
ON THE BREADTH AND CO-DIMENSION
OF A TOPOLOGICAL LATTICE

LEE W. ANDERSON

Consider the following" two conjectures:

Conjecture 1. (E. Dyer and A. Shields [7]) If L is a compact, con-
nected, metrizible, distributive topological lattice then dim (L) = breadth
of L.

Conjecture 2. (A. D. Wallace [10]) If L is a compact, connected
topological lattice and if dim (L) = n then the center of L contains at
most 2* — 2 elements.

The purpose of this note is to prove the following results:
(1) If L is a locally compact distributive topological lattice and if

each pair of comparable points is contained in a closed connected chain
then the breadth of L <^ codim (L).

(2) If L is a compact, connected, distributive topological lattice and
if codim (L) ^ n then the center of L contains at most 2n — 2 elements.

1. NOTATION. The terminology and notation used in this paper is
the same as in [1] [2] and [3]. If L is a lattice, then the breadth of
L [4], hereafter denoted by Br(L), is the smallest integer n such that
any finite subset, F, of L has a subset Fr of at most n elements such
that inf(F) = mf(F').

If A is a subset of a lattice, let /\An denote the set of all elements
of the form X1AX2Λ ΆXn where xteA.

2. Br(L) ̂  cd(L). The proof of the following lemma is quite
straight forward and will be omitted.

LEMMA 1. If L is a lattice then the following are equivalent:
( i ) Br(L) ̂  n
(ii) If A is an n + 1 — element subset of L then A contains an
n-element subset B, such that inf (A) = inf (JS).
(iii) If A is a subset of L and if m, p ^n then Λ Am — Λ Ap.
If L is a topological lattice, then L is chain-wise connected if for

each pair of elements, x and y, in L with x ^ y there is a closed connected
chain from x to y. Clearly a compact connected topological lattice is
chain wise connected.

Received November 3, 1958.

327



328 LEE W. ANDERSON

Problem. Is a locally compact (or locally connected), connected
topological lattice chain-wise connected?

THEOREM 1. If L is a distributive (chain-wise connected) topological
lattice then Br(L) ^ n if, and only if, L does not contain a sublattice
topologically isomorphic with a Cartesian product ofn + 1 nondegen-
erate (closed and connected) chains.

Proof. If Br(L) £ n then L contains an n + 1 element subset, A,
such that if B is any proper subset of A then inf (A) Φ inf (B). Let
xlf •• ,xn+1 b e a n e n u m e r a t i o n of A . L e t 6 t = inf (A\xt), ί = l, 2, •• ,n-{-l
and let a = inf (A). Then b, Φ a, i = 1, 2, , n + 1 and bh φ b5 if
i Φ j . Let Ci9 i = 1, 2, , w + 1 be a chain from a to &«. If L is
chain-wise connected we can choose Ct closed and connected. Let
C —C1 x C2 x ••• x Cn+1 and define / : C-> L by f(x19x29

 # >#Λ+I) =
^ γ ^ 2 v v ΛJn+i It is shown in [3] that / is a topological isomorphism,
hence the result follows.

If L contains a sublattice, I/, isomorphic with a product of n + 1
nondegenerate chains then J5r(L) % n since Br(L) ;> Br(Lr) ^ n + 1.

COROLLARY 1. If L is a locally compact, chain-wise connected,
distributive topological lattice then Br(L) <̂  cd(L).

Proof. Suppose cc£(L) <Ξ w and Br(L) ^ n. Since L is locally com-
pact and connected it follows that L is also locally convex [1]. Since
L is locally convex, the chains Clf ,Cn+1 chosen in the proof of
Theorem 1 can be taken to be compact [2], hence L contains a sublat-
tice topologically isomorphic with a Cartesian product of n + 1 nonde-
generate compact connected chains. It follows from a result of Cohen
[6] that the Cartesian product of n + 1 nondegenerate compact connected
chains has codimension n + 1. Thus it follows that cd(L) ^ n + 1 which
is a contradiction.

If X is a compact metric space, we denote by 2X the set of all
closed nonvoid subsets of X with the usual Hausdorff metric.

LEMMA 2. If L is a compact, connected, metrizable topological
lattice and if f: 2L -> L defined by f(A) = inf (A) is continuous then L
is an absolute retract.

Proof. If L is a compact topological lattice and if A is a nonvoid
subset of L then inf (A) exists, hence f(A) is defined. If we embed L
in 2L in the usual way and if / is continuous then L is a retract of 2L.
Since L is compact, connected and metrizable, it follows that L is a
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Peano continuum [2]. Therefore 2L is an absolute retract [9] and so L
is also an absolute retract.

COROLLARY 2. (Dyer and Shields [7]) If L is a compact, metrizable,
distributive topological lattice and if cd(L) is finite then L is an abso-
lute retract.

