(N) \subseteq \mathbf{P}$ and $a r\left(b^{\prime}\right)$ is ordinary multiplication, where $a \in N$ and $b^{\prime} \in N$.

$$
\left(a^{\prime}, a\right)+(0, b)=\left(a^{\prime}, a+b\right) \text { and }(0, b)+\left(a^{\prime}, a\right)=\left(a^{\prime}, b r\left(a^{\prime}\right)+a\right)
$$

These are equal if and only if $\operatorname{br}\left(a^{\prime}\right)=b$. Thus G is a central extension of N by N^{\prime} if and only if $r=\theta$.

Lemma 4.1. Suppose that N^{\prime} is d-closed. Then there exists a noncentral o-extension of N by N^{\prime} if and only if there exists $1 \neq p \in \mathbf{P}$ such that $p^{s} N=N$ for all $s \in R$.

Proof. First suppose that G is a non-central o-extension of N by N^{\prime}. Then $r \neq \theta$. Pick $a^{\prime} \in N^{\prime}$ so that $1 \neq r\left(a^{\prime}\right)=p \in \mathbf{P}$. For each positive integer n there exists $b^{\prime} \in N^{\prime}$ such that $n b^{\prime}=a^{\prime}$. Hence $p=r\left(a^{\prime}\right)=$ $r\left(n b^{\prime}\right)=r\left(b^{\prime}\right)^{n}$. Thus $r\left(b^{\prime}\right)=p^{1 / n}$. For $m \in I$, we have $r\left(m b^{\prime}\right)=r\left(b^{\prime}\right)^{m}=$ $p^{m / n}$. Thus $p^{m / n} N=N$ for all rational numbers m / n.

Conversely suppose that there exists $1 \neq p \in \mathbf{P}$ such that $p^{s} N=N$ for all $s \in R$. Pick $0 \neq b^{\prime} \in N^{\prime}$. Then $N^{\prime}=R b^{\prime} \oplus D$, where $R a^{\prime}$ is the one dimensional subspace of N^{\prime} that contains a^{\prime} and D is a subspace of N^{\prime}. Each $a^{\prime} \in N^{\prime}$ has a unique representation $a^{\prime}=s b^{\prime}+d$, where $s \in R$ and $d \in D$. Define $q\left(a^{\prime}\right)=p^{s}$. Then $H=N^{\prime} \times N$, where $\left(a^{\prime}, a\right)+$ $\left(b^{\prime}, b\right)=\left(a^{\prime}+b^{\prime}, a q\left(b^{\prime}\right)+b\right)$ is a splitting extension of N by N^{\prime} that is not a central extension.

Corollary. If N^{\prime} is d-closed and $N \subseteq R$, then G is a central extension of N by N^{\prime}.

Theorem 4.1. Suppose that $r \neq \theta$. Then G splits over N if and only if there exist $a^{\prime} \in N^{\prime}$ and $a \in N$ such that
(a) $r\left(a^{\prime}\right) \neq 1$
(b) $\left[1 /\left(r\left(a^{\prime}\right)-1\right)\right]\left[\alpha\left(r\left(b^{\prime}\right)-1\right)+f\left(a^{\prime}, b^{\prime}\right)-f\left(b^{\prime}, a^{\prime}\right)\right] \in N$ for all $b^{\prime} \in N^{\prime}$.

Proof. First suppose that G splits. Choose a group H of representatives of G / N, and pick one element $\left(a^{\prime}, a\right)$ of H such that $r\left(a^{\prime}\right) \neq 1$. Let $\left(b^{\prime}, b\right)$ be any other element of H. Then since H is abelian,

$$
\begin{aligned}
& \left(b^{\prime}+a^{\prime}, f\left(b^{\prime}, a^{\prime}\right)+b r\left(a^{\prime}\right)+a\right)=\left(b^{\prime}, b\right)+\left(a^{\prime}, a\right)=\left(a^{\prime}, a\right)+\left(b^{\prime}, b\right) \\
& \quad=\left(a^{\prime}+b^{\prime}, f\left(a^{\prime}, b^{\prime}\right)+a r\left(b^{\prime}\right)+b\right)
\end{aligned}
$$

Thus

$$
b\left(r\left(a^{\prime}\right)-1\right)=a\left(r\left(b^{\prime}\right)-1\right)+f\left(a^{\prime}, b^{\prime}\right)-f\left(b^{\prime}, a^{\prime}\right)
$$

(b) is satisfied because

$$
\left[1 /\left(r\left(a^{\prime}\right)-1\right)\right]\left[a\left(r\left(b^{\prime}\right)-1\right)+f\left(a^{\prime}, b^{\prime}\right)-f\left(b^{\prime}, a^{\prime}\right)\right]=b .
$$

Note that

$$
H=\left\{\left(b^{\prime},\left[1 /\left(r\left(a^{\prime}\right)-1\right)\right]\left[a\left(r\left(b^{\prime}\right)-1\right)+f\left(a^{\prime}, b^{\prime}\right)-f\left(b^{\prime}, a^{\prime}\right)\right]\right): b^{\prime} \in N^{\prime}\right\}
$$

Thus H is uniquely determined by (a^{\prime}, a).
Conversely suppose that $a^{\prime} \in N^{\prime}$ and $a \in N$ satisfy (a) and (b).
Let

$$
S=\left\{\left(b^{\prime}, b\right) \in G:\left(b^{\prime}, b\right)+\left(a^{\prime}, a\right)=\left(a^{\prime}, a\right)+\left(b^{\prime}, b\right)\right\}
$$

Clearly S is a group. By the above computation it follows that $\left(b^{\prime}, b\right) \in S$ if and only if

$$
b=\left[1 /\left(r\left(a^{\prime}\right)-1\right)\right]\left[a\left(r\left(b^{\prime}\right)-1\right)+f\left(a^{\prime}, b^{\prime}\right)-f\left(b^{\prime}, a^{\prime}\right)\right]
$$

Thus for each $b^{\prime} \in N^{\prime}$ there is one and only one $\left(b^{\prime}, b\right)$ in S. Therefore S is a group of representatives for G / N.

