EIGENVALUES OF THE UNITARY PART OF A MATRIX

ALFRED HORN AND ROBERT STEINBERG

1. Introduction. It is well known that every matrix A (square and with complex entries) has a polar decomposition $A = P_1U_1 = U_2P_2$, where U_i are unitary and P_i are unique positive semi-definite Hermitian matrices. If A is non-singular then $U_1 = U_2 = U$, where U is also unique. In this case we call U the unitary part of A. The eigenvalues of P_1 are the same as those of P_2 .

In [2] the following problem was solved. Given the eigenvalues of P_1 , what is the exact range of variation of the eigenvalues of A? The answer shows that a knowledge of the eigenvalues of P_1 puts restrictions only on the moduli of the eigenvalues of A. In this paper we are going to consider the corresponding question for the unitary part U of A. In turns out that a knowledge of the eigenvalues of U restricts only the arguments of the eigenvalues of A.

Before stating the result, we need some definitions. An ordered pair of *n*-tuples (λ_i) , (α_i) of complex numbers is said to be *realizable* if there exists a non-singular matrix A of order n with eigenvalues λ_i such that the unitary part of A has eigenvalues α_i . If (γ_j) is an *n*-tuple of complex numbers of modulus 1, and if two of the γ_j are of the form e^{ib} , e^{ic} with $0 < b - c < \pi$ and $0 \leq d \leq (b - c)/2$, then the operation of replacing e^{ib} , e^{ic} by $e^{i(b-a)}$, $e^{i(c+a)}$ is called a *pinch* of (γ_j) . In other words, a pinch of (γ_j) consists in choosing two of the γ_j which do not lie on the same line through 0 and turning them toward each other through equal angles.

If (a_i) , (b_i) are *n*-tuples of real numbers, and if (a'_i) , (b'_i) are their rearrangements in non-decreasing order, then we write $(a_i) \prec (b_i)$ when $\sum_{r=1}^{n} a'_i \leq \sum_{r=1}^{n} b'_i$, $r = 2, \dots, n$ and $\sum_{i=1}^{n} a'_i = \sum_{i=1}^{n} b'_i$. It is easily seen that the conditions are equivalent to the conditions $\sum_{i=1}^{r} a'_i \geq \sum_{i=1}^{r} b'_i$, $r = 1, \dots, n-1$, and $\sum_{i=1}^{n} a'_i = \sum_{i=1}^{n} b'_i$.

Our main theorem is the following.

THEOREM 1. Let (λ_i) , (α_i) be n-tuples of complex numbers such that $\lambda_i \neq 0$ and $|\alpha_i| = 1$. Then the following statements are equivalent:

(1) the pair (λ_i) , (α_i) is realizable;

- (2) (α_i) can be reduced to ($\lambda_i / |\lambda_i|$) by a finite sequence of pinches;
- (3) $\prod_{i=1}^{n} \alpha_{i} = \prod_{i=1}^{n} (\lambda_{i} | \lambda_{i} |)$, and exactly one of the following hold:
- (a) there is a line through 0 containing all the α_i and $(\lambda_i \mid \lambda_i \mid)$ is a rearrangement of (α_i) ;

(b) there is no line through 0 containing all α_i but there is Received September 26, 1958. a closed half plane H with 0 on its boundary containing all α_i , and, if we choose a branch of the argument function which is continuous in $H - \{0\}$, then $(\arg \lambda_i) < (\arg \alpha_i)$;

(c) there is no closed half plane with 0 on its boundary which contains all α_i .

The proof of Theorem 1 will be given at the end of the paper.

2. Definitions and preliminary results. Two matrices A and B are said to be *congruent* if there exists a non-singular matrix X such that $B = X^*AX$. A triangular matrix is a matrix such that all entries below the main diagonal are 0. If P is a positive definite matrix, then $P^{1/2}$ denotes the unique positive definite matrix whose square is P. We will use the symbol diag (a_1, \dots, a_n) to denote the diagonal matrix with diagonal elements a_1, \dots, a_n .

LEMMA 1. If $\lambda_i \neq 0$ and $|\alpha_i| = 1$, then the pair (λ_i) , (α_i) is realizable if and only if there exists a matrix A with eigenvalues λ_i which is congruent to $D = \text{diag}(\alpha_1, \dots, \alpha_n)$.

