EIGENVALUES OF THE UNITARY PART OF A MATRIX

Alfred Horn and Robert Steinberg

1. Introduction. It is well known that every matrix A (square and with complex entries) has a polar decomposition $A=P_{1} U_{1}=U_{2} P_{2}$, where U_{i} are unitary and P_{i} are unique positive semi-definite Hermitian matrices. If A is non-singular then $U_{1}=U_{2}=U$, where U is also unique. In this case we call U the unitary part of A. The eigenvalues of P_{1} are the same as those of P_{2}.

In [2] the following problem was solved. Given the eigenvalues of P_{1}, what is the exact range of variation of the eigenvalues of A ? The answer shows that a knowledge of the eigenvalues of P_{1} puts restrictions only on the moduli of the eigenvalues of A. In this paper we are going to consider the corresponding question for the unitay part U of A. In turns out that a knowledge of the eigenvalues of U restricts only the arguments of the eigenvalues of A.

Before stating the result, we need some definitions. An ordered pair of n-tuples $\left(\lambda_{i}\right)$, (α_{i}) of complex numbers is said to be realizable if there exists a non-singular matrix A of order n with eigenvalues λ_{t} such that the unitary part of A has eigenvalues α_{i}. If $\left(\gamma_{j}\right)$ is an n-tuple of complex numbers of modulus 1, and if two of the γ_{j} are of the form $e^{i b}$, $e^{i c}$ with $0<b-c<\pi$ and $0 \leqq d \leqq(b-c) / 2$, then the operation of replacing $e^{i b}$, $e^{i c}$ by $e^{i(b-a)}, e^{i(c+d)}$ is called a pinch of $\left(\gamma_{j}\right)$. In other words, a pinch of $\left(\gamma_{j}\right)$ consists in choosing two of the γ_{j} which do not lie on the same line through 0 and turning them toward each other through equal angles.

If $\left(a_{i}\right),\left(b_{i}\right)$ are n-tuples of real numbers, and if $\left(a_{i}^{\prime}\right),\left(b_{i}^{\prime}\right)$ are their rearrangements in non-decreasing order, then we write $\left(a_{i}\right) \prec\left(b_{i}\right)$ when $\sum_{r}^{n} a_{i}^{\prime} \leqq \sum_{r}^{n} b_{i}^{\prime}, r=2, \cdots, n$ and $\sum_{1}^{n} a_{i}^{\prime}=\sum_{1}^{n} b_{i}^{\prime}$. It is easily seen that the conditions are equivalent to the conditions $\sum_{1}^{r} a_{i}^{\prime} \geqq \sum_{1}^{r} b_{i}^{\prime}, r=1, \cdots$, $n-1$, and $\sum_{1}^{n} a_{i}^{\prime}=\sum_{1}^{n} b_{i}^{\prime}$.

Our main theorem is the following.
TheOrem 1. Let $\left(\lambda_{i}\right),\left(\alpha_{i}\right)$ be n-tuples of complex numbers such that $\lambda_{i} \neq 0$ and $\left|\alpha_{i}\right|=1$. Then the following statements are equivalent:
(1) the pair $\left(\lambda_{i}\right),\left(\alpha_{i}\right)$ is realizable;
(2) $\left(\alpha_{i}\right)$ can be reduced to $\left(\lambda_{i}| | \lambda_{i} \mid\right)$ by a finite sequence of pinches;
(3) $\Pi_{1}^{n} \alpha_{i}=\Pi_{1}^{n}\left(\lambda_{i}| | \lambda_{i} \mid\right)$, and exactly one of the following hold:
(a) there is a line through 0 containing all the α_{i} and $\left(\lambda_{i} /\left|\lambda_{i}\right|\right)$ is a rearrangement of $\left(\alpha_{i}\right)$;
(b) there is no line through 0 containing all α_{i} but there is

Received September 26, 1958.
a closed half plane H with 0 on its boundary containing all α_{i}, and, if we choose a branch of the argument function which is continuous in $H-\{0\}$, then $\left(\arg \lambda_{i}\right) \prec\left(\arg \alpha_{i}\right)$;
(c) there is no closed half plane with 0 on its boundary which contains all α_{i}.
The proof of Theorem 1 will be given at the end of the paper.
2. Definitions and preliminary results. Two matrices A and B are said to be congruent if there exists a non-singular matrix X such that $B=$ $X^{*} A X$. A triangular matrix is a matrix such that all entries below the main diagonal are 0 . If P is a positive definite matrix, then $P^{1 / 2}$ denotes the unique positive definite matrix whose square is P. We will use the symbol diag $\left(a_{1}, \cdots, a_{n}\right)$ to denote the diagonal matrix with diagonal elements a_{1}, \cdots, a_{n}.