The factor mapping f is symmetric (skew-symmetric) if $f\left(a^{\prime}, b^{\prime}\right)=$ $f\left(b^{\prime}, a^{\prime}\right)\left(f\left(a^{\prime}, b^{\prime}\right)=-f\left(b^{\prime}, a^{\prime}\right)\right)$ for all a^{\prime}, b^{\prime} in N^{\prime}.

Corollary I. If $r \neq \theta$ and f is symmetric, then G splits. Moreover. $f\left(a^{\prime}, b^{\prime}\right)=0$ for all a^{\prime}, b^{\prime} in N^{\prime}.

Proof. Pick $a^{\prime} \in N^{\prime}$ such that $r\left(a^{\prime}\right) \neq 1$ and let $a=0$. Then (a) and (b) are satisfied, hence G splits. Also by the proof of the converse of the theorem, $S=\left\{\left(b^{\prime}, 0\right): b^{\prime} \in N^{\prime}\right\}$ is a group of representatives. Thus $\left(a^{\prime}, 0\right)+\left(b^{\prime}, 0\right)=\left(a^{\prime}+b^{\prime}, f\left(a^{\prime}, b^{\prime}\right)\right) \in S$. Therefore $f\left(a^{\prime}, b^{\prime}\right)=0$

Let $f\left(N^{\prime}, N^{\prime}\right)$ denote the range of f.
Corollary II. If there exists an $a^{\prime} \in N^{\prime}$ such that $r\left(a^{\prime}\right) \neq 1$ and $\left[1 /\left(r\left(a^{\prime}\right)-1\right)\right] f\left(N^{\prime}, N^{\prime}\right) \subseteq N$, then G splits.

Proof. Let $a=0$. Then (a) and (b) are satisfied. Moreover, $\left\{\left(b^{\prime},\left[1 /\left(r\left(a^{\prime}\right)-1\right)\right]\left[f\left(a^{\prime}, b^{\prime}\right)-f\left(b^{\prime}, a^{\prime}\right)\right]\right)\right\}$ is a group of representatives.

Corollary III. If N is a field and $r \neq \theta$, then G splits.
Proof. Pick $a^{\prime} \in N^{\prime}$ such that $r\left(a^{\prime}\right) \neq 1$. Since $1 \in N$ and $r\left(a^{\prime}\right) N=$ $N, r\left(a^{\prime}\right) \in N$. Thus $1 /\left(r\left(a^{\prime}\right)-1\right) \in N$ and

$$
\left[1 /\left(r\left(a^{\prime}\right)-1\right)\right] f\left(N^{\prime}, N^{\prime}\right) \subseteq\left[1 /\left(r\left(\alpha^{\prime}\right)-1\right)\right] N=N
$$

Remark. Rich [13] proved that if $N \subseteq \mathbf{R}, N^{\prime}=\mathbf{R}$ and $r \neq \theta$, then
G splits. This is a special case of Corollary III. Corollary III can be stated independently of the representation of G as follows: If H is an o-group, C is a convex subgroup of H that is o-isomorphic to the additive group of a subfield of \mathbf{R}, and H / C is abelian, then either H is a splitting extension of C or H is a central extension of C.

Corollary IV. If there exists an $a^{\prime} \in N^{\prime}$ such that $r\left(a^{\prime}\right)=(n+1) / n$ for some positive integer n, then G splits.

Proof. $\quad 1 /\left(r\left(a^{\prime}\right)-1\right)=n$. Thus $\left[1 /\left(r\left(a^{\prime}\right)-1\right)\right] f\left(N^{\prime}, N^{\prime}\right)=n f\left(N^{\prime}, N^{\prime}\right) \subseteq N$.
Corollary V. If N is d-closed and there exists an $a^{\prime} \in N^{\prime}$ such that $1 \neq r\left(a^{\prime}\right)$ is rational, then G splits.

Proof. $1 /\left(r\left(a^{\prime}\right)-1\right)$ is rational, hence $\left[1 /\left(r\left(a^{\prime}\right)-1\right)\right] N \subseteq N$.
By Theorem 3.3 [3, p. 522] there exists an a-extension H of G such that the convex subgroup K of H that covers 0 is o-isomorphic to \mathbf{R} and $H \mid K$ is o-isomorphic to N^{\prime}. Thus by Theorem 4.1 either H is a splitting extension of K or H is a central extension of K.