Proof. We use the fact that for any two matrices B and C, BC and CB have the same eigenvalues. If (λ_i) , (α_i) is realizable, there exists a unitary matrix U with eigenvalues α_i and a positive definite matrix P such that PU has eigenvalues λ_i . Let V be a unitary matrix such that $U = V^*DV$. Then PU has the same eigenvalues as $P^{1/2}V^*DVP^{1/2}$, which is congruent to D. Conversely, if X^*DX has eigenvalues λ_i , then so does $A = XX^*D$, and D is the unitary part of A since XX^* is positive definite.

LEMMA 2. If (λ_i) , (α_i) is realizable and $\rho_i > 0$ for each *i*, then $(\rho_i \lambda_i)$, (α_i) is realizable.

Proof. Suppose $D = \text{diag}(\alpha_1, \dots, \alpha_n)$ is congruent to a matrix A with eigenvalues λ_i . Then A is congruent to a triangular matrix B with diagonal elements λ_i . If $X = \text{diag}(\rho_1^{1/2}, \dots, \rho_n^{1/2})$, then X^*BX obviously has eigenvalues $\rho_i \lambda_i$ and is congruent to D.

LEMMA 3. If (λ_i) , (α_i) is realizable and z is any complex number of modulus 1, then $(z\lambda_i)$, $(z\alpha)$ is realizable.

LEMMA 4. If (μ_1, μ_2) results from (λ_1, λ_2) by a pinch and T is a triangular matrix with diagonals elements λ_1 , λ_2 , then T is congruent to a matrix with eigenvalues μ_1 , μ_2 .

Proof. By multiplication by a suitable constant, we may suppose

that $\lambda_1 = e^{i\theta}$, $\lambda_2 = e^{-i\theta}$, and $\mu_1 = e^{i\phi}$, $\mu_2 = e^{-i\phi}$, where $0 \leq \phi \leq \theta < \pi/2$. It suffices to find a positive matrix P such that PT has eigenvalues $e^{\pm i\phi}$. Suppose

$$T=inom{e^{i heta}}{0} e^{-i heta}inom{a}$$

Let

$$P=egin{pmatrix} x & \overline{y} \ y & x \end{pmatrix}$$
 ,

where $x \ge 1$, $|y|^2 = x^2 - 1$ and $ya = |a| (x^2 - 1)^{1/2}$. Since P has determinant 1, we need only choose x so that the trace of PT is $2 \cos \phi$. The trace of PT is $f(x) = xe^{i\theta} + xe^{-i\theta} + ya = 2x \cos \theta + |a| (x^2 - 1)^{1/2}$. When x = 1, this is $2\cos \theta$, and for $x \ge 1$, f(x) increases to infinity.

LEMMA 5. If (α_i) can be reduced to $(\lambda_i | \lambda_i |)$ by a finite number of pinches, then (λ_i) , (α_i) is realizable.

Proof. By Lemma 2 we may assume $|\lambda_i| = 1$. We need only prove the following: if (λ_i) , (α) is realizable, if $|\lambda_i| = 1$ and if (μ_i) is a pinch of (λ_i) , then (μ_i) , (α_i) is realizable. We may suppose that the pinch consists in replacing λ_1 , λ_2 by μ_1 , μ_2 . By hypothesis there exists a triangular matrix A with eigenvalues λ_i which is congruent to diag $(\alpha_1, \dots, \alpha_n)$. By Lemma 4 there exists a two rowed non-singular matrix Z such that

$$B=Z^*\!\!\begin{pmatrix}\lambda_1&a_{12}\0&\lambda_2\end{pmatrix}\!\!Z$$

has eigenvalues μ_1 , μ_2 . Here a_{12} is the (1, 2) entry of A. If we set

$$Y=egin{pmatrix} Z&0\ 0&I \end{pmatrix}$$
 ,

where I is the identity matrix of order n-2, then

$$Y^*AY = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$$
,

where D is triangular with diagonal elements $\lambda_3, \dots, \lambda_n$. But this last matrix obviously has eigenvalues $(\mu_1, \mu_2, \lambda_3, \dots, \lambda_n) = (\mu_1, \dots, \mu_n)$.