Proof. If cd(L) = n then Br(L) ^ n and so Λ An = Λ An+1 =
for all AdL. Let s^ denote the set of Ae2L such that inf (A)eA.
It is known [5] that / : S/ -> L defined by f(A) — inf (A) is continuous.
Define g: 2L -> Ss? by g(A) — A An then clearly g is continuous and so
F: 2L -> L defined by F(A) = /(flf(A)) = inf (A) is continuous. Thus it
follows from Lemma 2 that L is an absolute retract.

Problem. Is A -* inf (A) continuous if L is not distributive and not
finite dimensional?

3 0% £/&e seί ^ (x). If L is a lattice and αeL, let Λίί(a) denote
the set of all subsets, M, of L that satisfy

( i) I Λ I C I

(ii) α $ M
(iii) M is maximal with respect to (i) and (ii).
Let & (a) denote the set of all complements of elements in ^f/{a).

LEMMA 3. If L is a lattice and aeL then Π {B: Be & (α)} = {a}.

Proof. If x 6 (Ί {B: Be & (a)} and if x Φ a then by the Hausdorff
Maximality Principle, there is a maximal Λ-closed set, M, containing x
but not containing a. But then Me ^f/(a) and so xφL\Me &(a).
It is clear that αe [}{B: Be & (a)}, hence the result is established.

LEMMA 4. If L is a lattice and if aeL, Be &9 (a) then a v LaB
if, and only if, a = 1.

Proof. If avLczB then α v L c Π [B: BeέfJ(a)} = {α} and so
a = 1. If α = 1 then a v L = {1} = ΰ.

LEMMA 5. If L is a lattice and if aeL, a Φ L, Be & (a), M =
I\Be^//(a) then xeB if, and only if, aex^M.

Proof. If aex AM and if x $ B then x e M and so a e x A Ma M
w h i c h is a c o n t r a d i c t i o n . I f xeB a n d x = a t h e n , s i n c e a Φ 1, b y
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Lemma 4 we have M 0 (av L) Φ φ and hence aea i\M. If xe B and

if x Φ a and if a $ x A M then, since

({x} U (x A M)) A {{x} U (x A M))cz {x} U ( X Λ I ) ,

we have [x] U (x A M)aM. This, however, is a contradiction since
x e B = L\M.

LEMMA 6. If L is a lattice and if ae L, be Be &(α) and if
y ^ a then y Abe B.

Proof. If be Be B&(α), there isan xe M = L\B such that b AX ̂
a. Now x A{b Ay) — {x Ab) Ay — a Ay — a and so, by Lemma 5, bAyeB.

LEMMA 7. If L is a lattice and if ae L, be Bo, b Φ a and
6 0 U {B: Be &(a), B Φ Bo} then

{yeL: y A b = α, y Φa}an{B: Be^(a), BΦ B0}ΠM0

where Mo = L\B0. Moreover if y Ab = a and y Φ a then

Bo = {x e L: x A y = a} .

Proof. Let yeL such t h a t y A b = α and let Be ^(a) be distinct

from i?0. Now iί y $ B then y,b $ B and so y,be L\Be ^ ( α ) . But

y Ab — a which is a contradiction and so j/e Π {B: JBe « ^ ( α ) , B ^ JB0}.

Now 2/ ̂  α and y Ay — y, thus there is an M e ^£{a) with yeM.

However τ/e Π {B: 5 e ^ ( α ) , B Φ Bo} and therefore M = Mo. Now if

y Ab = a and as e 5 0 then y Axe Π {B: B e B(a)} = {a} and so y A x = a
Also if y A b = a and y Φ a then 7/ e M"o, and so if y A x = a then

LEMMA 8. If L is a distributive lattice and if Br(L) = % then
sup {card (^(x)): cc e L] — n.

Proof. Suppose that for some αeL, card (^(α)) ^ ^ + 1. Pick
n + 1 distinct members of & (a), say B19 •••, J5n+1. Since L is distri-
butive, we can pick, for each i = 1, 2, , n + 1, an x,te Bι such that
xt $ Bt \ί i Φ j . Thus it follows that

inf {α?t: i = l,2, w + l } e δ 1 n β , n n Bw+1

but inf fa: i Φ j and i = 1, 2, , n + 1} 0 2?, and so 5r(L) ^ w- + 1.
Therefore card (B(x)) <^n for all xeL.

Now jBr(L) = w and so there is an n-element set, say A, such that
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inf (A) Φ inf (A') for all proper subsets A' of A. Thus for each ae A
we can find a Be & (inf (A)) such that aeB and A\{a}dL\B and so
card ( ^ (inf (A)) ^ w.

LEMMA 9. If L is a distributive topological lattice and if aeL
and if c a r d ( ^ ( α ) ) is finite then each Be &(a) is a closed sublattice
of L.