Remark. If H is a splitting o-extension of K, then without loss of generality $H=N^{\prime} \times \mathbf{R}$, where $\left(a^{\prime}, a\right)+\left(b^{\prime}, b\right)=\left(a^{\prime}+b^{\prime}, \quad a s\left(b^{\prime}\right)+b\right)$. s is a homomorphism of N^{\prime} into \mathbf{P}. For each x in $D(N)$ there exists a positive integer n such that $n x \in N^{\prime}$. Define $t(x)=[s(n x)]^{1 / n}$. Then t is the unique extension of s to a homomorphism of $D\left(N^{\prime}\right)$ into \mathbf{P}. $D\left(N^{\prime}\right), \mathbf{R}$ and t determine a splitting o-extension M of \mathbf{R} by $D(N) . M$ is an a-extension of H and M is d-closed. Thus by Theorem 3.2 [3 p. 519] there exists an α-closed a-extension Q of M with each component o-isomorphic to \mathbf{R}. Q is an a-extension of G.

A mapping g of $N^{\prime} \times N^{\prime}$ into N is called bilincar if for all x, y, z in N^{\prime}

$$
g(x+y, z)=g(x, z)+g(y, z)
$$

and

$$
g(x, y+z)=g(x, y)+g(x, z)
$$

Yamabe [16] and the Neumanns [12] have shown that if $N=I$, and the cardinality of N^{\prime} is at most \hbar_{1}, and g is bilinear and satisfies $g(x, x)=0$ only if $x=0$, then N^{\prime} is a free abelian group. Hughes [7] has classified the groups of class 2 in terms of some special bilinear mappings. Iwasawa gives an example ([8] Example 2, p. 7) of an o-group that is determined by a bilinear mapping. For let $N^{\prime}=I \times I$ and $N=I$. Define $g((a, b),(x, y))=$ ay. Then $G=I \times I \times I$, where $(a, b, c)+(x, y, z)=(a+x, b+y, a y+c+z)$,
and (a, b, c) is positive if $a>0$ or $a=0$ and $b>0$ or $a=b=0$ and $c>0$, is an o-group of rank 3 that is isomorphic with Iwasawa's example. In fact, G is generated by $a=(0,0,1), b=(0,1,0)$ and $c=(1,0,0)$ and has generating relations $a+b=b+a, a+c=c+a$ and $c+b-c=a+b$.

The last example can be generalized because the bilinear form is a product of homomorphisms. For example, let N be the additive group of an ordered ring, and let σ and τ be homomorphisms of N^{\prime} into N. For a^{\prime}, b^{\prime} in N^{\prime} define $g\left(a^{\prime}, b^{\prime}\right)=\sigma\left(a^{\prime}\right) \tau\left(b^{\prime}\right)$. Then $H=N^{\prime} \times N$, where $\left(a^{\prime}, a\right)+\left(b^{\prime}, b\right)=\left(a^{\prime}+b^{\prime}, g\left(a^{\prime}, b^{\prime}\right)+a+b\right)$ is a central extension of N by N^{\prime}.

Lemma 4.2. If f is bilinsar, then G is a splitting extension of N or G is a central extension of N.

Proof. For x, y, z in N^{\prime} we have

$$
\begin{aligned}
f(x, y)+f(x, z)+f(y, z) & =f(x, y+z)+f(y, z)=f(x+y, z)+f(x, y) r(z) \\
& =f(x, z)+f(y, z)+f(x, y) r(z)
\end{aligned}
$$

Therefore $f(x, y) \equiv f(x, y) r(z)$. Thus either $r(z) \equiv 1$ or $f(x, y) \equiv 0$.
Corollary. If N is abelian (not necessarily a subgroup of \mathbf{R}), f is bilinear and $f\left(N^{\prime}, N^{\prime}\right)$ generates N, then G is a central extension of N.
5. Central extensions and bilinear mappings. Throughout this section assume that N is in the center of G. Thus G is determined by the o-group N^{\prime}, the abelian o-group N, and the factor mapping $f: N^{\prime} \times N^{\prime} \rightarrow N$ that satisfies

$$
\begin{equation*}
f\left(0, b^{\prime}\right)=f\left(a^{\prime}, 0\right)=0, \text { and } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
f\left(a^{\prime}+b^{\prime}, c^{\prime}\right)+f\left(a^{\prime}, b^{\prime}\right)=f\left(a^{\prime}, b^{\prime}+c^{\prime}\right)+f\left(b^{\prime}, c^{\prime}\right) \tag{2}
\end{equation*}
$$

In particular, any central extension of N by N^{\prime} can be ordered. A central extension H of N by N^{\prime} with factor mapping h is equivalent to G (notation $H \sim G$) if there exists an isomorphism α of H onto G such that $(0, a) \alpha=(0, a)$ and $\left(a^{\prime}, a\right) \alpha \equiv\left(a^{\prime}, a\right)$ modulo $0 \times N$ for all a in N and all a^{\prime} in N^{\prime}. If H is ordered in the usual way, then α is an o-isomorphism. It is well known that $H \sim G$ if and only if there exists $t: N^{\prime} \rightarrow N$ such that $t(0)=0$ and

$$
f\left(a^{\prime}, b^{\prime}\right)=h\left(a^{\prime}, b^{\prime}\right)-t\left(a^{\prime}+b^{\prime}\right)+t\left(a^{\prime}\right)+t\left(b^{\prime}\right)
$$

for all a^{\prime}, b^{\prime} in N^{\prime}. In particular, $G \sim N^{\prime} \oplus N$ if and only if there exists $t: N^{\prime} \rightarrow N$ such that $t(0)=0$ and $f\left(a^{\prime}, b^{\prime}\right)=-t\left(a^{\prime}+b^{\prime}\right)+t\left(a^{\prime}\right)+t\left(b^{\prime}\right)$ for all a^{\prime}, b^{\prime} in N^{\prime}.