LEMMA 6. If $(a_1, \dots, a_k) \prec (b_1, \dots, b_k)$ and $(c_1, \dots, c_p) \prec (d_1, \dots, d_p)$ then $(a_1, \dots, a_k, c_1, \dots, c_p) \prec (b_1, \dots, b_k, d_1, \dots, d_p)$. Proof. A proof is given in [1; 63].

LEMMA 7. If A is a matrix such that $(Ax, x) \neq 0$ and $0 < \arg(Ax, x) < \pi$ for all $x \neq 0$, then A is congruent to a unitary matrix.

Proof. Let $H = (A + A^*)/2$, $K = (A - A^*)/2i$. Then A = H + iK, and H, K are Hermitian. Since (Ax, x) = (Hx, x) + i(Kx, x), the hypothesis implies that (Kx, x) > 0 for all $x \neq 0$, so that K is positive definite. Therefore by [3; 261] H and K are simultaneously congruent to real diagonal matrices. Hence A = H + iK is congruent to a diagonal unitary matrix.

LEMMA 8. If A is congruent to a unitary matrix U with eigenvalues α_i , and if $0 < \arg \alpha_1 < \cdots < \arg \alpha_n < \pi$, then $(Ax, x) \neq 0$ for all $x \neq 0$ and

$$rg lpha_{j} = \inf_{\substack{\dim S \ x \in S \\ = j}} \sup_{x \neq 0} rg (Ax, x) = \sup_{\substack{\dim S \ x \in S \\ = n-j+1 \ x \neq 0}} \inf_{x \in S} rg (Ax, x)$$

where S ranges over subspaces of n-dimensional complex Euclidean space.

Proof. Let (u_i) be an ortho-normal sequence of eigenvectors of U corresponding to (α_i) . If $A = X^*UX$, then $(Ax, x) = \sum_{i=1}^{n} \alpha_i | (Xx, u_i) |^2$. If S is the space spanned by $X^{-1}u_1, \dots, X^{-1}u_i$, then

$$\sup_{x \in S \atop x \neq 0} \arg (Ax, x) = \arg \alpha_j.$$

Now let S be any subspace of dimension j. Let M be the space spanned by $X^{-1}u_j, \dots, X^{-1}u_n$. Then there exists a non-zero vector x in $M \cap S$. But

$$rg\left(Ax, \; x
ight) \geqq \inf_{y \neq 0} \; rg\left[\sum_{j}^{n} lpha_{i} \mid (y, \; u_{i})]^{2} = rg lpha_{j}.$$

Therefore

$$\sup_{x \in S \atop x \neq 0} \arg (Ax, x) \ge \arg \alpha_j.$$

The proof of the second statement is analogous.

Lemma 8 is of course the analogue of the minimax principle for Hermitian matrices. The generalization due to Wielandt [4] also has an analogue for unitary matrices, which we mention without proof since it will not be used.

If A and U satisfy the hypotheses of Lemma 8 and $1 \leq i_1 < \cdots < i_k \leq n$, then

$$\arg \alpha_{i_1} + \cdots + \arg \alpha_{i_k} = \inf_{\substack{M_1 \subset \cdots \subset M_k \\ \dim M_n = i_n}} \sup_{p \in M_p} (\arg \beta_1 + \cdots + \arg \beta_k)$$

where (x_1, \dots, x_k) ranges over linearly independent sequences of vectors, and the β_j are the eigenvalues of the matrix of order k whose (i, j)entry is (Ux_i, x_j) . The number $\arg \beta_1 + \dots + \arg \beta_k$ depends only on the subspace generated by x_1, \dots, x_k .

LEMMA 9. If $(\lambda_i), (\alpha_i)$ is realizable and $0 \leq \arg \alpha_1 \leq \cdots \leq \arg \alpha_n \leq \pi$, then $(\arg \lambda_i) \prec (\arg \alpha_i)$.

