
EIGENVALUES OF THE UNITARY PART OF A MATRIX

ALFRED HORN AND ROBERT STEINBERG

l Introduction* It is well known that every matrix A (square and
with complex entries) has a polar decomposition A — PιU1 — U2P2, where
Ut are unitary and P% are unique positive semi-definite Hermitian matrices.
If A is non-singular then U1= U2 = U, where U is also unique. In this
case we call U the unitary part of A. The eigenvalues of Pτ are the
same as those of P2.

In [2] the following problem was solved. Given the eigenvalues of
P19 what is the exact range of variation of the eigenvalues of A ? The
answer shows that a knowledge of the eigenvalues of P± puts restric-
tions only on the moduli of the eigenvalues of A. In this paper we are
going to consider the corresponding question for the unitay part U of
A. In turns out that a knowledge of the eigenvalues of U restricts
only the arguments of the eigenvalues of A.

Before stating the result, we need some definitions. An ordered
pair of ^-tuples (λ^), (at) of complex numbers is said to be realizable if
there exists a non-singular matrix A of order n with eigenvalues λ{ such
that the unitary part of A has eigenvalues at. If (γ^) is an %-tuple of
complex numbers of modulus 1, and if two of the γ^ are of the form
eih, eic with 0 < b — c < π and 0 ^ d ^ (b — c)/2, then the operation of
replacing eίΊ>, eίc by ei(p'd\ ei(*c+d) is called a pinch of (γ^). In other
words, a pinch of (γ^ ) consists in choosing two of the y3 which do not
lie on the same line through 0 and turning them toward each other
through equal angles.

If (α4), φi) are n-tuples of real numbers, and if (αί), (&0 are their
rearrangements in non-decreasing order, then we write (αj •< (&*) when
Σ ? α* ^ Σ r K r = 2, •••, n and Σ?«ί = Σ ? &ί It i s easily seen that
the conditions are equivalent to the conditions Σ ί α ί ^ Σϊ&ί> r — 1> •• •>
n - 1, and Σ ? aΊ = Σ? bΊ

Our main theorem is the following.

THEOREM 1. Let (λέ), (α4) be n-tuples of complex numbers such that
φ 0 and I αrt I = 1. Then the following statements are equivalent:

( 1 ) the pair (λ«), (α4) is realizable;
( 2 ) (α4) can be reduced to (λt/1 λέ |) 6̂ / α finite sequence of pinches;
( 3) Π? aι = Π? (λi/1 λ41), and exactly one of the following hold:

( a ) ί/^ere is α Zinβ through 0 containing all the ai and
OW I λi I) is a rearrangement of {a^)\

( b ) there is no line through 0 containing all a% but there is
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a closed half plane H with 0 on its boundary containing all ai9

and, if we choose a branch of the argument function which is
continuous in H — {0}, then (arg λt) -< (arg at);

( c ) there is no closed half plane with 0 on its boundary
which contains all at.
The proof of Theorem 1 will be given at the end of the paper.

2 Definitions and preliminary results. Two matrices A and B are
said to be congruent if there exists a non-singular matrix X such that B —
X*AX. A triangular matrix is a matrix such that all entries below the
main diagonal are 0. If P is a positive definite matrix, then P1'2 denotes
the unique positive definite matrix whose square is P. We will use the
symbol diag (a19 , an) to denote the diagonal matrix with diagonal
elements a19 , an.

LEMMA 1. / / \ φ 0 and [^[ = 1, then the pair (λt), (at) is
realizable if and only if there exists a matrix A with eigenvalues Xt

which is congruent to D — diag (a19 , an).

Proof, We use the fact that for any two matrices B and C, BC
and CB have the same eigenvalues. If (λ^), (at) is realizable, there
exists a unitary matrix U with eigenvalues at and a positive definite
matrix P such that PU has eigenvalues λίβ Let V be a unitary matrix
such that U— 7 * ΰ 7 . Then PU has the same eigenvalues as
p^V*DVP112, which is congruent to D. Conversely, if X*DX has
eigenvalues λ«, then so does A = XX*D, and Z) is the unitary part of
A since XX* is positive definite.

LEMMA 2. / / (λt), (#*) ΐs realizable and pi > 0 /or eαc/& i,
λ*), (««) is realizable.

