ON THE BREADTH AND CO-DIMENSION
OF A TOPOLOGICAL LATTICE

LEE W. ANDERSON

Consider the following two conjectures:

Congecture 1. (E. Dyer and A. Shields [7]) If L is a compact, con-
nected, metrizible, distributive topological lattice then dim (L) = breadth
of L.

Conjecture 2. (A. D. Wallace [10]) If L is a compact, connected
topological lattice and if dim (L) = n then the center of L contains at
most 2" — 2 elements.

The purpose of this note is to prove the following results:

(1) If L is a locally compact distributive topological lattice and if
each pair of comparable points is contained in a closed connected chain
then the breadth of L < codim (L).

(2) If L is a compact, connected, distributive topological lattice and
if codim (L) < n then the center of L contains at most 2" — 2 elements.

1. NoTATION. The terminology and notation used in this paper is
the same as in [1] [2] and [3]. If L is a lattice, then the breadih of
L [4], hereafter denoted by Br(L), is the smallest integer n such that
any finite subset, F', of L has a subset F’ of at most n elements such
that inf (F') = inf (F").

If A is a subset of a lattice, let A A" denote the set of all elements
of the form x,A%.A +«-Ax, Where x; € A.

2. Br(L) £cd(L). The proof of the following lemma is quite
straight forward and will be omitted.

LEMMA 1. If L is a lattice then the following are equivalent:

(i) Br(L)=<mn

(il) If A is an n + 1 — element subset of L then A contains an

n-element subset B, such that inf (A) = inf (B).

(iii) If A is a subset of L and if m,p =n then N\ A™ = A A”.

If L is a topological lattice, then L is chain-wise conmnected if for
each pair of elements, % and ¥, in L with 2 < ¥ there is a closed connected
chain from « to y. Clearly a compact connected topological lattice is
chainwise connected.
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Problem. Is a locally compact (or locally connected), connected
topological lattice chain-wise connected?

THEOREM 1. If L is a distributive (chain-wise connected) topological
lattice then Br(L) < n if, and only if, L does not contain a sublattice
topologically isomorphic with a Cartesian product of n + 1 nondegen-
erate (closed and connected) chains.

Proof. If Br(L) £ n then L contains an n + 1 element subset, A4,
such that if B is any proper subset of A then inf (A) # inf (B). Let
Xy, *+++, L,e, e an enumeration of A. Let b,=inf (A\x,),t=1,2, ---,n+1
and let ¢ =inf(4). Then b, #a, 1=1,2,---,7n+1 and b, # b, if
1#7. Let C, 1=1,2,---,n+1 be a chain from a to b,. If L is
chain-wise connected we can choose C; closed and connected. Let
C=C,xC,x +-- xC,,; and define f: C— L by f(®, Xy +**, Tps1) =
T,V A,V -oe VZ,,,. Itisshown in [3] that f is a topological isomorphism,
hence the result follows.

If L contains a sublattice, L’, isomorphic with a product of »n + 1
nondegenerate chains then Br(L) £ n since Br(L) = Br(L') = n + 1.

COROLLARY 1. If L 1s a locally compact, chain-wise comnected,
distributive topological lattice then Br(L) < cd(L).

Proof. Suppose cd(L) <n and Br(L) £ n. Since L is locally com-
pact and connected it follows that L is also locally convex [1]. Since
L is locally convex, the chains C,, ---, C,,, chosen in the proof of
Theorem 1 can be taken to be compact [2], hence L contains a sublat-
tice topologically isomorphic with a Cartesian product of 7 4+ 1 nonde-
generate compact connected chains. It follows from a result of Cohen
[6] that the Cartesian product of n + 1 nondegenerate compact connected
chains has codimension » + 1. Thus it follows that ¢d(L) = % + 1 which
is a contradiction.

If X is a compact metric space, we denote by 2% the set of all
closed nonvoid subsets of X with the usual Hausdorff metric.

LEMMA 2. If L is a compact, conmnmected, metrizable topological
lattice and if f: 2" — L defined by f(A) = inf (A) s continuous then L
18 an absolute retract.

Proof. If L is a compact topological lattice and if A is a nonvoid
subset of L then inf (A4) exists, hence f(A) is defined. If we embed L
in 2% in the usual way and if f is continuous then L is a retract of 2~
Since L is compact, connected and metrizable, it follows that L is a
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Peano continuum [2]. Therefore 2" is an absolute retract [9] and so L
is also an absolute retract.

COROLLARY 2. (Dyer and Shields [7]) If L is a compact, metrizable,
distributive topological lattice and if cd(L) is finite then L is an abso-
lute retract.