It is easy to verify that if g is a bilinear mapping of $N^{\prime} \times N^{\prime}$ onto N, then g satisfies (1) and (2). Moreover, such a g exists if and only if we can choose a representative function $r: N^{\prime} \rightarrow G$ such that

$$
r\left(a^{\prime}+b^{\prime}+c^{\prime}\right)=r\left(a^{\prime}+b^{\prime}\right)+r\left(a^{\prime}+c^{\prime}\right)+r\left(b^{\prime}+c^{\prime}\right)-r\left(a^{\prime}\right)-r\left(b^{\prime}\right)-r\left(c^{\prime}\right)
$$

for all $a^{\prime}, b^{\prime}, c^{\prime}$ in N^{\prime}. From (2) we have

$$
f\left(a^{\prime}+b^{\prime}, c^{\prime}\right)-f\left(a^{\prime}, c^{\prime}\right)-f\left(b^{\prime}, c^{\prime}\right)=f\left(a^{\prime}, b^{\prime}+c^{\prime}\right)-f\left(a^{\prime}, b^{\prime}\right)-f\left(a^{\prime}, c^{\prime}\right)
$$

Thus f is bilinear if it is linear in one variable.
Lemma 5.1. Suppose that f is bilinear, then for a, b in N and $a^{\prime}, b^{\prime}, c^{\prime}$ in N^{\prime} we have:
(i) $-f\left(a^{\prime}, b^{\prime}\right)=f\left(-a^{\prime}, b^{\prime}\right)=f\left(a^{\prime},-b^{\prime}\right)$.
(ii) $f\left(a^{\prime}, b^{\prime}\right)=f\left(-a^{\prime},-b^{\prime}\right)$.
(iii) $\left(a^{\prime}, a\right)+\left(b^{\prime}, b\right)-\left(a^{\prime}, a\right)-\left(b^{\prime}, b\right)=\left(a^{\prime}+b^{\prime}-a^{\prime}-b^{\prime}, f\left(a^{\prime}, b^{\prime}\right)-f\left(b^{\prime}, a^{\prime}\right)\right)$.

For $0=f\left(a^{\prime}-a^{\prime}, b^{\prime}\right)=f\left(a^{\prime}, b^{\prime}\right)+f\left(-a^{\prime}, b^{\prime}\right)$. Thus $-f\left(a^{\prime}, b^{\prime}\right)=f\left(-a^{\prime}, b^{\prime}\right)$ and similarly $-f\left(a^{\prime}, b^{\prime}\right)=f\left(a^{\prime},-b^{\prime}\right)$. (ii) is an immediate consequence of (i), and (iii) follows by computing the left hand side.

Let $D(N)$ be the d-closure of N, and let $H=N^{\prime} \times D(N)$. For $\left(a^{\prime}, a\right)$ and $\left(b^{\prime}, b\right)$ in H define $\left(a^{\prime}, a\right)+\left(b^{\prime}, b\right)=\left(a^{\prime}+b^{\prime}, f\left(a^{\prime}, b^{\prime}\right)+a+b\right)$. Then H is a central extension of $D(N)$ by N^{\prime}, and G is a subgroup of H. There is a natural extension of the ordering of G to an ordering of H. If $G \sim N^{\prime} \oplus N$, then $H \sim N^{\prime} \oplus D(N)$, but the converse is false. For in [2] there is an example where $N^{\prime}=D(N)=R, H \sim N^{\prime} \oplus N$ and $G x N^{\prime} \oplus N$ [2, p. 862].

Theorem 5.1. Suppose that N^{\prime} is abelian and let $H=D\left(N^{\prime}\right) \times D(N)$. Also suppose that for all a^{\prime}, b^{\prime} in N^{\prime} and for all positive integers n, f satisfies

$$
\begin{equation*}
n f\left(a^{\prime}, b^{\prime}\right)=f\left(n a^{\prime}, b^{\prime}\right)=f\left(a^{\prime}, n b^{\prime}\right) . \tag{3}
\end{equation*}
$$

Then there exists a unique $g: D\left(N^{\prime}\right) \times D\left(N^{\prime}\right) \rightarrow D(N)$ that satisfies (3) and such that $g\left(a^{\prime}, b^{\prime}\right)=f\left(a^{\prime}, b^{\prime}\right)$ for all a^{\prime}, b^{\prime} in N^{\prime}. For (x, y) and (u, v) in H define $(x, y)+(u, v)=(x+u, g(x, u)+y+v)$.
(a) H is a central extension of $D(N)$ by $D\left(N^{\prime}\right)$, and G is a subgroup of H.
(b) H is d-closed.
(c) For each h in H there exists a positive integer $n=n(h)$ such that $n h \in G$.
(d) There exists a unique extension of the ordering of G to an ordering of H. H will be called the d-closure of G.