Lemma 1. If $\lambda_{i} \neq 0$ and $\left|\alpha_{i}\right|=1$, then the pair $\left(\lambda_{i}\right),\left(\alpha_{i}\right)$ is realizable if and only if there exists a matrix A with eigenvalues λ_{i} which is congruent to $D=\operatorname{diag}\left(\alpha_{1}, \cdots, \alpha_{n}\right)$.

Proof. We use the fact that for any two matrices B and $C, B C$ and $C B$ have the same eigenvalues. If $\left(\lambda_{i}\right),\left(\alpha_{i}\right)$ is realizable, there exists a unitary matrix U with eigenvalues α_{i} and a positive definite matrix P such that $P U$ has eigenvalues λ_{i}. Let V be a unitary matrix such that $U=V^{*} D V$. Then $P U$ has the same eigenvalues as $P^{1 / 2} V^{*} D V P^{1 / 2}$, which is congruent to D. Conversely, if $X^{*} D X$ has eigenvalues λ_{i}, then so does $A=X X^{*} D$, and D is the unitary part of A since $X X^{*}$ is positive definite.

Lemma 2. If $\left(\lambda_{i}\right),\left(\alpha_{i}\right)$ is realizable and $\rho_{i}>0$ for each i, then $\left(\rho_{i} \lambda_{i}\right),\left(\alpha_{i}\right)$ is realizable.

Proof. Suppose $D=\operatorname{diag}\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ is congruent to a matrix A with eigenvalues λ_{i}. Then A is congruent to a triangular matrix B with diagonal elements λ_{i}. If $X=\operatorname{diag}\left(\rho_{1}^{1 / 2}, \cdots, \rho_{n}^{1 / 2}\right)$, then $X^{*} B X$ obviously has eigenvalues $\rho_{i} \lambda_{i}$ and is congruent to D.

Lemma 3. If $\left(\lambda_{i}\right),\left(\alpha_{i}\right)$ is realizable and z is any complex number of modulus 1 , then $\left(z \lambda_{i}\right),(z \alpha)$ is realizable.

Lemma 4. If $\left(\mu_{1}, \mu_{2}\right)$ results from $\left(\lambda_{1}, \lambda_{2}\right)$ by a pinch and T is a triangular matrix with diagonals elements λ_{1}, λ_{2}, then T is congruent to a matrix with eigenvalues μ_{1}, μ_{2}.

Proof. By multiplication by a suitable constant, we may suppose
that $\lambda_{1}=e^{i \theta}, \lambda_{2}=e^{-i \theta}$, and $\mu_{1}=e^{i \phi}, \mu_{2}=e^{-i \phi}$, where $0 \leqq \phi \leqq \theta<\pi / 2$. It suffices to find a positive matrix P such that $P T$ has eigenvalues $e^{ \pm i \phi}$. Suppose

$$
T=\left(\begin{array}{cc}
e^{i \theta} & a \\
0 & e^{-i \theta}
\end{array}\right)
$$

Let

$$
P=\left(\begin{array}{ll}
x & \bar{y} \\
y & x
\end{array}\right)
$$

where $x \geqq 1,|y|^{2}=x^{2}-1$ and $y a=|a|\left(x^{2}-1\right)^{1 / 2}$. Since P has determinant 1 , we need only choose x so that the trace of $P T$ is $2 \cos \phi$. The trace of $P T$ is $f(x)=x e^{i \theta}+x e^{-i \varphi}+y a=2 x \cos \theta+|a|\left(x^{2}-1\right)^{1 / 2}$. When $x=1$, this is $2 \cos \theta$, and for $x \geqq 1, f(x)$ increases to infinity.

Lemma 5. If $\left(\alpha_{i}\right)$ can be reduced to $\left(\lambda_{i}| | \lambda_{i} \mid\right)$ by a finite number of pinches, then $\left(\lambda_{i}\right),\left(\alpha_{i}\right)$ is realizable.

