EIGENVALUES OF THE UNITARY PART OF A MATRIX

ALFRED HORN AND ROBERT STEINBERG

1. Introduction. It is well known that every matrix A (square and
with complex entries) has a polar decomposition 4 = P,U, = U,P,, where
U, are unitary and P, are unique positive semi-definite Hermitian matrices.
If A is non-singular then U, = U, = U, where U is also unique. In this
case we call U the unitary part of A. The eigenvalues of P, are the
same as those of P,.

In [2] the following problem was solved. Given the eigenvalues of
P,, what is the exact range of variation of the eigenvalues of A ? The
answer shows that a knowledge of the eigenvalues of P, puts restric-
tions only on the moduli of the eigenvalues of A. In this paper we are
going to consider the corresponding question for the unitay part U of
A. In turns out that a knowledge of the eigenvalues of U restricts
only the arguments of the eigenvalues of A.

Before stating the result, we need some definitions. An ordered
pair of m-tuples (\;), («;) of complex numbers is said to be realizable if
there exists a non-singular matrix A of order n with eigenvalues \, such
that the unitary part of A has eigenvalues «,. If (v,) is an n-tuple of
complex numbers of modulus 1, and if two of the v, are of the form
e?, ¢ with 0 <b—c<mand 0<d < (b— ¢)/2, then the operation of
replacing e, ¢ by ¢'®-%, ¢'*® jg called a pinch of (v,). In other
words, a pinch of (v,) consists in choosing two of the v, which do not
lie on the same line through 0 and turning them toward each other
through equal angles.

If (a,;), (b;) are n-tuples of real numbers, and if (a), (b}) are their
rearrangements in non-decreasing order, then we write (a;) < (b;) when
Sral < Srb, r=2,--+, nand S7ra;=>7rb,. It is easily seen that
the conditions are equivalent to the conditions > a} = S7tbl, r=1, ---,
n—1, and S7Pal= >70;.

Our main theorem is the following.

THEOREM 1. Let (\,), () be n-tuples of complex numbers such that
M #E=0and |a,| =1. Then the following statements are equivalent:
(1) the pair (\,), (o) is realizable;
(2) () can be reduced to (\/ | i |) by a finite sequence of pinches;
(3) TIra; = TIF (/I D), and exactly one of the following hold:
(a) there is a line through 0 containing all the «; and
NI )) s @ rearrangement of (a);
(b) there is mo line through 0 containing all «, but there is
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a closed half plane H with 0 on its boundary containing all «;,
and, if we choose a branch of the argument function which is
continuous in H — {0}, then (arg \,) < (arg «,);

(c) there ts nmo closed half plane with 0 on its boundary
which contains all a;.
The proof of Theorem 1 will be given at the end of the paper.

2. Definitions and preliminary results. Two matrices A and B are
said to be congruent if there exists a non-singular matrix X such that B =
X*AX. A triangular matrix is a matrix such that all entries below the
main diagonal are 0. If Pis a positive definite matrix, then P'? denotes
the unique positive definite matrix whose square is P. We will use the
symbol diag (a,, ---, a,) to denote the diagonal matrix with diagonal
elements a,, -+, a,.

LEmMMa 1. If M#0 and |a,| =1, then the pair (\), (a,) is
realizable if and only if there exists a matriz A with eigenvalues \,
which is congruent to D = diag («,, +++, ay).

Proof. We use the fact that for any two matrices B and C, BC
and CB have the same eigenvalues. If (\;), («;) is realizable, there
exists a unitary matrix U with eigenvalues «; and a positive definite
matrix P such that PU has eigenvalues );. Let V be a unitary matrix
such that U= V*DV. Then PU has the same eigenvalues as
PPrrV*DVPY:, which is congruent to D. Conversely, if X*DX has
eigenvalues );, then so does A = XX*D, and D is the unitary part of
A since XX* is positive definite.

LEMMA 2. If (M), (o) ts realizable and o0, > 0 for each <, thenm
(o\), (@;) is realizable.