Proof. By Lemma 1, λ_i are the eigenvalues of X^*DX , where X is non-singular and $D = \text{diag}(\alpha_1, \dots, \alpha_n)$. Since the eigenvalues of X^*DX vary continuously with the α_i , we need only prove the theorem for the case where $0 < \arg \alpha_1$, $\arg \alpha_n < \pi$. We proceed by induction on n. The statement being obvious when n = 1, suppose n > 1 and the theorem holds for matrices of order n - 1. Let A be a triangular matrix with eigenvalues λ_i which is congruent to D. Suppose the λ_i are arranged so that $\arg \lambda_1 \leq \cdots \leq \arg \lambda_n$. Let B be the principal minor of A formed from the first n - 1 rows and columns of A. If x = (x_1, \dots, x_{n-1}) is a vector with n - 1 components and $y = (x_1, \dots, x_{n-1}, 0)$ then (Bx, x) = (Ay, y). Therefore for any such $x \neq 0$, $(Ax, x) \neq 0$ and

$$0 < rg lpha_1 \leq rg (Ay, y) = rg (Bx, x) \leq rg lpha_n < \pi$$
,

by Lemma 8, since A is congruent to D.

By Lemma 7, B is congruent to a unitary matrix V. Let the eigenvalues of V be β_i , where arg $\beta_1 \leq \cdots \leq \arg \beta_{n-1}$. Since the quadratic form (Bx, x) associated with B is a restriction of the quadratic form associated with A, it follows from Lemma 8 that $\arg \alpha_{j+1} \geq \arg \beta_j \geq \arg \alpha_j$, $j = 1, \dots, n-1$. Also by the induction hypothesis $(\arg \lambda_1, \dots, \arg \lambda_{n-1}) < (\arg \beta_1, \dots, \arg \beta_{n-1})$. Therefore

 $rg \lambda_1 + \cdots + rg \lambda_r \ge rg \beta_1 + \cdots + rg \beta_r \ge rg \alpha_1 + \cdots + rg \alpha_r,$ $r = 1, \cdots, n-1$

and

$$rg lpha_2 + \dots + rg lpha_n \ge rg \lambda_1 + \dots + rg \lambda_{n-1}$$

 $\ge rg lpha_1 + \dots + rg lpha_{n-1}.$

Hence

$$-\pi < rg \lambda_n - rg lpha_n \leq \sum_{i=1}^n (rg \lambda_i - rg lpha_i) \leq rg \lambda_n - rg lpha_i < \pi$$
.

But

$$\prod\limits_{1}^{n}\lambda_{i}=|\det X|^{2}\cdot\prod\limits_{1}^{n}lpha_{i}$$
 .

Therefore

$$\sum\limits_{1}^{n} \arg \lambda_{i} = \sum\limits_{1}^{n} \arg lpha_{i}$$
 .

The proof is complete.

LEMMA 10. If (β_i) , (α_i) are n-tuples of complex numbers of modulus 1 which lie on a line through 0, and if (β) , (α_i) is realizable, then (β_i) must be a rearrangement of (α_i) .

Proof. By Lemma 3 we may suppose that the α_i and β_i are all real. Let A be a matrix with eigenvalues β_i which is congruent to diag $(\alpha_1, \dots, \alpha_n)$. Then A is Hermitian and therefore A is also congruent to diag $(\beta_1, \dots, \beta_n)$. But by Lemma 1 it follows that $(\alpha_i), (\beta_i)$ is realizable. Therefore by Lemma 9 we have $(\arg \beta_i) \prec (\arg \alpha_i) \prec (\arg \beta_i)$, from which the present theorem follows immediately.

LEMMA 11. Suppose (β_i) , (α_i) are n-tuples of complex numbers of modulus 1 such that $\prod_{i=1}^{n} \beta_i = \prod_{i=1}^{n} \alpha_i$. Then there exist determinations of $\arg \alpha_i$, $\arg \beta_i$ such that

$$\max \, \arg \alpha_i - \min \, \arg \alpha_i \leq 2\pi$$

and

$$(\arg \beta_i) \prec (\arg \alpha_i)$$
.

Proof. The statement is obvious for n = 1. Suppose n > 1 and it holds for *n*-1-tuples. If any of the β_i is equal to any of the α_i , say $\beta_1 = \alpha_1$, then by the induction hypothesis, we can find determinations of the remaining $\arg \alpha_i$, $\arg \beta_i$ as stated. If we now choose a value of $\arg \alpha_1$ which lies between μ and $\mu + 2\pi$, where $\mu = \min_{i>1} \arg \alpha_i$, and set $\arg \beta_1 = \arg \alpha_1$, then the conditions of our theorem will be satisfied, by Lemma 6. So henceforth we may assume that $\beta_i \neq \alpha_j$ for all i, j.