Proof. Suppose D = diag (a19 , αn) is congruent to a matrix A
with eigenvalues λ4. Then A is congruent to a triangular matrix B with
diagonal elements λ<. If X = άmg(ρl'\ •••, ρH2), then X*J?X obviously
has eigenvalues ^λ^ and is congruent to D.

LEMMA 3. If (Xt), (at) is realizable and z is any complex number
of modulus 1, then (z\)f (za) is realizable.

LEMMA 4. If (μ19 μ2) results from (\19 λ2) by a pinch and T is a
triangular matrix with diagonals elements Xlf λ2, then T is congruent to
a matrix with eigenvalues μ19 μ2.

Proof. By multiplication by a suitable constant, we may suppose
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that λ2 = eι\ λ2 = e~iθ, and μλ = eiφ, μ2 = β"ίφ, where 0 £ φ ^ 0 < ττ/2.
It suffices to find a positive matrix P such that PT has eigenvalues e± i φ.
Suppose

=f a).
Let

where x Ξ> 1, 11/12 = x2 — 1 and ya = \a\(x2 — 1)1/2. Since P has deter-
minant 1, we need only choose x so that the trace of PT is 2 cos φ.
The trace of PT is f(x) = αe" + xe~ί9 + #α = 2x cos 6> + | a | (x2 - 1)1/2.
When x = 1, this is 2 cos 0, and for α? ̂  1, f(x) increases to infinity.

LEMMA 5. // (at) can be reduced to (λj | λ41) by a finite number
of pinches, then (λί), (αέ) is realizable.

Proof. By Lemma 2 we may assume [ λ4 | = 1. We need only prove
the following: if (λt), (a) is realizable, if | λ41 = 1 and if (μ^ is a pinch
of (λ/), then (/̂ j), (α4) is realizable. We may suppose that the pinch
consists in replacing Xlf λ2 by μlf μ2. By hypothesis there exists a
triangular matrix A with eigenvalues \t which is congruent to diag
(a19 , an). By Lemma 4 there exists a two rowed non-singular matrix
Z such that

•

λi <Zio

0

has eigenvalues μlt μ2. Here α12 is the (1, 2) entry of A. If we set

(Z 0>
r-Γ ΊVo i ) '

where I is the identity matrix of order n — 2, then

•B
r"AY=-0 D

w h e r e D i s t r i a n g u l a r w i t h d i a g o n a l e l e m e n t s λ 3 , « , λ w . B u t t h i s l a s t
m a t r i x o b v i o u s l y h a s e i g e n v a l u e s (μ19 μ 2 9 λ 3 , •••, λ n ) = (μ19 •••, μ n ) .

LEMMA 6. If (aly ,α fc) < (blf , 6fc) α^d (cx, . . . , cp) < (d19 , dp)

then (aly , ak9 c19 , cp) •< (6^ , bk, dlf , dp).
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Proof. A proof is given in [1; 63].

LEMMA 7. If A is a matrix such that {Ax, x) Φ 0 and 0 <
arg {Ax, x) < π for all x Φ 0, then A is congruent to a unitary matrix.

Proof. Let H = (A + A*)/2, K = (A - A*)/2ΐ. Then A = H + iK,
and jff, if are Hermitian. Since (A#, x) = (ίfo, a?) + ΐ(.Kcc, a?), the
hypothesis implies that {Kx, x) > 0 for all cc =£ 0, so that K is positive
definite. Therefore by [3; 261] H and K are simultaneously congruent
to real diagonal matrices. Hence A = H + iK is congruent to a diagonal
unitary matrix.

LEMMA 8. If A is congruent to a unitary matrix U with eigenvalues
ai9 and if 0 < arg aλ < < arg an < π, then {Ax, x) Φ 0 for all
x φ 0 and

arg α, = inf sup arg {Ax, x) = sup inf arg (Aίc, #)
dim S xES dim £ xES

where S ranges over subspaces of ^-dimensional complex Euclidean
space.