Proof. Suppose D = diag (ay, -+, a,) is congruent to a matrix A
with eigenvalues );. Then A is congruent to a triangular matrix B with
diagonal elements \,. If X = diag (0}? ---, p¥?), then X*BX obviously
has eigenvalues p\; and is congruent to D.

LEMMA 3. If (\), (@) is realizable and z is any complex number
of modulus 1, then (2\;), () is realizable.

LEMMA 4. If (g, p) results from (A, \,) by a pinch and T is a
triangular matrix with diagonals elements N, \,, then T is congruent to
a matriz with eigenvalues b, .

Proof. By multiplication by a suitable constant, we may suppose
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that N, =€, N, = e % and g, = e, p, = e ", where 0 < ¢ <0 < 7/2.
It suffices to find a positive matrix P such that P7T has eigenvalues e*%,

Suppose
0
T:( “).
0 e*®

Let

P:@ 9,

where x = 1, |yP=2*— 1 and ya = |a | (x* — 1)"2. Since P has deter-
minant 1, we need only choose x so that the trace of PT is 2 cos ¢.
The trace of PT is f(x) = xe® + xe™® + ya = 2x cos 6 + | a | (x* — 1)'~,
When « = 1, this is 2cos 6, and for ® = 1, f(x) increases to infinity.

LEMMA 5. If (a)) can be reduced to (/| N;]) by a finite number
of pinches, then (\,), (o) is realizable.

Proof. By Lemma 2 we may assume | \; | = 1. We need only prove
the following: if (\;), (@) is realizable, if |\,| =1 and if (g,) is a pinch
of (\), then (1,), (a;) is realizable. We may suppose that the pinch
consists in replacing N, N\, by 4, . By hypothesis there exists a
triangular matrix A with eigenvalues )\, which is congruent to diag

(ay, +++, ;). By Lemma 4 there exists a two rowed non-singular matrix
Z such that

has eigenvalues p, f,. Here a, is the (1, 2) entry of A. If we set

Z 0
Y= (o _r) '
where I is the identity matrix of order n — 2, then
B C
YMY:( :
0 D)

where D is triangular with diagonal elements X\, -+, \,. But this last
matrix obviously has eigenvalues (gt;, fly, Ngy +oy Np) = (L ==+, tho)-

LEMMA 6. If (av "'yak) < (bly % bk) and (01, ) Cp) < (dly ey dp)
then (alr secy Qgy Cpy ove, Cp)<(b1r M blcv dn ) dp)
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Proof. A proof is given in [1; 63].

LEMMA 7. If A is a matrix such that (Ax, x) 0 and 0 <
arg (Az, x) < w for all x + 0, then A is congruent to a unitary matrix.

Proof. Let H= (A + A%)/2, K= (A — A*)/2i. Then A = H + 1K,
and H, K are Hermitian. Since (Az, z)= (Hx, x)+ ©(Kxz, z), the
hypothesis implies that (Kx, «) > 0 for all x = 0, so that K is positive
definite. Therefore by [3; 261] H and K are simultaneously congruent
to real diagonal matrices. Hence A = H + ¢K is congruent to a diagonal
unitary matrix.

LEMMA 8. If A is congruent to a unitary matrizc U with eigenvalues
a;, and if 0 <arg «a < .-+ <arg «,<m, then (Ax, x)+ 0 for all
z# 0 and

arg a; = inf sup arg (Ax, x) = sup inf arg (Ax, x)
dim § z€S dim § 2€S8
=J %0 =n—j+1 20

where S ranges over subspaces of n-dimensional complex Euclidean
space.

Proof. Let (u;) be an ortho-normal sequence of eigenvectors of U
corresponding to («;). If A = X*UX, then (Az, z) = 37w, | (Xz, u,) |
If S is the space spanned by X-'u,, «--, X 'u,, then

sup arg (Az, x) = arg «,.