Proof. By Lemma 2 we may assume $\left|\lambda_{i}\right|=1$. We need only prove the following: if $\left(\lambda_{i}\right),(\alpha)$ is realizable, if $\left|\lambda_{i}\right|=1$ and if $\left(\mu_{i}\right)$ is a pinch of $\left(\lambda_{i}\right)$, then $\left(\mu_{i}\right),\left(\alpha_{i}\right)$ is realizable. We may suppose that the pinch consists in replacing λ_{1}, λ_{2} by μ_{1}, μ_{2}. By hypothesis there exists a triangular matrix A with eigenvalues λ_{i} which is congruent to diag $\left(\alpha_{1}, \cdots, \alpha_{n}\right)$. By Lemma 4 there exists a two rowed non-singular matrix Z such that

$$
B=Z^{*}\left(\begin{array}{cc}
\lambda_{1} & \alpha_{12} \\
0 & \lambda_{2}
\end{array}\right) Z
$$

has eigenvalues μ_{1}, μ_{2}. Here a_{12} is the (1,2) entry of A. If we set

$$
Y=\left(\begin{array}{ll}
Z & 0 \\
0 & I
\end{array}\right)
$$

where I is the identity matrix of order $n-2$, then

$$
Y^{*} A Y=\left(\begin{array}{ll}
B & C \\
0 & D
\end{array}\right)
$$

where D is triangular with diagonal elements $\lambda_{3}, \cdots, \lambda_{n}$. But this last matrix obviously has eigenvalues $\left(\mu_{1}, \mu_{2}, \lambda_{3}, \cdots, \lambda_{n}\right)=\left(\mu_{1}, \cdots, \mu_{n}\right)$.

Lemma 6. If $\left(a_{1}, \cdots, a_{k}\right) \prec\left(b_{1}, \cdots, b_{k}\right)$ and $\left(c_{1}, \cdots, c_{p}\right) \prec\left(d_{1}, \cdots, d_{p}\right)$ then $\left(a_{1}, \cdots, a_{k}, c_{1}, \cdots, c_{p}\right) \prec\left(b_{1}, \cdots, b_{k}, d_{1}, \cdots, d_{p}\right)$.

Proof. A proof is given in [1; 63].
Lemma 7. If A is a matrix such that $(A x, x) \neq 0$ and $0<$ $\arg (A x, x)<\pi$ for all $x \neq 0$, then A is congruent to a unitary matrix.

Proof. Let $H=\left(A+A^{*}\right) / 2, K=\left(A-A^{*}\right) / 2 i$. Then $A=H+i K$, and H, K are Hermitian. Since $(A x, x)=(H x, x)+i(K x, x)$, the hypothesis implies that $(K x, x)>0$ for all $x \neq 0$, so that K is positive definite. Therefore by $[3 ; 261] H$ and K are simultaneously congruent to real diagonal matrices. Hence $A=H+i K$ is congruent to a diagonal unitary matrix.

Lemma 8. If A is congruent to a unitary matrix U with eigenvalues α_{i}, and if $0<\arg \alpha_{1}<\cdots<\arg \alpha_{n}<\pi$, then $(A x, x) \neq 0$ for all $x \neq 0$ and

$$
\left.\arg \alpha_{j}=\inf _{\substack{\operatorname{dim} S \\=j}} \sup _{\substack{x \in S \\ x \neq 0}} \arg (A x, x)=\sup _{\substack{\operatorname{dim},=n-j+1}} \inf _{x \in S}^{x \neq 0}\right\}
$$

where S ranges over subspaces of n-dimensional complex Euclidean space.

Proof. Let (u_{i}) be an ortho-normal sequence of eigenvectors of U corresponding to $\left(\alpha_{i}\right)$. If $A=X^{*} U X$, then $(A x, x)=\sum_{1}^{n} \alpha_{i}\left|\left(X x, u_{i}\right)\right|^{2}$. If S is the space spanned by $X^{-1} u_{1}, \cdots, X^{-1} u_{j}$, then

$$
\sup _{\substack{x \in S \\ x \neq 0}} \arg (A x, x)=\arg \alpha_{j} .
$$

Now let S be any subspace of dimension j. Let M be the space spanned by $X^{-1} u_{,}, \cdots, X^{-1} u_{n}$. Then there exists a non-zero vector x in $M \cap S$. But

$$
\arg (A x, x) \geqq \inf _{y \neq 0} \arg \sum_{j}^{n} \alpha_{i}\left|\left(y, u_{i}\right)_{d}^{n}\right|^{2}=\arg \alpha_{j}
$$

Therefore

$$
\sup \underset{\substack{x \in \mathcal{S} \\ x \neq 0}}{\arg }(A x, x) \geqq \arg \alpha_{j} .
$$

The proof of the second statement is analogous.
Lemma 8 is of course the analogue of the minimax principle for Hermitian matrices. The generalization due to Wielandt [4] also has an analogue for unitary matrices, which we mention without proof since it will not be used.