Proof. 1If cd(L) =n then Br(L) <m and so A A" = A A" = ...
for all AcL. Let .o~ denote the set of Ae2” such that inf (4)e A.
It is known [5] that f: .o — L defined by f(A) = inf (A) is continuous.
Define g: 22— o7 by g(A) = A A" then clearly g is continuous and so
I: 28— L defined by F(A4) = f(g9(A)) = inf (A) is continuous. Thus it
follows from Lemma 2 that L is an absolute retract.

Problem. Is A — inf (A) continuous if L is not distributive and not
finite dimensional?

3. On the set <% (x). If L is a lattice and a e L, let _ (a) denote
the set of all subsets, M, of L that satisfy

(i) MAMcM

(ii) a¢ M

(ili) M is maximal with respect to (i) and (ii).

Let <% (a) denote the set of all complements of elements in _~7 (a).

LemMMA 3. If L 1is a lattice and a € L then N{B: Be 7 (a)} = {a}.

Proof. If ze N{B: Be & (a)} and if « # a then by the Hausdorff
Maximality Principle, there is a maximal A-closed set, M, containing x
but not containing a. But then M e _#(a) and so x¢ L\M e 7 (a).
It is clear that ae N{B: Be <7 (a)}, hence the result is established.

LEMMA 4. If L is a lattice and if ae L, Be <% (a) then av LCB
if, and only if, a = 1.

Proof. If avLcC B then avLc N {B: Be <% (a)} = {a} and so
a=1 1If a =1 then av L= {1} = B.

LEMMA 5. If L is a lattice and if acL,a + L, Be <% (a), M =
L\Be _# (a) then x€ B if, and only if, aex n M.

Proof. If aexa M and if « ¢ B then xe M and so acxaMC M
which is a contradiction. If xe B and x = a then, since a # 1, by
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Lemma 4 we have M N(av L)+ ¢ and hence acan M. If xe B and
if x + a and if a € x A M then, since

(@} U@ A M) A (@t U@ aM)c{z}Uea M),

we have {x}U(x A M)cM. This, however, is a contradiction since
rxeB=L\M.

LEmMMA 6. If L is a lattice and if acL, be Be <z (a) and if
¥y =a then yabe B.

Proof. 1If be Be B<7 (a), there is an x € M = L\B such that bax =
a. Now 2 A(bay) = (@ab)ay =arny = a and so, by Lemma 5, baye B.

LEmmA 7. If L is a lattice and tf ae L, be B, b+ a and
b¢ U{B: Be & (), B+ B} then

{yeL: yNb=a, y+a}cN{B: Be &7 (a), B+ B} N M,
where M, = L\B,. Moreover if y ANb=a and y #* a then
B,={xel: 2 ANy=ua}.

Proof. Let ye L such that y A b = a and let Be <7 (a) be distinet
from B,. Now if y ¢ B then %,b ¢ B and so y,be L\Be _#(a). But
¥ A b = a which is a contradiction and so ye N{B: Be <% (a), B # B,}.
Now y#a and y Ay =y, thus there is an Me _7(a) with ye M.
However ye N{B: Be % (a), B + B,} and therefore M = M,. Now if
YyANb=aand xe Bytheny AN xe N{B: Be B(a)} = {a} andsoy A ¢ = a.
Also if y Ab=a andy #+a then ye M, and so if y Ax =a then
x e B,.

LEmmA 8. If L is a distributive lattice and if Br(L) =mn then
sup {card (<7 (x)): xe L} = n.

Proof. Suppose that for some ae L, card (<7 (a)) =n + 1. Pick
n + 1 distinet members of <7 (a), say B, «--, B,.,. Since L is distri-
butive, we can pick, for each 1 =1,2,--.,n 4+ 1, an x,€ B, such that
x, € B; if © == j. Thus it follows that

inf {2;: ©=1,2,---n+1}eB,nB,n+++ n B,,,

but inf {x;: ©#j and 1 =1,2,.--, % + 1} ¢ B, and so Br(L) = n + 1.
Therefore card (B(x)) < n for all xe L.
Now Br(L) = n and so there is an m-element set, say A, such that
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inf (A) +# inf (A’) for all proper subsets A’ of A. Thus for each ac A
we can find @ Be <2 (inf (4)) such that a e B and A\{a}cCL\B and so
card (<7 (inf (4)) = n.

LEMmA 9. If L is a distributive topological lattice and if ae L
and if card (<7 (a)) s finite then each Be <7 (a) is a closed sublattice
of L.