2ES
230

Now let S be any subspace of dimension 5. Let M be the space spanned
by X~*u, +--, X 'u,. Then there exists a non-zero vector = in M N S.
But

arg (Az, x) = inf arg > ;| (y, w)|* = arg ;.
Y40 j

Therefore

sup arg (Az, x) = arg «, .
xES
TA0

The proof of the second statement is analogous.

Lemma 8 is of course the analogue of the minimax principle for
Hermitian matrices. The generalization due to Wielandt [4] also has an
analogue for unitary matrices, which we mention without proof since it
will not be used.

If A and U satisfy the hypotheses of Lemma 8 and 1 <1, < ++-
< 1, < n, then
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arga; + -+ farga;, = inf sup (arg B, + +-- + arg By)
MIC"'CMIC :vaIIlp
dimMp:ip
where (x,, --+, x,) ranges over linearly independent sequences of vectors,
and the B; are the eigenvalues of the matrixz of order k whose (i, j)
entry s (Ux,, x;). The number arg B, + --- + arg 3, depends only on

the subspace generated by x,, -+, X

LEMMA 9. If (\),(«;) s realizable and 0 <arga, < --- <arga, =<,
then (arg)\,;) < (arg «;).

Proof. By Lemma 1, ), are the eigenvalues of X*DX, where X
is non-singular and D = diag (a;, ---, «,). Since the eigenvalues of
X*DX vary continuously with the «;, we need only prove the theorem
for the case where 0 < arg«,, arga, < . We proceed by induction on
n. The statement being obvious when % = 1, suppose n > 1 and the
theorem holds for matrices of order n — 1. Let A be a triangular
matrix with eigenvalues \; which is congruent to D. Suppose the \; are
arranged so that arg), < --- < arg),. Let B be the principal minor
of A formed from the first » — 1 rows and columns of A. If z =
(xy, ++-, 2,-,) is a vector with n — 1 components and y = (x,, *++, Z,-y, 0)
then (Bz, z) = (Ay, y). Therefore for any such x + 0, (Az, ) # 0 and

0 <arga, =<arg(Ay, y) = arg(Bx, v) S arga, <7,

by Lemma 8, since A is congruent to D.

By Lemma 7, B is congruent to a unitary matrix V. Let the eigenvalues
of V be B,, where arg B, < --- < arg B,-,. Since the quadratic form
(Bz, x) associated with B is a restriction of the quadratic form associ-
ated with A, it follows from Lemma 8 that arg «,., = arg 3, = arg «,,
j=1, ..., n—1. Also by the induction hypothesis (arg A, «+-, arg x,-,)<
(arg By, + -+, arg B,-,). Therefore

arg\, + -+ +argh, = argB, + --- fargB, =arga, + --- +arga,,
r=1,+.,n—1

and
arga, + --+ +arga, = arg\, + --- +argh,_,
>arga, + --- +arga,., .

Hence

n
—rm<arg\, —arga, < S, (arg\; —argw,) < arg\, —argaq, < 7.

1

But

f[x[: | det X |- Hm
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Therefore

7
Slargn, = nZargai .
1 1

The proof is complete.

LEmMA 10. If (B,), (o) are n-tuples of complex numbers of modulus
1 which lie on a line through 0, and if (), (®,) is realizable, then (3;)
must be a rearrangement of (a,).

Proof. By Lemma 3 we may suppose that the «, and 3, are all
real. Let A be a matrix with eigenvalues B; which is congruent to
diag («,, -+-, @,). Then A is Hermitian and therefore A is also congruent
to diag (8, -+, B,). But by Lemma 1 it follows that (a,), (8, is
realizable. Therefore by Lemma 9 we have (arg 8,) < (arg ;) < (arg 3,),
from which the present theorem follows immediately.

LEMMA 11. Suppose (B3,), (a;) are n-tuples of complex numbers of
modulus 1 such that [[? R, = [1*«,. Then there exist determinations
of arg «;, arg B; such that

max arg a, — min arg o, < 27

and

(arg B;) < (arg «,) .