As another special case, suppose the α_i are all equal, say to 1. If we assign arguments to the β_i such that $0 < \arg \beta_i < 2\pi$, then $\sum_{i=1}^{n} \arg \beta_i = 2\pi k$, where k is some positive integer < n. We need only assign arguments to the α_i such that exactly k of them have argument 2π and the remaining ones have argument 0.

Now assume the previous two cases do not occur. The α_i divide the unit circle into arcs. At least one of them must contain more than one of the β_i , for if not the α_i would be all distinct and each of the *n* arcs determined by them would contain exactly one of the β_i . We could then assign arguments to arrangements of the α_i , β_i so that

$$rg lpha_{\scriptscriptstyle 1} < rg eta_{\scriptscriptstyle 1} < rg lpha_{\scriptscriptstyle 2} < \cdots < rg lpha_{\scriptscriptstyle n} < rg eta_{\scriptscriptstyle n} < rg lpha_{\scriptscriptstyle 1} + 2\pi$$
 .

But then $0 < \sum_{i=1}^{n} \arg \beta_i - \sum_{i=1}^{n} \arg \alpha_i < 2\pi$, contradicting the hypothesis $\prod_{i=1}^{n} \alpha_i = \prod_{i=1}^{n} \beta_i$.

Let C be an arc containing more than one of the β_i . By changing subscripts, we may assume that the endpoints of C when described counterclockwise are α_1 and α_2 . Let β_1 be one of the β_i in C which is nearest to α_1 and β_2 be one of the β_i with subscript $\neq 1$ which is nearest to α_2 . Note that β_1 may equal β_2 , but $\alpha_1 \neq \alpha_2$. As will be seen from the following argument, we may assume the subarc $\alpha_1\beta_1$ of $C \leq$ the subarc $\beta_2\alpha_2$ of C, (all arcs are described counterclockwise). Let $\beta'_1 = \alpha_1$ and let β'_2 be the point in $\beta_2\alpha_2$ such that $\beta_2\beta'_2 = \alpha_1\beta_1 = \delta$. By the first case of the proof, we may assign arguments to $\beta'_1, \beta'_2, \beta_3, \dots, \beta_n$ and $\alpha_1, \dots, \alpha_n$ so that

(1) max arg $lpha_i - \min \, rg \, lpha_i \leq 2\pi$ and

(2) $(\arg \beta'_1, \arg \beta'_2, \arg \beta_3, \cdots, \arg \beta_n) \prec (\arg \alpha_1, \cdots, \arg \alpha_n).$

If $\arg \alpha_1$ happens to be the largest of $\arg \alpha_i$, and therefore $\arg \alpha_2$ is the smallest of $\arg \alpha_i$, then none of $\beta'_1, \beta'_2, \beta_3, \dots, \beta_n$ can lie in the interior of C. Therefore $\beta'_2 = \alpha_2$, and if we decrease $\arg \alpha_1$ and $\arg \beta_1$ by 2π , then (1) and (2) will still hold. Thus we may assume $\arg \alpha_1 < \arg \alpha_2$, and therefore $\arg \beta'_1 < \arg \beta'_2$. Now assign to β_1 the argument $\beta'_1 + \delta$ and to β_2 the argument $\arg \beta'_2 - \delta$. Since

$$(\arg \beta'_1 + \delta, \arg \beta'_2 - \delta) \prec (\arg \beta'_1, \arg \beta'_2)$$

we have by Lemma 6,

$$(\arg \beta_1, \cdots, \arg \beta_n) \prec (\arg \beta'_1, \arg \beta'_2, \arg \beta_3, \cdots, \arg \beta_n)$$

 $\prec (\arg \alpha_1, \cdots, \arg \alpha_n).$

This completes the proof.

LEMMA 12. If (β_i) , (α_i) are n-tuples of complex numbers of modulus 1 which can be assigned arguments such that

 $rg lpha_1 \leq \cdots \leq rg lpha_n \leq rg lpha_1 + 2\pi$, $rg eta_1 \leq \cdots \leq rg eta_n$, $(rg eta_i) \prec (rg lpha_i)$,

and

$$rg lpha_{i+1} - rg lpha_i < \pi, \ i = 1, \dots, \ n-1$$
,

then a finite number of pinches will reduce (α_i) to (β_i) .