Proof. Let (ut) be an ortho-normal sequence of eigenvectors of U
corresponding to (a,). If A = X*UX, then {Ax, x) = Σ ? α « I (Xx> ud 12

If S is the space spanned by X~xux, •••, X" 1 ^, then

sup arg {Ax, x) — arg αJ#

Now let S be any subspace of dimension j . Let M be the space spanned
by X~xut, ••-, X"%w. Then there exists a non-zero vector x in M Π S.
But

arg (Ax, #) ̂  inf arg Σ ^ | (y, u^2 = arg ̂  .

Therefore

sup arg {Ax, x) ^ arg α , .
a e S'

The proof of the second statement is analogous.
Lemma 8 is of course the analogue of the minimax principle for

Hermitian matrices. The generalization due to Wielandt [4] also has an
analogue for unitary matrices, which we mention without proof since it
will not be used.

If A and U satisfy the hypotheses of Lemma 8 and 1 ^ ix <
< ik ^ n, then
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arg ah + + arg aί]c = inf sup (arg β± + . - + arg βk)

where (xlf , xk) ranges over linearly independent sequences of vectors,
and the β3 are the eigenvalues of the matrix of order k whose (i, j)
entry is {Uxt, x3). The number arg/32 + . . . + arg/3fc depends only on
the subspace generated by xly •••, xk.

LEMMA 9. // {Xt), (α4) is realizable and 0 ^ arg aλ ^ <L argαw <^ π,
£/&ew (argλi) -< (argα,).

Proof. By Lemma 1, λ̂  are the eigenvalues of X*DX, where X
is non-singular and D = diag (α1? •••, αn). Since the eigenvalues of
X*DX vary continuously with the α ,̂ we need only prove the theorem
for the case where 0 < arg a19 arg an < π. We proceed by induction on
n. The statement being obvious when n = 1, suppose w > 1 and the
theorem holds for matrices of order n — 1. Let A be a triangular
matrix with eigenvalues Xt which is congruent to D. Suppose the Xt are
arranged so that arg X1 ^ ^ arg Xn. Let B be the principal minor
of A formed from the first n — 1 rows and columns of A. If x —
(#!, , xn-i) is a vector with n — 1 components and y = (a?!, , xn-x, 0)
then {Bx, x) — {Ay, y). Therefore for any such x Φ 0, {Ax, x) φ 0 and

0 < arg ax <; arg (AT/, T/) = arg {Bx, x) g arg an < π ,

by Lemma 8, since A is congruent to Zλ
By Lemma 7, 5 is congruent to a unitary matrix V. Let the eigenvalues

of V be /S4, where arg βλ ^ ^ arg βn^. Since the quadratic form
{Bx, x) associated with B is a restriction of the quadratic form associ-
ated with A, it follows from Lemma 8 that arg aj+1 ^ arg β3 ^ arg aj9

j = 1, . . . , n — 1. Also by the induction hypothesis (arg X19 , arg λw_!)-<
(arg β19 , arg ^ - J . Therefore

arg λx + + arg Xr >̂ arg /5X + + arg βr ^ arg aλ + + arg α r,
r = 1, •••, w — 1
and

arg αa + + arg α:w ^ arg Xλ + + arg Xn^

^ arg ^ + + arg an^ .

Hence

- π < arg X
n
 - arg α ^ S (arg λ

4
 - arg a

t
) ̂  arg X

n
 - arg α

x
 < π .

But

1
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Therefore

Σ arg λc = Σ arg α, .
1 1

The proof is complete.

LEMMA 10. // (ft), (α,) are n-tuples of complex numbers of modulus
1 which lie on a line through 0, and if (β), (a4) is realizable, then (ft)

e a rearrangement of

Proof. By Lemma 3 we may suppose that the ai and ft are all
real. Let A be a matrix with eigenvalues ft which is congruent to
diag (al9 , an). Then A is Hermitian and therefore A is also congruent
to diag (ft, •••, βn). But by Lemma 1 it follows that (at)9 (ft) is
realizable. Therefore by Lemma 9 we have (arg ft) •< (argat) < (arg ft),
from which the present theorem follows immediately.

LEMMA 11. Suppose (ft), (at) are n-tuples of complex numbers of
modulus 1 such that Π? βt = Π? aί- Then there exist determinations
of argα2 , arg ft such that

max arg a% — min arg at ^ 2π

and

(arg ft) < (arg at) .