Proof. For each pair x, y in $D\left(N^{\prime}\right)$ there exists a positive integer
$n=n_{x, y}$ such that $n x, n y \in N^{\prime}$, define $g(x, y)=\left(1 / n^{2}\right) f(n x, n y)$. This definition is independent of the particular choice of n. For if $m x, m y \in N^{\prime}$, then $m^{2} f(n x, n y)=f(m n x, m n y)=n^{2} f(m x, m y)$. Thus $\left(1 / n^{2}\right) f(n x, n y)=$ $\left(1 / m^{2}\right) f(m x, m y)$. Let $x, y, z \in D\left(N^{\prime}\right)$ and choose a positive integer n such that $n x, n y, n z, n(x+y)$, and $n(y+z)$ belong to N^{\prime}. Then

$$
\begin{aligned}
& g(x+y, z)+g(x, y)=\left(1 / n^{2}\right)[f(n x+n y, n z)+f(n x, n z)] \\
& \quad=\left(1 / n^{2}\right)[f(n x, n y+n z)+f(n y, n z)]=g(x, y+z)+g(y, z)
\end{aligned}
$$

By a similar argument g satisfies (1) and (3). Also if g^{\prime} is any other extension of f to $D\left(N^{\prime}\right) \times D\left(N^{\prime}\right)$ that satisfies (3), then $n^{2} g^{\prime}(x, y)=$ $g^{\prime}(n x, n y)=f(n x, n y)$. Therefore $g^{\prime}(x, y)=\left(1 / n^{2}\right) f(n x, n y)=g(x, y)$ for all x, y in $D\left(N^{\prime}\right)$.

Clearly (a) is satisfied. To prove (b) it suffices to show that $n(x, y)=$ (a, b) has a solution in H, where n is a positive integer and $(a, b) \in H$. By induction

$$
n(x, y)=(n x,[(n-1) n / 2] g(x, x)+n y) .
$$

Thus $x=(1 / n) a$ and

$$
y=(1 / n)(b-[(n-1) n / 2] g((1 / n) a,(1 / n) a))
$$

is a solution. Consider (x, y) in H, and let m be a positive integer such that $m x \in N^{\prime}$ and $m y \in N$. Then

$$
\begin{aligned}
& 2 m^{2}(x, y)=\left(2 m(m x),\left(2 m^{2}-1\right) m^{2} g(x, x)+2 m(m y)\right) \\
& \quad=\left(2 m(m x),\left(2 m^{2}-1\right) f(m x, m y)+2 m(m y)\right) \in G .
\end{aligned}
$$

Thus (c) is satisfied. The orderings of N and N^{\prime} can be uniquely extended to orderings of $D(N)$ and $D\left(N^{\prime}\right)$. Define $(x, y) \in H$ positive if $x>0$ or $x=0$ and $y>0$. This extends the ordering of G to an ordering of H. But for any extension of the order of $G, h \in H$ is positive if and only if $n h$ is positive in G, where n is a positive integer such that $n h \in G$. Thus this extension is unique.

Remark. If f is bilinear or symmetric or skew-symmetric, then so is g. By Theorem 3.2 [3, p. 519] there exists an a-closed a-extension of H with each component o-isomorphic to \mathbf{R}.

Suppose that f is bilinear. Let $x, y, z \in N^{\prime}$ and let $w=x+y-x-y$. Then

$$
f(w, z)+f(y, z)+f(x, z)=f(w+y+x, z)=f(x+y, z)=f(x, z)+f(y, z) .
$$

Thus $f(w, z)=0$. Similarly $f(z, w)=0$. Therefore $f(c, z)=f(z, c)=0$ for all z in N^{\prime} and all c in the commutator subgroup of N^{\prime}.

Lemma 5.2. If f is bilinear and N^{\prime} coincides with its commutator
group, then $G=N^{\prime} \oplus N$.

Newmann [11] exhibits an o-group that coincides with its commutator group.

Suppose that $2 N=N$ and f is bilinear. Let $p(x, y)=(1 / 2)[f(x, y)+$ $f(y, x)]$ and let $q(x, y)=(1 / 2)[f(x, y)-f(y, x)]$ for all x, y in N^{\prime}. Then $p(q)$ is a symmetric (skew-symmetric) bilinear mapping of $N^{\prime} \times N^{\prime}$ into N, and $f(x, y)=p(x, y)+q(x, y)$. Moreover, as in matrix theory, this representation is unique.

Theorem 5.2. If $2 N=N$ and f is bilinear, then $G \sim H$, where H is the central extension of N by N^{\prime} that is determined by the skew-symmetric part q of. If f is symmetric, then $G \sim N^{\prime} \oplus N$. Thus if G is abelian, then $G \sim N^{\prime} \oplus N$.

Proof. For each x in N^{\prime} define $t(x)=(-1 / 2) f(x, x)$. Then

$$
\begin{aligned}
& -t(x+y)+t(x)+t(y)+q(x, y) \\
& \quad=(1 / 2)[f(x+y, x+y)-f(x, x)-f(y, y)+f(x, y)-f(y, x)]=f(x, y) .
\end{aligned}
$$

Thus $G \sim H$. If f is symmetric, then $H=N^{\prime} \oplus N$, and if G is abelian, then f is symmetric.