If A and U satisfy the hypotheses of Lemma 8 and $1 \leqq i_{1}<\cdots$ $<i_{k} \leqq n$, then

$$
\arg \alpha_{i_{1}}+\cdots+\arg \alpha_{i_{k}}=\inf _{\substack{M_{1} \subset \ldots \subset M_{k} \\ \operatorname{dim} M M_{p}=i_{p}}} \sup _{x_{p} \in M_{p}}\left(\arg \beta_{1}+\cdots+\arg \beta_{k}\right)
$$

where $\left(x_{1}, \cdots, x_{k}\right)$ ranges over linearly independent sequences of vectors, and the β_{j} are the eigenvalues of the matrix of order k whose (i, j) entry is $\left(U x_{i}, x_{j}\right)$. The number $\arg \beta_{1}+\cdots+\arg \beta_{k}$ depends only on the subspace generated by x_{1}, \cdots, x_{k}.

Lemma 9. If $\left(\lambda_{i}\right),\left(\alpha_{i}\right)$ is realizable and $0 \leqq \arg \alpha_{1} \leqq \cdots \leqq \arg \alpha_{n} \leqq \pi$, then $\left(\arg \lambda_{i}\right) \prec\left(\arg \alpha_{i}\right)$.

Proof. By Lemma 1, λ_{i} are the eigenvalues of $X^{*} D X$, where X is non-singular and $D=\operatorname{diag}\left(\alpha_{1}, \cdots, \alpha_{n}\right)$. Since the eigenvalues of $X^{*} D X$ vary continuously with the α_{i}, we need only prove the theorem for the case where $0<\arg \alpha_{1}$, $\arg \alpha_{n}<\pi$. We proceed by induction on n. The statement being obvious when $n=1$, suppose $n>1$ and the theorem holds for matrices of order $n-1$. Let A be a triangular matrix with eigenvalues λ_{i} which is congruent to D. Suppose the λ_{i} are arranged so that $\arg \lambda_{1} \leqq \cdots \leqq \arg \lambda_{n}$. Let B be the principal minor of A formed from the first $n-1$ rows and columns of A. If $x=$ $\left(x_{1}, \cdots, x_{n-1}\right)$ is a vector with $n-1$ components and $y=\left(x_{1}, \cdots, x_{n-1}, 0\right)$ then $(B x, x)=(A y, y)$. Therefore for any such $x \neq 0,(A x, x) \neq 0$ and

$$
0<\arg \alpha_{1} \leqq \arg (A y, y)=\arg (B x, x) \leqq \arg \alpha_{n}<\pi
$$

by Lemma 8 , since A is congruent to D.
By Lemma 7, B is congruent to a unitary matrix V. Let the eigenvalues of V be β_{i}, where $\arg \beta_{1} \leqq \cdots \leqq \arg \beta_{n-1}$. Since the quadratic form ($B x, x$) associated with B is a restriction of the quadratic form associated with A, it follows from Lemma 8 that $\arg \alpha_{j+1} \geqq \arg \beta_{j} \geqq \arg \alpha_{j}$, $j=1, \cdots, n-1$. Also by the induction hypothesis $\left(\arg \lambda_{1}, \cdots, \arg \lambda_{n-1}\right) \prec$ $\left(\arg \beta_{1}, \cdots, \arg \beta_{n-1}\right)$. Therefore

$$
\arg \lambda_{1}+\cdots+\arg \lambda_{r} \geqq \arg \beta_{1}+\cdots+\arg \beta_{r} \geqq \arg \alpha_{1}+\cdots+\arg \alpha_{r}
$$ $r=1, \cdots, n-1$

and

$$
\begin{aligned}
\arg \alpha_{2}+\cdots+\arg \alpha_{n} & \geqq \arg \lambda_{1}+\cdots+\arg \lambda_{n-1} \\
& \geqq \arg \alpha_{1}+\cdots+\arg \alpha_{n-1}
\end{aligned}
$$

Hence

$$
-\pi<\arg \lambda_{n}-\arg \alpha_{n} \leqq \sum_{1}^{n}\left(\arg \lambda_{i}-\arg \alpha_{i}\right) \leqq \arg \lambda_{n}-\arg \alpha_{1}<\pi
$$