Proof. The statement is obvious for n = 1. Suppose w > 1 and it
holds for w-1-tuples. If any of the ft is equal to any of the ai9 say
βx — alt then by the induction hypothesis, we can find determinations of
the remaining arga€, arg ft as stated. If we now choose a value of
arg ax which lies between μ and μ + 2π, where μ = mmt>1 Sirgaif and
set arg ft = arg alf then the conditions of our theorem will be satisfied,
by Lemma 6. So henceforth we may assume that ft Φ oc3 for all i, j .

As another special case, suppose the a% are all equal, say to 1. If we
assign arguments to the ft such that 0 < arg ft < 2ττ, then Σ? ar& βi ~
2πk, where k is some positive integer < n. We need only assign argu-
ments to the α4 such that exactly k of them have argument 2π and the
remaining ones have argument 0.

Now assume the previous two cases do not occur. The a% divide
the unit circle into arcs. At least one of them must contain more than
one of the ft, for if not the at would be all distinct and each of the n
arcs determined by them would contain exactly one of the ft. We could
then assign arguments to arrangements of the ai9 ft so that

arg ax < arg ft < arg a2 < < arg an < arg βn < arg aλ + 2π .
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But then 0 < ^2 a r £ βι ~~ Σ i a r & ai < 2ττ, contradicting the hypothesis
l α« — H i Pί-

Let C be an arc containing more than one of the βt. By changing
subscripts, we may assume that the endpoints of C when described
counterclockwise are ax and α2. Let βλ be one of the β% in C which is
nearest to aλ and /32 be one of the βi with subscript Φ 1 which is nearest
to a2. Note that β± may equal /32, but aλ Φ a2. As will be seen from the
following argument, we may assume the subarc aβx of C ^ the subarc
β2a2 of C, (all arcs are described counterclockwise). Let β[ = αx and let
βj be the point in β2a2 such that β2β2 = α ^ = δ. By the first case of
the proof, we may assign arguments to β[, βr

2, β3, , βn and a19 , an

so that

( 1 ) max arg at — min arg a% <£ 2ττ
and

( 2 ) (arg β[, arg /3;, arg /33, , arg /Sn) -< (arg α^ , arg an).
If arga x happens to be the largest of argα^, and therefore argα 2

is the smallest of argα^, then none of β[, β2, β3, •••, βn can lie in the
interior of C. Therefore β[ = a2y and if we decrease arg aλ and arg βx

by 2τr, then (1) and (2) will still hold. Thus we may assume
arg aλ < arg a2, and therefore arg β[ < arg β2. Now assign to βλ the
argument β[ + δ and to β2 the argument arg β2 — 8. Since

(arg β[ + δ, arg β'%-δ)< (arg /SJ, arg /32) ,

we have by Lemma 6,

(arg /?!,•••, arg βn) < (arg β[, arg /92, arg /33, , arg /3n)

•< (arg^!, •••, a r g α j .

This completes the proof.

LEMMA 12. // (&), (αt) are n-tuples of complex numbers of
modulus 1 which can be assigned arguments such that

arg aΎ ^ <̂  arg an ^ arg αx + 2π ,

arg A ^ ^ arg /3Λ ,

(arg βt) < (arg α4) ,

and

a r g ai+1 — argat<π, i = 1, , n - 1 ,

then a finite number of pinches will reduce (at) to

Proof. We proceed by induction on w. When n = 2, we have
arg «! ^ arg /5X ^ arg yβ2 ^ arg a2, arg αx + arg a2 = arg /9X + arg /92 and
arg a2 — arg αx < π. Therefore arg β1 — arg ax = arg α2 — arg β2 and so
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(βu A) is a pinch of (alf a2).
Suppose n > 2 and the theorem holds for all m-tuples, m < n. Let

PP

δ = min Σ (ar& βι — arg aι)
- l 1

There exists k such that Σ ? a r £ A — Σf a r £ «< = S. It is easy to verify
that

(arg ft, ., arg βk) < (arg αx + δ, arg α2, , arg αΛ)

and

(arg /3fc+1, •, arg βn) < (arg αfc+1, , arg an_ly arg αw - δ) .