Suppose that N and N^{\prime} are abelian and that f is bilinear. Then by Theorem 5.1, we can embed G into its d-closure $H=D\left(N^{\prime}\right) \times D(N)$. The factor mapping g associated with H is bilinear, and by Theorem 5.2 we may choose g so that it is skew-symmetric and bilinear. Moreover, $s g(x, y)=g(s x, y)=g(x, s y)$ for all $s \in R$ and for all x, y in $D(N)$. For

$$
n g((m / n) x, y)=g(n(m / n) x, y)=g(m x, y)=m g(x, y) .
$$

Thus $(m / n) g(x, y)=g((m / n) x, y)$. Let $\alpha_{1}, \alpha_{2}, \cdots$ be a basis for the rational vector space $D\left(N^{\prime}\right)$ and consider $X=x_{1} \alpha_{s_{1}}+\cdots+x_{m} \alpha_{s_{m}}$ and $Y=y_{1} \alpha_{t_{1}}+$ $\cdots+y_{n} \alpha_{t_{n}}$ in $D\left(N^{\prime}\right)$. Then

$$
g(X, Y)=\sum x_{i} g\left(\alpha_{s_{i}}, \alpha_{t_{j}}\right) y_{j}
$$

Thus g is determined by the skew symmetric matric $A=\left[g\left(\alpha_{i}, \alpha_{j}\right)\right]$ with components in $D(N)$. Conversely any such matric determines a bilinear skew-symmetric factor mapping of $D\left(N^{\prime}\right) \times D\left(N^{\prime}\right)$ into $D(N)$.

Theorem 5.3. If N^{\prime} is abelian and f is bilinear, then G is a subgroup of its d-closure H and H is completely determined by N, N^{\prime} and a skew symmetric matrix with entries from $D(N)$. The dimension of this matrix is equal to the rank of the vector space $D\left(N^{\prime}\right)$.

If the rank of $D\left(N^{\prime}\right)$ is finite, say n, and $D(N)=R$, then by a suitable choice of coordinates for $D\left(N^{\prime}\right)$ we can get a canonical form for A.

$$
A=\left(\begin{array}{rrrrrr}
0 & 1 & 0 & \cdot & \cdot & . \\
-1 & 0 & 1 & . & . & \cdot \\
0-1 & 0 & . & \cdot & \cdot \\
. & . & . & . & . & .
\end{array}\right)
$$

Thus H is determined by n and the rank of A. For example if $N^{\prime}=$ $R \times R \times R$ and $N=R$, then we have two non-trivial choices for f. One of which is

$$
\begin{aligned}
& f\left(\left(x_{1}, x_{2}, x_{3}\right),\left(y_{1}, y_{2}, y_{3}\right)\right) \\
& \quad=\left[x_{1} x_{2} x_{3}\right]\left[\begin{array}{rrr}
0 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=-x_{2} y_{1}+\left(x_{1}-x_{3}\right) y_{2}+x_{2} y_{3}
\end{aligned}
$$

and the other is obtained by using the cannonical matrix of rank 2. Thus for any ordering of N^{\prime} we have at least two non-trivial central o-extensions of N by N^{\prime}.

Lemma 5.3. If A and B are elements of an ordered semigroup S and $A+B<B+A$, then $n A+n B<n(A+B)<n(B+A)<n B+n A$ for all integers n greater than 2.

Proof. If

$$
\begin{aligned}
& A+(n-1) A+(n-1) B+B=n A+n B \geq n(A+B) \\
& \quad=A+(n-1)(B+A)+B
\end{aligned}
$$

then $(n-1) A+(n-1) B \geq(n-1)(B+A)$. If

$$
\begin{aligned}
& B+(n-1)(A+B)+A=n(B+A) \geq n B+n A \\
& \quad=B+(n-1) B+(n-1) A+A
\end{aligned}
$$

then $(n-1)(A+B) \geq(n-1) B+(n-1) A$. Thus the lemma follows immediately by induction on n.

Theorem 5.4. If $1 \in N^{\prime} \subseteq R$, then G is abelian.
Proof. By a simple induction argument (see [9] p. 265), $f(x, y)=$ $f(y, x)$ for all integers x and y. Let $A=\left(a^{\prime}, a\right)$ and $B=\left(b^{\prime}, b\right)$ be elements of G. Then since a^{\prime} and b^{\prime} are rational numbers, there exists a positive integer n such that $n A=\left(x^{\prime}, x\right)$ and $n B=\left(y^{\prime}, y\right)$, where x^{\prime} and y^{\prime} are integers.

$$
\begin{aligned}
n A+n B & =\left(x^{\prime}+y^{\prime}, f\left(x^{\prime}, y^{\prime}\right)+x+y\right) \\
& =\left(y^{\prime}+x^{\prime}, f\left(y^{\prime}, x^{\prime}\right)+y+x\right)=n B+n A
\end{aligned}
$$

Thus by Lemma 5.3 , we have $A+B=B+A$.
6. o-groups of rank 2. Throughout this section we assume that N and N^{\prime} are subgroups of \mathbf{R}. By Theorem 3.5 [3p. 523] there exists an α-closed a-extension H of G such that both components are o-isomorphic to \mathbf{R}. By Theorem 4.1, either H is a central extension of \mathbf{R} or H is a splitting extension of \mathbf{R}. A splitting o-extension of \mathbf{R} by \mathbf{R} is determined by a homomorphism of \mathbf{R} into \mathbf{P}. If H is a central extension of \mathbf{R} by \mathbf{R} with a bilinear factor mapping, then H is determined by a skew-symmetric real matrix.