But

$$
\prod_{1}^{n} \lambda_{i}=|\operatorname{det} X|^{2} \cdot \prod_{1}^{n} \alpha_{i} .
$$

Therefore

$$
\sum_{1}^{n} \arg \lambda_{i}=\sum_{1}^{n} \arg \alpha_{i}
$$

The proof is complete.
Lemma 10. If $\left(\beta_{i}\right),\left(\alpha_{i}\right)$ are n-tuples of complex numbers of modulus 1 which lie on a line through 0 , and if $(\beta),\left(\alpha_{i}\right)$ is realizable, then $\left(\beta_{i}\right)$ must be a rearrangement of $\left(\alpha_{i}\right)$.

Proof. By Lemma 3 we may suppose that the α_{i} and β_{i} are all real. Let A be a matrix with eigenvalues β_{i} which is congruent to $\operatorname{diag}\left(\alpha_{1}, \cdots, \alpha_{n}\right)$. Then A is Hermitian and therefore A is also congruent to diag $\left(\beta_{1}, \cdots, \beta_{n}\right)$. But by Lemma 1 it follows that $\left(\alpha_{i}\right),\left(\beta_{i}\right)$ is realizable. Therefore by Lemma 9 we have $\left(\arg \beta_{i}\right) \prec\left(\arg \alpha_{i}\right) \prec\left(\arg \beta_{i}\right)$, from which the present theorem follows immediately.

Lemma 11. Suppose $\left(\beta_{i}\right),\left(\alpha_{i}\right)$ are n-tuples of complex numbers of modulus 1 such that $\Pi_{1}^{n} \beta_{i}=\prod_{1}^{n} \alpha_{i}$. Then there exist determinations of $\arg \alpha_{i}, \arg \beta_{i}$ such that

$$
\max \arg \alpha_{i}-\min \arg \alpha_{i} \leqq 2 \pi
$$

and

$$
\left(\arg \beta_{i}\right) \prec\left(\arg \alpha_{i}\right) .
$$

Proof. The statement is obvious for $n=1$. Suppose $n>1$ and it holds for n-1-tuples. If any of the β_{i} is equal to any of the α_{i}, say $\beta_{1}=\alpha_{1}$, then by the induction hypothesis, we can find determinations of the remaining $\arg \alpha_{i}, \arg \beta_{i}$ as stated. If we now choose a value of $\arg \alpha_{1}$ which lies between μ and $\mu+2 \pi$, where $\mu=\min _{i>1} \arg \alpha_{i}$, and set $\arg \beta_{1}=\arg \alpha_{1}$, then the conditions of our theorem will be satisfied, by Lemma 6. So henceforth we may assume that $\beta_{i} \neq \alpha_{j}$ for all i, j.

As another special case, suppose the α_{i} are all equal, say to 1 . If we assign arguments to the β_{i} such that $0<\arg \beta_{i}<2 \pi$, then $\sum_{1}^{n} \arg \beta_{i}=$ $2 \pi k$, where k is some positive integer $<n$. We need only assign arguments to the α_{i} such that exactly k of them have argument 2π and the remaining ones have argument 0 .

Now assume the previous two cases do not occur. The α_{i} divide the unit circle into arcs. At least one of them must contain more than one of the β_{i}, for if not the α_{i} would be all distinct and each of the n arcs determined by them would contain exactly one of the β_{i}. We could then assign arguments to arrangements of the α_{i}, β_{i} so that

$$
\arg \alpha_{1}<\arg \beta_{1}<\arg \alpha_{2}<\cdots<\arg \alpha_{n}<\arg \beta_{n}<\arg \alpha_{1}+2 \pi
$$

But then $0<\sum_{1}^{n} \arg \beta_{i}-\sum_{1}^{n} \arg \alpha_{i}<2 \pi$, contradicting the hypothesis $\Pi_{1}^{n} \alpha_{i}=\Pi_{1}^{n} \beta_{i}$.