Proof. The statement is obvious for # = 1. Suppose n > 1 and it
holds for m-1-tuples. If any of the [, is equal to any of the «;, say
B, = a,, then by the induction hypothesis, we can find determinations of
the remaining arg «;, arg 3, as stated. If we now choose a value of
arg «, which lies between p and p + 27, where g = min,,,arga; and
set arg B, = arg «,, then the conditions of our theorem will be satisfied,
by Lemma 6. So henceforth we may assume that B3, = «a, for all 7, j.

As another special case, suppose the «; are all equal, say to 1. If we
assign arguments to the 3, such that 0 < arg 8, < 2w, then >7argp; =
27k, where k is some positive integer < n. We need only assign argu-
ments to the a; such that exactly & of them have argument 27 and the
remaining ones have argument 0.

Now assume the previous two cases do not occur. The «,; divide
the unit circle into ares. At least one of them must contain more than
one of the B,, for if not the a; would be all distinct and each of the n
arcs determined by them would contain exactly one of the 8;. We could
then assign arguments to arrangements of the «;, B; so that

arga, < arg B, < arga, < .-+ < arga, < arg 3, < arg «, + 2xw .
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But then 0 < >7rarg B, — Diarg«a;, < 2w, contradicting the hypothesis
It a; = 117 8.

Let C be an arc containing more than one of the 3,. By changing
subscripts, we may assume that the endpoints of C when described
counterclockwise are «a, and «a,. Let 3, be one of the B, in C which is
nearest to a, and B, be one of the 8, with subscript # 1 which is nearest
to a,. Note that 8, may equal 8,, but a;, # «,. As will be seen from the
following argument, we may assume the subarc «a,3, of C < the subarc
B, of C, (all arcs are described counterclockwise). Let 3B = a, and let
B} be the point in B,a, such that 83,8, = a8, = 6. By the first case of
the proof, we may assign arguments to 3, 8., B -+, B and «,, +--, a,
so that

(1) max arg @; — min arg a; < 27
and

(2) (argpi, arg B;, arg B, ---, arg f3,) < (arga,, -+, arg a,).

If arg «, happens to be the largest of arg «;, and therefore arg a,
is the smallest of arg «;, then none of B}, B B, -+, B, can lie in the
interior of C. Therefore B; = «,, and if we decrease arg «, and arg 3,
by 27, then (1) and (2) will still hold. Thus we may assume
arg a; < arg «,, and therefore arg 8 < arg 3;. Now assign to 3, the
argument B; + 8 and to B, the argument arg 8, — §. Since

(arg B + 9, arg B — ) < (arg B, arg ;) ,
we have by Lemma 6,
(arg By, +++, arg B,) < (arg Bi, arg 3, arg 3;, «--, arg 3,)
'< (arg Ay oo, arg an) .

This completes the proof.

LEmMa 12.  If (B), (®) are n-tuples of complex numbers of
modulus 1 which can be assigned arguments such that
argo, < .-« S arga, < arga, + 2w,
arg 8, = +-- = arg 3, ,
(arg B)) < (arg @) ,
and

arg o, —arga; <, 1 =1,++o, n—1,
then a finite number of pinches will reduce («;) to (83,).
Proof. We proceed by induction on n. When n =2, we have

arga, < arg 8, = arg 3, = arg «,, arg «, + arg «, = arg 3, + arg 3, and
arg «, — arg «; < w. Therefore arg 8, — arg o, = arg a, — arg B, and so
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(81, B.) is a pinch of («;, a,).
Suppose n > 2 and the theorem holds for all m-tuples, m < n. Let

. »
6 = min ' (arg B; — arg «;) .
1

1=p=n-1

There exists k such that SFarg 8, — SFarga; = 8. It is easy to verify
that

(arg By, + -+, arg B;) < (arg o, + 9§, arga,, ---, arg «,)
and
(arg By =+, arg B,) < (Arg Ayyyy +++, AT Ay, AT A, — B) .«
Also
arga, + 8l argpB, ZargfB,Zarga, — o .