If N^{\prime} is cyclic, then G is a splitting extension of N. Thus if N^{\prime} is cyclic and N admits no proper o-automorphisms, then $G=N^{\prime} \oplus N$. In particular, if $N^{\prime}=N=I$, then $G=N^{\prime} \oplus N$. In fact, as Loonstra [9] shows, there are only two normal extensions of I by I (not necessarily ordered) For if H is a normal extension of I by I, then H splits over I. Thus $H=I \times I$ and $\left(a^{\prime}, a\right)+\left(b^{\prime}, b\right)=\left(a^{\prime}+b^{\prime}, a s\left(b^{\prime}\right)+b\right)$, where s is a homomorphism of I into the multiplicative group $\{1,-1\}$. Either $s(1)=1$ or $s(1)=-1$. If $s(1)=1$, then $s=\theta$ and $H=I \oplus I$. If $s(1)=$ -1 , then $s(2 n)=1$ and $s(2 n+1)=-1$ for all $n \in I$. Thus the addition rule for H is

$$
\begin{aligned}
& (x, y)+(2 m, n)=(x+2 m, y+n) \\
& (x, y)+(2 m+1, n)=(x+2 m+1, n-y)
\end{aligned}
$$

In this case H can't be ordered because $-(1,0)+(0,1)+(1,0)=-(0,1)$. Thus $(0,1)$ can't be positive or negative.

If $N=N^{\prime}=R$, then G is o-isomorphic to $R \oplus R$. For by Lemma 4.1, G is a central extension of N and by Theorem 5.4, G is abelian. Thus G is an abelian o-group of rank 2 with both components o-isomorphic to R. By Hahn's embedding theorem (see [2]) G is o-isomorphic to $R \oplus R$.

Example of a non-abelian o-group of rank 2 that is isomorphic to its group of o-automorphims. Let $N=N^{\prime}=\mathbf{R}$. For $a^{\prime}, b^{\prime} \in N^{\prime}$ define $f\left(a^{\prime}, b^{\prime}\right)=$ 0 and $r\left(a^{\prime}\right)=e^{a \prime}$, where e is transcendental. Then $\left(a^{\prime}, a\right)+\left(b^{\prime}, b\right)=$ $\left(a^{\prime}+b^{\prime}, a e^{b \prime}+b\right)$. By the remark at the end of $\S 3$, an o-automorphism π of G has a representation $\pi=\left[\begin{array}{ll}1 & \beta \\ 0 & C\end{array}\right]$, where $C \in \mathbf{P}$ and $x^{\prime} \beta=1 \beta\left(e^{x \prime}-\right.$ 1)/(e-1) $=\beta \sigma\left(e^{x \prime}-1\right)$ for all $x^{\prime} \in N^{\prime}$. The mapping of π onto $\left[\begin{array}{cc}1 & \beta \sigma \\ 0 & C\end{array}\right]$ is an isomorphism of $A(G)$ onto the multiplicative group $A=$ $\left\{\left[\begin{array}{ll}1 & B \\ 0 & C\end{array}\right]: B \in \mathbf{R}\right.$ and $\left.C \in \mathbf{P}\right\}$. The mapping of $\left(a^{\prime}, a\right) \in G$ onto $\left[\begin{array}{ll}e^{a \prime} & 0 \\ a & 1\end{array}\right]$ is an isomorphism of G onto the multiplicative group $B=\left\{\left[\begin{array}{ll}x & 0 \\ y & 1\end{array}\right]: x \in \mathbf{P}\right.$ and $y \in \mathbf{R}\}$. The mapping of $\left[\begin{array}{ll}x & 0 \\ y & 1\end{array}\right]$ onto $\left[\begin{array}{ll}x & 0 \\ y & 1\end{array}\right]^{-1}$ is an isomorphism of A onto B. Therefore G is isomorphic to $A(G)$. In particular, there exists a nontrivial splitting o-extension of G by G.

We conclude by giving an example of an o-group of rank 2 that is not a central extension nor a splitting extension of its convex subgroup. Let G be the o-group of the last example, and let H be the subgroup of G that is generated by $\{(a, a): a \in R\}$. We have $(-1,-1)+(1,1)=$ $(0,1-e)$. Thus H has rank 2.

$$
(1,1)+(0,1-e)=(1,2-e) \neq\left(1, e-e^{2}+1\right)=(0,1-e)+(1,1) .
$$

Thus H is not a central extension.
Lemma. If $\left(b^{\prime}, b\right) \in H$, then $b=\sum_{1}^{m} b_{i} e^{c_{i}}$, where $b_{i}, c_{i} \in R$ and $\sum_{1}^{m} b_{i}=b^{\prime}$. For $\left(b^{\prime}, b\right)=P_{1}+P_{2}+\cdots+P_{n}$, where P_{i} or $-P_{i}$ is a generator. A simple induction on n proves the lemma. In particular, $\left(b^{\prime}, 0\right) \in H$ only if $b^{\prime}=0$. It can be shown that $H=\left\{\left(a, \sum a_{i} e^{b_{i}}\right): a, a_{i}, b_{i} \in R\right.$ and $\left.\sum a_{i}=a\right\}$, but we will not need this.