Proof. We proceed by induction on n. When n = 2, we have $\arg \alpha_1 \leq \arg \beta_1 \leq \arg \beta_2 \leq \arg \alpha_2$, $\arg \alpha_1 + \arg \alpha_2 = \arg \beta_1 + \arg \beta_2$ and $\arg \alpha_2 - \arg \alpha_1 < \pi$. Therefore $\arg \beta_1 - \arg \alpha_1 = \arg \alpha_2 - \arg \beta_2$ and so

 (β_1, β_2) is a pinch of (α_1, α_2) .

Suppose n > 2 and the theorem holds for all *m*-tuples, m < n. Let

$$\delta = \min_{1 \le p \le n-1} \sum_{1}^{p} (\arg \beta_i - \arg \alpha_i) .$$

There exists k such that $\sum_{i=1}^{k} \arg \beta_i - \sum_{i=1}^{k} \arg \alpha_i = \delta$. It is easy to verify that

$$(\arg \beta_1, \cdots, \arg \beta_k) \prec (\arg \alpha_1 + \delta, \arg \alpha_2, \cdots, \arg \alpha_k)$$

and

$$(\arg \beta_{k+1}, \cdots, \arg \beta_n) \prec (\arg \alpha_{k+1}, \cdots, \arg \alpha_{n-1}, \arg \alpha_n - \delta)$$

Also

$$rg lpha_1 + \delta \leq rg eta_1 \leq rg eta_n \leq rg lpha_n - \delta$$
.

By the induction hypothesis, we can reduce $(\alpha_1 e^{i\delta}, \alpha_2, \dots, \alpha_k)$ to $(\beta_1, \dots, \beta_k)$ and $(\alpha_{k+1}, \dots, \alpha_{n-1}, \alpha_n e^{-i\delta})$ to $(\beta_{k+1}, \dots, \beta_n)$ by a finite number of pinches. We need only show that $(\alpha_1, \dots, \alpha_n)$ can be reduced to $(\alpha_1 e^{i\delta}, \alpha_2, \dots, \alpha_{n-1}, \alpha_n e^{-i\delta})$ by a finite number of pinches. This will follow from the next lemma if we consider only the distinct α_i .

If the α_i all coincide, then so do the β_i and the statement of our theorem is trivial.

LEMMA 13. If (α_i) is an m-tuple of numbers of modulus 1 with assigned arguments such that

$$rg lpha_{\scriptscriptstyle 1} < \cdots < rg lpha_{\scriptscriptstyle m} \leq rg lpha_{\scriptscriptstyle 1} + 2\pi$$

and

$$\arg \alpha_{i+1} - \arg \alpha_i < \pi, \ i = 1, \dots, \ m-1$$

and if δ is a positive number such that $\arg \alpha_1 + \delta \leq \arg \alpha_m - \delta$, then (α_i) can be reduced to $(\alpha_1 e^{i\delta}, \alpha_2, \dots, \alpha_{m-1}, \alpha_m e^{-i\delta})$ by a finite number of pinches.

Proof. This is obvious for m = 2. Assume m > 2 and the lemma holds for m - 1 - tuples. If

$$\eta = \min(rg lpha_2 - rg lpha_1, \ \pi - (rg lpha_3 - rg lpha_2), \cdots, \pi - (rg lpha_m - rg lpha_m - rg lpha_{m-1})),$$

and $0 < \varepsilon < \eta$, then each sequence in the following list is a pinch of the preceeding sequence:

$$\alpha_1, \cdots, \alpha_m$$

548

$$\alpha_1 e^{i\varepsilon}, \ \alpha_2 e^{-i\varepsilon}, \ \alpha_3, \ \cdots, \ \alpha_m$$
$$\alpha_1 e^{i\varepsilon}, \ \alpha_2, \ \alpha_3 e^{-i\varepsilon}, \ \cdots, \ \alpha_m$$
$$\cdots$$
$$\alpha_1 e^{i\varepsilon}, \ \alpha_2, \ \cdots, \ \alpha_{m-2}, \ \alpha_{m-1} e^{-i\varepsilon}, \ \alpha_m$$
$$\alpha_1 e^{i\varepsilon}, \ \alpha_2, \ \cdots, \ \alpha_{m-1}, \ \alpha_m e^{-i\varepsilon}.$$

Note that $\arg \alpha_1 + \varepsilon$ need not be $\leq \arg \alpha_2 - \varepsilon$, and $\arg \alpha_2$ need not be $\leq \arg \alpha_3 - \varepsilon$, etc.