By the induction hypothesis, we can reduce («a,e®, a,, ---, «,) to
(Blr ] /810) and (ak-l-l! ey Qg A e—-i&) to (/81\:4—19 ) Bn) by a finite number
of pinches. We need only show that (a,, ---, «,) can be reduced to
(¥, a,, ++-, a,_,, a,e”®) by a finite number of pinches. This will follow
from the next lemma if we consider only the distinct «;.

If the «; all coincide, then so do the B, and the statement of our
theorem is trivial.

LEmmA 13. If («,) is an m-tuple of numbers of modulus 1 with
assigned arguments such that

arga, < +-+ <arga, < arga, + 27
and
arg ., —arg o, < mw, t=1, -+, m—1,

and if § is a positive number such that arga, 4+ 6 < arga,, — J, then
(e;) can be reduced to (o, 6, oy, +++, ®,_,, e~ ?) by a finite number of
pinches.

Proof. This is obvious for m = 2. Assume m > 2 and the lemma
holds for m — 1 — tuples. If

7 = min(arg @, — arg a;, ™ — (arg a; — arga,), «- -,
T — (arg A, — arg am—l)) ’

and 0 < ¢ <7, then each sequence in the following list is a pinch of the
preceeding sequence:

Ay =00y Uy
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ie -4
a, e, aye By eee, Ay
e’y @, e, cee, Ay

@, eis’ Ay oo0y Wppgy (g e—zgr oy,
(a6} 6557 Mgy oo0y Wy, Uy e’* .
Note that arg «, + ¢ need not be < arga, — ¢, and arg «, need not be
< arg o, — ¢, ete.
We may repeat this cycle of m pinches £ — 1 more times to pass
from

O e, Oy voey Ay, Ape™ 10 a e ay, «+o, a,,_, a,e "
as long as arg a, + ke < arg «,, since
arg a, -+ pe — arg o, > arg &, — arg «,
and
T — (arg o, — pc — arg a,,_,) > 7 — (arg &, — arg «,,_,)

for p < k. Therefore if § < arg @, — arg «;,, we need only choose ¢ = J/k,
where k is an integer so large that &/k <. If § > arga, — arg «;,
choose ¢ = (arg a, — arg a))/k, where k is so large that ¢ < 7. Then
(g, = -+, ) is reduced to (a,, ay, - -, @, 1, @, e %) by the above sequence
of pinches. By the induction hypothesis, (a,, «;, -+, a,,_,, @, e"%**) can
by a finite number of pinches be reduced to («, e”, a,, «++, Qpoy, A e ).
(The fact that a,, e~*** might be equal to one of the «, is clearly unim-
portant.) Therefore (a,, ---, a,) can be reduced to (a,e®, a, «++, Qpy,
a,, e~®), and the proof is complete.

3. Proof of Theorem 1.

(2) > (1): This is the statement of Lemma 5.

1) — 3): If (M), () is realizable, then by Lemma 1 there exists
a matrix A and a non-singular matrix X such that A = X* diag («,, -+, @,)
X and A has eigenvalues ;. Therefore [[\; = [[«; - | det X |* and hence
TN/ In | = Tl If the e, lie on a line through 0, then (\;/|)\;]) is
a rearrangement of («;) by Lemmas 2 and 10. If the «a; lie in a closed
half plane through 0, then by Lemma 3 we may assume they lie in the
upper half plane. By Lemma 9 it follows that (arg),) < (arg a,).

(3) = (2): In case (a), the statement is obvious. In case (¢), Lemma
11 and the fact that the a; do not lie in any closed half plane with 0
on its boundary show that the hypotheses of Lemma 12 are satisfied
by arrangements of (\;/[N;]), (a). In case (b), the hypotheses of
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Lemma 12 also are satisfied by arrangements of (\,/|\;]), («;). Thus
an application of Lemma 12 completes the proof.
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