Now suppose (by way of contradiction) that H is a splitting extension of its convex subgroup C. Pick a group K of representatives of H / C, and let $(1, a)$ be the element in K with first component 1. $a=\sum{ }_{1} a_{i} e^{b_{i}}$, where $\sum{ }_{1}^{j} a_{i}=1$. In particular, $a \neq 0$. By the proof of Theorem 4.1

$$
K=\left\{\left(b^{\prime}, a\left(e^{b \prime}-1\right) /(e-1)\right): b^{\prime} \in R\right\}
$$

Let d be the least common multiple of the denominators of the a_{i} and let $b^{\prime}=1 / p$, where p is a prime and $p>d$. Then $d\left(\sum a_{i} e^{b_{i}}\right)=\sum c_{i} e^{b_{i}}$ has integral coefficients. By the above lemma

$$
\begin{equation*}
\frac{\left(\sum_{i}^{j} c_{i} e^{b_{i}}\right)\left(e^{b \prime}-1\right)}{e-1}=\sum_{1}^{k} e_{i} e^{a_{i}} \tag{1}
\end{equation*}
$$

where $e_{i}, d_{i} \in R$. Let q be a positive common multiple of p and the denominators of the b_{i} and the d_{i}. Then

$$
\begin{equation*}
\frac{\left[\sum_{1}^{j} c_{i}\left(e^{1 / q}\right)^{u_{i}}\right]\left[\left(e^{1 / q}\right)^{v}-1\right]}{\left(e^{1 / q}\right)^{q}-1}=\sum_{1}^{k} e_{i}\left(e^{1 / q}\right)^{w q_{i}} \tag{2}
\end{equation*}
$$

where $u_{i}, w_{i}, v \in I$. Without loss of generality we may assume that the u_{i} and the w_{i} are positive integers (multiply both sides of (2) by a suitable power of $e^{1 / q}$). $e^{1 / q}$ is trancendental. Thus (2) is essentially an equality of elements in the simple transcendental field extension $R(\mathbb{X})$ of R.

$$
\begin{equation*}
\frac{\left[\sum_{i}^{j} c_{i} X^{u_{i}}\right]\left[X^{v}-1\right]}{X^{q}-1}=\sum_{i}^{k} e_{i} X^{w_{i}} \tag{3}
\end{equation*}
$$

$b^{\prime}=1 / p=v / q=v / p v$. Thus there exists a positive integer n such that p^{n} divides q, but p^{n} does not divide v. The cyclotomic polynomial

$$
f(X)=1+X^{p^{n-1}}+X^{2 p^{n-1}}+\cdots+X^{(p-1) p^{n-1}}
$$

is an irreducible factor of $X^{q}-1$, but it does not divide $X^{v}-1$. Therefore $f(X)$ divides $\sum c_{i} X^{u_{i}}$. Thus $\sum c_{i} X^{u_{i}}=f(X) g(X)$, where $g(X)$ is a polynomial with integral coefficients. Now let $X=1$. Then $d=$ $\sum_{1} c_{i}=f(1) g(1)=p g(1)$. Thus since p and d are positive and $g(1)$ is an integer, $d \geq p$. But this contradicts our choice of p.

Note that the example on page 526 of [3] is a splitting extension of N by N^{\prime}; and that $\left.\left\{\left(a^{\prime},-1\right): 0 \neq a^{\prime} \in N^{\prime}\right\} \cup\{0,0)\right\}$ is a group of representatives.

References

1. C. G. Chehata, An algebraically simple ordered group, Proc. London Math. Soc. 2 (1952), 183-197.
2. A. H. Clifford, Note on Hahn's theorem on ordered abelian groups, Proc. Amer. Math. Soc. 5 (1954), 860-863.
3. P. Conrad, Extensions of ordered groups, Proc. Amer. Math. Soc. 6 (1955), 516-528.
4. P. Conrad, The group of order preserving automorphisms of an ordered abelian group, Proc. Amer. Math. Soc. 9 (1958), 382-389.
5. ——, A, correction and an improvement of a theorem on ordered groups. To appear in Proc. Amer. Math. Soc.
6. J. de Groot, Indecomposable abelian groups, Indag. Math. 19 (1957), 137-145.
7. N. Hughes, The use of bilinear mappings in the classification of groups of class 2, Proc. Amer. Math. Soc. 2 (1951), 742-747.
8. K. Iwasawa, On linearly ordered groups, J. Math. Soc. Japan 1 (1948), 1-9.
9. F. Loonstra, Sur les extensions du groupe additif des entiers rationnels per le meme groupe, Indag. Math. 16 (1954), 263-272.
10. L'extension du groupe ordonné des entiers rationels par le même groupe, Indag. Math. 17 (1955), 41-49.
11. B. H. Neumann, On ordered groups, Amer. J. Math. 71 (1948), 1-18.
12. , and Hanna Neumann, On a class of abelian groups, Arch. Math. 4 (1953), 79-85.
13. R. P. Rich, Thesis (unpublished) The John Hopkins University (1950).
14. O. Schreier, Über die Erweiterung von Gruppen, Teil I, Monatsh. Math. Phys. 34 (1926), 165-180.
15. A. A. Vinogradov, On the free product of ordered groups, Math. Sb. N. S. 25 (1949), 163-168.
16. H. Yamabe, A condition for an abelian group to be a free abelian group with a finite basis, Proc. Japan Akad. 27 (1951), 205-207.

The Tulane University of Louisiana