Proof. Let BuB2,---,Bn be an enumeration of έ£?'(a). We will
show that Bλ is a closed sublattice of L. Since L is distributive, we
can pick beBx so that b φ B% if i Φ 1. Thus there is a τ/e J52n nJBw

such that y φ a and y A b — a. By Lemma 7, β 2 = {a; e L: cc Λ y — a)
and so Bλ is closed. Since L is distributive, Bλ is clearly a sublattice
of L.

Problem. If L is a topological lattice and if aeL, and Be &(a)
is i? closed?

THEOREM 2. If L is a compact, connected, distributive topological
lattice and if cd(L) fg n and if ae L and Be &(a) then cd(B) ^n—1.

Proof. We first prove the theorem for the case n > 1. By way of
a contradiction let us assume that cd(L) fg n and cd(B) > n — 1. Then
for some closed set AdB we have Hn(B, A) Φ 0. Since B is a closed sub-
lattice of L we have, letting b — sup (B), be B. To simplify our notation,
we let C = {cc e L: x Λ & = a}, c = sup (C), D = c\/L, E=C\/A and
F = BuEuD. It follows that ΰ n C = {α} and Bn(EuD) = A, and that
C, A £7, and Fare closed. We will now show that if p > 0, i ϊ^EΊj J5) = 0.
Define / : (E [j D) x C-> E [j D by f(x, y) = χ\J y. Clearly / is defined
and continuous. For each yeC define Fy: E U D -> E U D by Fy(x) —
f(x, y) then, since E (J -D is compact and C is connected, it follows from
the Generalized Homotopy lemma that Ft — Ff.

Now Fc retracts E U D onto D and, since Hn(D) = 0, it follows that
Ff = 0. Also Fa is the identity function and therefore HP(E \JD) = Q.
Now consider the following Mayer-Victoris exact sequence [8]:

I * //* J *
Hn~\E U ΰ ) x Hn~\B) > Hn~\A) > Hn(F) > Hn(E UD)x Hn(B) .

Now Hn~\E Ufl) = Hn~\B) = Hn(E Uΰ) = Hn(B) = 0, and so zί* is an
isomphorphism onto. It therefore follows that Hn(F) φ 0 which con-
tradicts the fact that cd(L) ^ n and Hn(L) = 0.

In the case n — 0, L is a single point and therefore the result is
trivial. If n = 1 then L is a chain [1] and so 5 is at most a single
point which implies that cd(B) ^ 0,
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We recall (see e.g. [3] or [4]) that if L is a lattice with 0 and 1
then the center of L, denoted by Cen(L), is the set of all xeL other
then 0 and 1 such that for some yeL, x Ay — ΰ and x V V = 1. If
L is distributive and if x e Cen(L) then there is a unique element,
denoted by c(x), such that x A c(x) — 0 and x V c(x) = 1.

COROLLARY. If L is a compact, connected, distributive topological
lattice and if cd(L) ^ n then card (Cen(L)) <L 2n — 2.

Proof. We proceed by finite induction. If cd(L) g 1 then L is a
chain and so card (Cen(L)) <g 0. Suppose the theorem is true for all
n < k and suppose cd(L) ^k. If αeCen(L), choose Me ̂ ^(0) such
t h a t α e M s o that B = L \ I e ^ ( 0 ) . Thus if ^ ( 0 ) is empty then
Cen(L) is also empty and the result is established. If ,^(0) is not
empty, let B e , ^ ( 0 ) . It follows from lemma [9] that B is a closed
sublattice of L. Letting b — sup (5) we have that be B. We will now
show that if a e Cen(L) then either b A a'~ 0, b A a — b, a 6 Cen(B) or
c(a)eGen(B). If a A b Φ 0, b and if a ψ B and if c{a) $ B then
α, c(a)e L\B and so α Λ c(α) ^ 0 which is a contradiction. Therefore
ae B oτ c(a) e B. Now if ae B then α Λ (c(a) A b) — 0 and

α V (c(α) V ί>) = 1 V (ft V &) = 1 Λ ί) = 6

and so α e Cen(B). Similarly if c(a) e B then c(a) e Cen(B). If α, c(a) e B
then α V c(a) — 1 6 B which is a contradiction. If a A b ~ 0 then a $ B
and since 6 0 u {Ae^(O): 4 ^ 5 } we have, by Lemma 7, that B —
{xe L; x A a = 0}. Thus it follows that c(a) e B. Therefore 1 =
a V c(a) g a V b which implies that c(α) = b and α = c(b). If a A b — b
then c(α) Λ i = 0 and so c(a) — c(b) which implies that a — b. It
follows, therefore, that card (Cen(L)) ^ 2 card (Cen(J5)) + 2. Now
cd(B) Sk - 1 and so card(Cen(5)) ^ 2k~ι - 2 and so

card (Cen(L)) ^ 2(2*-1 - 2) + 2 = 2fc - 2 .
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