Let C be an arc containing more than one of the β_{i}. By changing subscripts, we may assume that the endpoints of C when described counterclockwise are α_{1} and α_{2}. Let β_{1} be one of the β_{i} in C which is nearest to α_{1} and β_{2} be one of the β_{i} with subscript $\neq 1$ which is nearest to α_{2}. Note that β_{1} may equal β_{2}, but $\alpha_{1} \neq \alpha_{2}$. As will be seen from the following argument, we may assume the subarc $\alpha_{1} \beta_{1}$ of $C \leqq$ the subarc $\beta_{2} \alpha_{2}$ of C, (all arcs are described counterclockwise). Let $\beta_{1}^{\prime}=\alpha_{1}$ and let β_{2}^{\prime} be the point in $\beta_{2} \alpha_{2}$ such that $\beta_{2} \beta_{2}^{\prime}=\alpha_{1} \beta_{1}=\delta$. By the first case of the proof, we may assign arguments to $\beta_{1}^{\prime}, \beta_{2}^{\prime}, \beta_{3}, \cdots, \beta_{n}$ and $\alpha_{1}, \cdots, \alpha_{n}$ so that
(1) $\max \arg \alpha_{i}-\min \arg \alpha_{i} \leqq 2 \pi$
and
(2) $\left(\arg \beta_{1}^{\prime}, \arg \beta_{2}^{\prime}, \arg \beta_{3}, \cdots, \arg \beta_{n}\right) \prec\left(\arg \alpha_{1}, \cdots, \arg \alpha_{n}\right)$.

If $\arg \alpha_{1}$ happens to be the largest of $\arg \alpha_{i}$, and therefore $\arg \alpha_{2}$ is the smallest of $\arg \alpha_{i}$, then none of $\beta_{1}^{\prime}, \beta_{2}^{\prime}, \beta_{3}, \cdots, \beta_{n}$ can lie in the interior of C. Therefore $\beta_{2}^{\prime}=\alpha_{2}$, and if we decrease $\arg \alpha_{1}$ and $\arg \beta_{1}$ by 2π, then (1) and (2) will still hold. Thus we may assume $\arg \alpha_{1}<\arg \alpha_{2}$, and therefore $\arg \beta_{1}^{\prime}<\arg \beta_{2}^{\prime}$. Now assign to β_{1} the argument $\beta_{1}^{\prime}+\delta$ and to β_{2} the argument $\arg \beta_{2}^{\prime}-\delta$. Since

$$
\left(\arg \beta_{1}^{\prime}+\delta, \arg \beta_{2}^{\prime}-\delta\right) \prec\left(\arg \beta_{1}^{\prime}, \arg \beta_{2}^{\prime}\right),
$$

we have by Lemma 6 ,

$$
\begin{aligned}
\left(\arg \beta_{1}, \cdots, \arg \beta_{n}\right) & \prec\left(\arg \beta_{1}^{\prime}, \arg \beta_{2}^{\prime}, \arg \beta_{3}, \cdots, \arg \beta_{n}\right) \\
& \prec\left(\arg \alpha_{1}, \cdots, \arg \alpha_{n}\right) .
\end{aligned}
$$

This completes the proof.

Lemma 12. If $\left(\beta_{i}\right)$, $\left(\alpha_{i}\right)$ are n-tuples of complex numbers of modulus 1 which can be assigned arguments such that

$$
\begin{aligned}
& \arg \alpha_{1} \leqq \cdots \leqq \arg \alpha_{n} \leqq \arg \alpha_{1}+2 \pi \\
& \arg \beta_{1} \leqq \cdots \leqq \arg \beta_{n} \\
& \left(\arg \beta_{i}\right) \prec\left(\arg \alpha_{i}\right)
\end{aligned}
$$

and

$$
\arg \alpha_{i+1}-\arg \alpha_{i}<\pi, i=1, \cdots, n-1,
$$

then a finite number of pinches will reduce $\left(\alpha_{i}\right)$ to $\left(\beta_{i}\right)$.
Proof. We proceed by induction on n. When $n=2$, we have $\arg \alpha_{1} \leqq \arg \beta_{1} \leqq \arg \beta_{2} \leqq \arg \alpha_{2}, \arg \alpha_{1}+\arg \alpha_{2}=\arg \beta_{1}+\arg \beta_{2}$ and $\arg \alpha_{2}-\arg \alpha_{1}<\pi$. Therefore $\arg \beta_{1}-\arg \alpha_{1}=\arg \alpha_{2}-\arg \beta_{2}$ and so
$\left(\beta_{1}, \beta_{2}\right)$ is a pinch of $\left(\alpha_{1}, \alpha_{2}\right)$.
Suppose $n>2$ and the theorem holds for all m-tuples, $m<n$. Let

$$
\delta=\min _{1 \leqq p \leqq n-1} \sum_{1}^{p}\left(\arg \beta_{i}-\arg \alpha_{i}\right)
$$