Proof. Let B, B,, ---, B, be an enumeration of <7 (a). We will
show that B, is a closed sublattice of L. Since L is distributive, we
can pick be B, so that b ¢ B, if ¢ +#1. Thus there is a y€ Byn-++nB,
such that y #a and y A b =a. By Lemma 7, B, = {xeL: 2 Ay =a}
and so B, is closed. Since L is distributive, B, is clearly a sublattice
of L.

Problem. 1f L is a topological lattice and if ae L, and Be <7 (a)
is B closed?

THEOREM 2. If L is a compact, connected, distributive topological
lattice and if c¢d(L) <n and if ae€ L and Be <7 (a) then cd(B) <n—1.

Proof. We first prove the theorem for the case n > 1. By way of
a contradiction let us assume that cd(L) < n and cd(B) >n — 1. Then
for some closed set AC B we have H"(B, A) + 0. Since B is a closed sub-
lattice of L we have, letting b = sup (B), be B. To simplify our notation,
we let C={xeL: 2 ANb=a}, c=sup(C),D=cV L, E=CV A and
F=BuEuD. It follows that BnC = {a} and Bn(EuD) = A, and that
C, D, E, and F' are closed. We will now show that if p > 0, H*»(&U D)=0.
Define f: (FEUD) x C—EUD by f(x,y) =2V y. Clearly f is defined
and continuous. For each ye C define F,: FEUD—> EUD by Fy(x) =
f(z,y) then, since £ U D is compact and C is connected, it follows from
the Generalized Homotopy lemma that F* = FF,

Now F, retracts £ U D onto D and, since H*D) = 0, it follows that
F¥ =0. Also F, is the identity function and therefore H?”(E U D)=0.
Now consider the following Mayer-Victoris exact sequence [8]:

* 3 *

H(E U D) x H"(B) s mv304) 2 5vry 20 BB U D)< HY(B) .

Now H" %K UD)=H"'B)=HYEUD)=H"B)=0, and so 4* is an
isomphorphism onto. It therefore follows that H"(F) = 0 which con-
tradicts the fact that ed(L) <n and H"(L) = 0.

In the case n = 0, L is a single point and therefore the result is
trivial. If » =1 then L is a chain [1] and so B is at most a single
point which implies that e¢d(B) < 0,
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We recall (see e.g. [3] or [4]) that if L is a lattice with 0 and 1
then the center of L, denoted by Cen(L), is the set of all xe L other
then 0 and 1 such that for some yeL, *t Ay=0 and zVvVy=1. 1If
L is distributive and if xze Cen(L) then there is a unique element,
denoted by c¢(x), such that x A ¢(x) =0 and z V ¢(z) = 1.

COROLLARY. If L is a compact, connected, distributive topological
lattice and if cd(L) < n then card (Cen(L)) < 2" — 2,

Proof. We proceed by finite induction. If e¢d(L) <1 then L is a
chain and so card (Cen(L)) < 0. Suppose the theorem is true for all
n < k and suppose cd(L) < k. If aeCen(L), choose Me _~(0) such
that ae M so that B=L\M e <7(0). Thus if < (0) is empty then
Cen(L) is also empty and the result is established. If <7 (0) is not
empty, let Be < (0). It follows from lemma [9] that B is a closed
sublattice of L. Letting b = sup (B) we have that be B. We will now
show that if a e Cen(L) then either b Aa =0, b Aa =0, aeCen(B) or
ca)eCen(B). If a Ab+0,b and if a ¢ B and if c¢(a) ¢ B then
a,c(a)e L\B and so a A c¢(a) # 0 which is a contradiction. Therefore
ae B or ¢c(a)e B. Now if ae B then a A (¢(a) A b) =0 and

aV (@ Vvb)=1Vv@vb)=1Ab=b

and so a € Cen(B). Similarly if c¢(a)e B then c(a)e Cen(B). If a,c(a)e B
then a V ¢(a) = 1€ B which is a contradiction. If a Ab =0 then a ¢ B
and since b ¢ U {Ae <#(0): A+ B} we have, by Lemma 7, that B =
{xeL; 2 Aa=0}. Thus it follows that c(a)e B. Therefore 1 =
a V c¢(a) < a Vb which implies that ¢c(a) =b and a =¢(b). If a AD=0b
then c¢(a) Ab=0 and so c¢(a) = c¢(b) which implies that a =0. It
follows, therefore, that ecard (Cen(L)) < 2 card (Cen(B)) + 2. Now
cd(B) <k — 1 and so card (Cen(B)) < 2¥' — 2 and so

card (Cen(L)) < 2(2*' — 2) + 2 =28 — 2.
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