We may repeat this cycle of m pinches k-1 more times to pass from

$$\alpha_1 e^{i\varepsilon}$$
, α_2 , ..., α_{m-1} , $\alpha_m e^{-i\varepsilon}$ to $\alpha_1 e^{ki\varepsilon}$, α_2 , ..., α_{m-1} , $\alpha_m e^{-ki\varepsilon}$

as long as $\arg \alpha_1 + k\varepsilon \leq \arg \alpha_2$, since

$$rglpha_{_2}+parepsilon-rglpha_{_1}>rglpha_{_2}-rglpha_{_1}$$

and

$$\pi - (rg lpha_n - p arepsilon - rg lpha_{m-1}) > \pi - (rg lpha_n - rg lpha_{m-1})$$

for p < k. Therefore if $\delta \leq \arg \alpha_2 - \arg \alpha_1$, we need only choose $\varepsilon = \delta/k$, where k is an integer so large that $\delta/k < \eta$. If $\delta > \arg \alpha_2 - \arg \alpha_1$, choose $\varepsilon = (\arg \alpha_2 - \arg \alpha_1)/k$, where k is so large that $\varepsilon < \eta$. Then $(\alpha_1, \dots, \alpha_m)$ is reduced to $(\alpha_2, \alpha_2, \dots, \alpha_{m-1}, \alpha_m e^{-ik\varepsilon})$ by the above sequence of pinches. By the induction hypothesis, $(\alpha_2, \alpha_3, \dots, \alpha_{m-1}, \alpha_m e^{-ik\varepsilon})$ can by a finite number of pinches be reduced to $(\alpha_1 e^{i\delta}, \alpha_3, \dots, \alpha_{m-1}, \alpha_m e^{-i\delta})$. (The fact that $\alpha_m e^{-ik\varepsilon}$ might be equal to one of the α_j is clearly unimportant.) Therefore $(\alpha_1, \dots, \alpha_m)$ can be reduced to $(\alpha_1 e^{i\delta}, \alpha_2, \dots, \alpha_{m-1}, \alpha_m e^{-i\delta})$, $\alpha_m e^{-i\delta}$, and the proof is complete.

3. Proof of Theorem 1.

 $(2) \rightarrow (1)$: This is the statement of Lemma 5.

 $(1) \rightarrow (3)$: If (λ_i) , (α_i) is realizable, then by Lemma 1 there exists a matrix A and a non-singular matrix X such that $A = X^* \operatorname{diag} (\alpha_1, \dots, \alpha_n)$ X and A has eigenvalues λ_i . Therefore $\prod \lambda_i = \prod \alpha_i \cdot |\det X|^2$ and hence $\prod \lambda_i / |\lambda_i| = \prod \alpha_i$. If the α_i lie on a line through 0, then $(\lambda_i / |\lambda_i|)$ is a rearrangement of (α_i) by Lemmas 2 and 10. If the α_i lie in a closed half plane through 0, then by Lemma 3 we may assume they lie in the upper half plane. By Lemma 9 it follows that $(\arg \lambda_i) \prec (\arg \alpha_i)$.

 $(3) \rightarrow (2)$: In case (a), the statement is obvious. In case (c), Lemma 11 and the fact that the α_i do not lie in any closed half plane with 0 on its boundary show that the hypotheses of Lemma 12 are satisfied by arrangements of $(\lambda_i/|\lambda_i|)$, (α_i) . In case (b), the hypotheses of

Lemma 12 also are satisfied by arrangements of $(\lambda_i | \lambda_i |)$, (α_i) . Thus an application of Lemma 12 completes the proof.

References

1. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge, 1952.

2. A. Horn, On the eigenvalues of a matrix with prescribed singular values, Proc. Amer. Math. Soc., 5 (1954), 4-7.

3. R. R. Stoll, Linear algebra and matrix theory, New York, 1952.

4. H. Wielandt, An extremum property of sums of eigenvalues, Proc. Amer. Math. Soc., 6 (1944), 106-110.

UNIVERSITY OF CALIFORNIA, LOS ANGELES