There exists k such that $\sum_{1}^{k} \arg \beta_{i}-\sum_{1}^{k} \arg \alpha_{i}=\delta$. It is easy to verify that

$$
\left(\arg \beta_{1}, \cdots, \arg \beta_{k}\right) \prec\left(\arg \alpha_{1}+\delta, \arg \alpha_{2}, \cdots, \arg \alpha_{k}\right)
$$

and

$$
\left(\arg \beta_{k+1}, \cdots, \arg \beta_{n}\right) \prec\left(\arg \alpha_{k+1}, \cdots, \arg \alpha_{n-1}, \arg \alpha_{n}-\delta\right)
$$

Also

$$
\arg \alpha_{1}+\delta \leqq \arg \beta_{1} \leqq \arg \beta_{n} \leqq \arg \alpha_{n}-\delta
$$

By the induction hypothesis, we can reduce ($\alpha_{1} e^{i \delta}, \alpha_{2}, \cdots, \alpha_{k}$) to $\left(\beta_{1}, \cdots, \beta_{k}\right)$ and $\left(\alpha_{k+1}, \cdots, \alpha_{n-1}, \alpha_{n} e^{-i \delta}\right)$ to $\left(\beta_{k+1}, \cdots, \beta_{n}\right)$ by a finite number of pinches. We need only show that $\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ can be reduced to $\left(\alpha_{1} e^{i \delta}, \alpha_{2}, \cdots, \alpha_{n-1}, \alpha_{n} e^{-i \delta}\right)$ by a finite number of pinches. This will follow from the next lemma if we consider only the distinct α_{i}.

If the α_{i} all coincide, then so do the β_{i} and the statement of our theorem is trivial.

Lemma 13. If $\left(\alpha_{i}\right)$ is an m-tuple of numbers of modulus 1 with assigned arguments such that

$$
\arg \alpha_{1}<\cdots<\arg \alpha_{m} \leqq \arg \alpha_{1}+2 \pi
$$

and

$$
\arg \alpha_{i+1}-\arg \alpha_{i}<\pi, i=1, \cdots, m-1
$$

and if δ is a positive number such that $\arg \alpha_{1}+\delta \leqq \arg \alpha_{m}-\delta$, then $\left(\alpha_{i}\right)$ can be reduced to $\left(\alpha_{1} e^{i \delta}, \alpha_{2}, \cdots, \alpha_{m-1}, \alpha_{m} e^{-i \delta}\right)$ by a finite number of pinches.

Proof. This is obvious for $m=2$. Assume $m>2$ and the lemma holds for $m-1$ - tuples. If

$$
\begin{aligned}
& \eta=\min \left(\arg \alpha_{2}-\arg \alpha_{1}, \pi-\left(\arg \alpha_{3}-\arg \alpha_{2}\right), \cdots,\right. \\
& \left.\pi-\left(\arg \alpha_{m}-\arg \alpha_{m-1}\right)\right)
\end{aligned}
$$

and $0<\varepsilon<\eta$, then each sequence in the following list is a pinch of the preceeding sequence:

$$
\alpha_{1}, \cdots, \alpha_{m}
$$

$$
\begin{aligned}
& \alpha_{1} e^{i \varepsilon}, \alpha_{2} e^{-i \varepsilon}, \alpha_{3}, \cdots, \alpha_{m} \\
& \alpha_{1} e^{i \varepsilon}, \alpha_{2}, \alpha_{3} e^{-i \varepsilon}, \cdots, \alpha_{m} \\
& \cdot \cdots \\
& \alpha_{1} e^{i \varepsilon}, \alpha_{2}, \cdots, \alpha_{m-2}, \alpha_{m-1} e^{-i \varepsilon}, \alpha_{m} \\
& \alpha_{1} e^{i \varepsilon}, \alpha_{2}, \cdots, \alpha_{m-1}, \alpha_{m} e^{-i \varepsilon}
\end{aligned}
$$

Note that $\arg \alpha_{1}+\varepsilon$ need not be $\leqq \arg \alpha_{2}-\varepsilon$, and $\arg \alpha_{2}$ need not be $\leqq \arg \alpha_{3}-\varepsilon$, etc.