Also

arg aλ + δ ^ arg ft ^ arg /8n <: arg αw - δ .

By the induction hypothesis, we can reduce (ax e
ι\ a2, , ak) to

(ft, , ft) and (αΛ+1, , an_i, αw e~ίδ) to (ft+1, , ft,) by a finite number
of pinches. We need only show that (alf •••, an) can be reduced to
(aλe

u, a2, , aw_x, αwe~iδ) by a finite number of pinches. This will follow
from the next lemma if we consider only the distinct a%.

If the ai all coincide, then so do the ft and the statement of our
theorem is trivial.

LEMMA 13. // (αt) is an m-tuple of numbers of modulus 1 with
assigned arguments such that

arg aλ < < arg am £ arg a, + 2π

and

arg ai+1 — arg at < π, i — 1, , m — 1 ,

and if S is a positive number such that arg ax + δ ^ arg α:̂  — δ, then
(α 4 ) cα?i 6e reduced to ( α x β ί δ , α 2 , •••, α T O _!, α w e~ i δ) by a finite number of
pinches.

Proof. This is obvious for m = 2. Assume m > 2 and the lemma
holds for m — 1 — tuples. If

η = min(arg α2 - arg a19 π - (arg az - arg α2),

π - (arg am - arg am^)) ,

and 0 < ε < r], then each sequence in the following list is a pinch of the

preceeding sequence:

alf , am
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a λ e i 2

y a 2 e ~ i 2 , a,, ••-, am

a ± e i 2 , a2, a , e ~ ί 2

f •••, am

•
aLeie

9 a29 •••, α m _ 2 , am^e"u, am

axe
is, a2, •--, am-19 ame'ie .

Note t h a t arg ax + ε need not be ^ arg a2 — ε, and arg a2 need not be
^ a r g α 3 — ε, etc.

We may repeat this cycle of m pinches k — 1 more times to pass
from

axe
i2, a2J •••, αm_ x, α m e " ί s to α x β u % α2, •-., am-19 ame~ki2

as long as arg aλ + kε <^ arg α2, since

arg a2 + pε — arg α x > arg a2 — arg aλ

and

7Γ - (arg an - pε - arg am^) > π - (arg α w - arg αTO_x)

for p < k. Therefore if δ ^ arg a2 — arg alf we need only choose ε = δ/fc,
where A: is an integer so large that 8/k < η. If δ > arg a2 — arg a19

choose ε = (arg a2 — arg αj/ife, where & is so large t h a t ε < η. Then
(alf , am) is reduced to (α2, α2, , αm_ x, αTO β~ifcε) by the above sequence
of pinches. By the induction hypothesis, (α2, α3, •••, αm_!, α m e~ίkζ) can
by a finite number of pinches be reduced to (α^β*8, α3, •••, αm_χ, ame~i8).
(The fact t h a t αTO e~i7cs might be equal to one of the aό is clearly unim-
portant.) Therefore (a19 « , α m ) can be reduced to ( α x e ί δ , a29 •• ,α m _ v l ,
ame~i8), and the proof is complete.

3 Proof of Theorem 1Φ

(2) -> (1): This is the statement of Lemma 5.
(l)->(3): If (λ4), (α«) is realizable, then by Lemma 1 there exists

a matrix A and a non-singular matrix X such that A = X* diag (αx, •••,«„)
X and A has eigenvalues λ4. Therefore JlX, == Π ^ I det X | 2 and hence
Π W I λ« I = Π««. I f the αέ lie on a line through 0, then (λ4/1 λ41) is
a rearrangement of (at) by Lemmas 2 and 10. If the a% lie in a closed
half plane through 0, then by Lemma 3 we may assume they lie in the
upper half plane. By Lemma 9 it follows that (argλ^) •< (argα^).

(3) -> (2): In case (a), the statement is obvious. In case (c), Lemma
11 and the fact that the at do not lie in any closed half plane with 0
on its boundary show that the hypotheses of Lemma 12 are satisfied
by arrangements of (λz/1 Xt |), (α4). In case (b), the hypotheses of



550 ALFRED HORN AND ROBERT STEINBERG

Lemma 12 also are satisfied by arrangements of (λj | λ41), (α^). Thus
an application of Lemma 12 completes the proof.
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