We may repeat this cycle of m pinches $k-1$ more times to pass from

$$
\alpha_{1} e^{i \varepsilon}, \alpha_{2}, \cdots, \alpha_{m-1}, \alpha_{m} e^{-i \varepsilon} \text { to } \alpha_{1} e^{k i \varepsilon}, \alpha_{2}, \cdots, \alpha_{m-1}, \alpha_{m} e^{-k i \varepsilon}
$$

as long as $\arg \alpha_{1}+k \varepsilon \leqq \arg \alpha_{2}$, since

$$
\arg \alpha_{2}+p \varepsilon-\arg \alpha_{1}>\arg \alpha_{2}-\arg \alpha_{1}
$$

and

$$
\pi-\left(\arg \alpha_{n}-p \varepsilon-\arg \alpha_{m-1}\right)>\pi-\left(\arg \alpha_{n}-\arg \alpha_{m-1}\right)
$$

for $p<k$. Therefore if $\delta \leqq \arg \alpha_{2}-\arg \alpha_{1}$, we need only choose $\varepsilon=\delta / k$, where k is an integer so large that $\delta / k<\eta$. If $\delta>\arg \alpha_{2}-\arg \alpha_{1}$, choose $\varepsilon=\left(\arg \alpha_{2}-\arg \alpha_{1}\right) / k$, where k is so large that $\varepsilon<\eta$. Then ($\alpha_{1}, \cdots, \alpha_{m}$) is reduced to ($\alpha_{2}, \alpha_{2}, \cdots, \alpha_{m-1}, \alpha_{m} e^{-i k \varepsilon}$) by the above sequence of pinches. By the induction hypothesis, ($\alpha_{2}, \alpha_{3}, \cdots, \alpha_{m-1}, \alpha_{m} e^{-i k \varepsilon}$) can by a finite number of pinches be reduced to ($\alpha_{1} e^{i \delta}, \alpha_{3}, \cdots, \alpha_{m-1}, \alpha_{m} e^{-i \delta}$). (The fact that $\alpha_{m} e^{-i k \varepsilon}$ might be equal to one of the α_{j} is clearly unimportant.) Therefore ($\alpha_{1}, \cdots, \alpha_{m}$) can be reduced to ($\alpha_{1} e^{i \delta}, \alpha_{2}, \cdots, \alpha_{m-1}$, $\left.\alpha_{m} e^{-i \delta}\right)$, and the proof is complete.

3. Proof of Theorem 1.

$(2) \rightarrow(1): \quad$ This is the statement of Lemma 5.
$(1) \rightarrow(3)$: If $\left(\lambda_{i}\right),\left(\alpha_{i}\right)$ is realizable, then by Lemma 1 there exists a matrix A and a non-singular matrix X such that $A=X^{*} \operatorname{diag}\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ X and A has eigenvalues λ_{i}. Therefore $\Pi \lambda_{i}=\Pi \alpha_{i} \cdot|\operatorname{det} X|^{2}$ and hence $\Pi \lambda_{i}| | \lambda_{i} \mid=\Pi \alpha_{i}$. If the α_{i} lie on a line through 0 , then $\left(\lambda_{i} /\left|\lambda_{i}\right|\right)$ is a rearrangement of $\left(\alpha_{i}\right)$ by Lemmas 2 and 10. If the α_{i} lie in a closed half plane through 0 , then by Lemma 3 we may assume they lie in the upper half plane. By Lemma 9 it follows that $\left(\arg \lambda_{i}\right) \prec\left(\arg \alpha_{i}\right)$.
$(3) \rightarrow(2)$: In case (a), the statement is obvious. In case (c), Lemma 11 and the fact that the α_{i} do not lie in any closed half plane with 0 on its boundary show that the hypotheses of Lemma 12 are satisfied by arrangements of $\left(\lambda_{i} /\left|\lambda_{i}\right|\right)$, $\left(\alpha_{i}\right)$. In case (b), the hypotheses of

Lemma 12 also are satisfied by arrangements of $\left(\lambda_{i}| | \lambda_{i} \mid\right),\left(\alpha_{i}\right)$. Thus an application of Lemma 12 completes the proof.

References

1. G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge, 1952.
2. A. Horn, On the eigenvalues of a matrix with prescribed singular values, Proc. Amer. Math. Soc., 5 (1954), 4-7.
3. R. R. Stoll, Linear algebra and matrix theory, New York, 1952.
4. H. Wielandt, An extremum property of sums of eigenvalues, Proc. Amer. Math. Soc., 6 (1944), 106-110.

University of California, Los Angeles

