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1. Preliminaries. For n = 0, ± 1, ± 2, , let {cn} be real numbers
satisfying

( 1 ) c0 = 0, c_w = cn and Σ <£ < °° ,
1

and consider the associated real-valued, even function f(θ) of period 2
and of class U [0, π] defined by

( 2 ) f(θ) ~ Σ cne
tnS = 2 Σ c , cos nθ .

11

(Throughout this paper it will be assumed for the sake of convenience
that c0 — 0. If c0 Φ 0, T (see below) is modified merely by the addition
of a multiple of the unit matrix.) Let A — (a _,), where au — c4-Λ = Cj_<)
or atj — 0 according as i < j or i > j(i, jΓ = 1, 2, --•), and define the
Toeplitz matrix T and the Hankel matrices H and K by

( 3 ) T = (c,_; ) = A + A*, if = (ci+j^) and # = (ct+J) .

The matrices Γ, J3" and if are real and Hermitian (symmetric).
Let J denote the matrix belonging to the quadratic form 2 Σ Γ t t + i

The differential of its spectral matrix is given by dptj(θ) = 2π~λ sin iθ
sin î cZό' (cf. Hubert [5], p. 155, Hellinger [8], pp. 148 ff.). A direct
calculation (cf. [11], Appendix 2) shows that

( 4 ) T = F+K,

where T and K are defined by (3), and F is given by

( 5 ) F=

with f(θ) defined by (2) and (1). In particular, if cx = 1 and cn — 0
for n > 1, then f(θ) — 2 cos θ and (5) is the spectral resolution of J
(with the usual parameter λ being given by λ = 2 cos θ).

It should be noted that the L2 assumption on the sequence {cn}
in (1) does not imply the boundedness of the various matrices considered
above, although of course, the existence, in the mean, of the integrals
in (5) is assured. Moreover, all two factor products of the type A2,
AA*, etc. surely exist and it can be verified that
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(6) AT-TA = H2,

where A, T and H are defined by (3); cf. [11], p. 517.
It is known (Toeplitz) that T is bounded if and only if f(θ) is

essentially bounded, so that \f(θ)\ < const, almost everywhere on [0, π];
[3], p. 360. Moreover, if M and m denote the essential upper and lower
bounds of /, then the spectrum of T consists of the interval [m, M] and,
unless all cn = 0, is purely continuous (so that the point spectrum is
empty); [3] and [4]. Furthermore, if T is not bounded, but is still self-
adjoint, then the spectrum of T is again purely continuous and is again
the (unbounded) interval [m, M]; [4], p. 878. (Actually the results of
Hartman and Wintner mentioned above are not restricted to the case of
real sequences {cn} as in the present paper.) For necessary and suf-
ficient conditions in order that a Hankel matrix be bounded, see [9].

The matrix A is bounded if and only if g(θ) ̂  ΣΓ cne
inθ is essentially

bounded (Toeplitz; cf. [4], p. 880, [11], p. 517). Clearly, if A is bounded,
so also is T. In addition, if T is bounded, then f(θ) of (2) is bounded
and consequently K is bounded (Toeplitz; cf. [2], p. 223, also [3], p. 365).
In view of the easily verified relation

( 7 )

H is bounded (or completely continuous) if and only if K is bounded (or
completely continuous). It is seen that if A is bounded then all of the
other matrices considered above are bounded.

In § 2 there will be pointed out a few consequences of the relations
(4) and (5) bearing on the nature of Fourier series and the spectra of
Toeplitz matrices belonging to real valued, even functions defined by (2).
In §§ 3 and 4, sufficient conditions guaranteeing that a Toeplitz matrix be
absolutely continuous or unitarily equivalent to a certain function of J,
will be obtained. Some applications to Hubert matrices will be given in
§5.

Condition (1) on the real sequence {cn} will be assumed throughout
the paper.

2. Toeplitz matrices and Fourier series. First there will be proved :

(I) If the Hankel matrix K is bounded, then necessarily T is self-
adjoint.

This is an obvious consequence of (4) if it is noted that F of (5) is
always self-ad joint. Incidentally, it is seen that in this case the domain
of T is identical with that of F.

By the essential range of f(θ) will be meant the (closed) set of
values λ for which \f(θ) — λ| < ε holds on a set of positive measure
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on [0, π] for every ε > 0. Then one has:

(II) If K is bounded and satisfies \\K\\ < C ( = const.), then any
closed interval of length 2 C contained in [m, M] contains at least one
point of the essential range of f(θ).

This assertion also follows from (4). For, it is clear that the spectrum
of F is exactly the essential range of f(θ) (the situation being analogous
to the problem of Toeplitz of determining the spectrum of a Laurent
matrix; cf. [3], pp. 359-360 and the references cited there). Con-
sequently, since relation (4) shows that F is obtained as a perturbation
of T by the operator — iΓ, the assertion now follows from the fact that
the spectrum of T is the entire interval [m, M\.

A theorem similar to (II) is

(III) // K is completely continuous then the essential range of f(θ)
is [m, M].

The proof follows from the observation that, by (the generalization
of) WeyΓs theorem, the essential (cluster) spectra of T and F are
identical. Since, by (I), T is self-adjoint, its spectrum is [m, M] ([4])
and it follows that the essential spectrum of F is also [m, Λf]. But the
spectrum of Fis always contained in [m, M] and hence must be identical
with this interval. This implies (III).

A curious corollary of (III) is the following assertion:

(IV) // g{θ) ̂  X, Γ cn sin nθ is continuous on — αo < θ < oo then
the essential range of h(θ) ̂  ]£ j° cn cos nθ is an interval (possibly un-
bounded).

The assertion follows from (III) if it is noted that the continuity of
g(θ) implies the complete continuity of the operator K. Cf. [3], p. 365.
It is stated there that H = (ci+j-^) is completely continuous if either g(θ)
or the function ί / ^ ^ Σ Γ c ^ cosn# is continuous on [0, π\. The proof
seems to indicate however that K = (ci+j) (or H) is completely continuous
if either g{θ) or f(θ) is continuous on [— π, π\ (and hence on — oo < θ < oo).
See [2], p. 223. The continuity of g(θ) on [0, π] implies its continuity
on [— π, π] but the corresponding assertion for f(θ) is false.

Another easy consequence of (4) is the following:

(V) If ϊ\ and T2 are two bounded Toeplitz matrices with the
representations

(4J Tm = Fm + Km

where
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(5J Fm = (^yn(θ)dptJ(θή and fjθ) ~2±cmn cosnθ ,

and if Kx and K2 are completely continuous, then

where C is completely continuous.
A relation similar to (8) holds of course for products with more than

two factors. The proof of (V) follows easily if it is noted that the
product of a bounded operator and a completely continuous operator is
completely continuous. In particular, it is seen from (8) that the es-
sential spectrum of TXT2 is the essential range of f^θ) f2(θ). The situa-
tion is to be compared with that for Laurent matrices; cf. the remark
following (II) above.

3. Absolute continuity• It follows from Theorem 13 of [11], p. 523,

that if A is bounded, then (6) implies that T is absolutely continuous

whenever 0 is not in the point spectrum of H. That is, this last con-

dition is sufficient in order to guarantee that I dE(X) = 0, where

( 9 ) T = f XdE(X)

is the spectral resolution of T and Z is any set of one-dimensional
Lebesgue measure zero. However it is possible that T is absolutely
continuous even if 0 does belong to the point spectrum of H. In fact
each TN, belonging to the sequence {cn} with cn — cN φ 0 (N > 0) if
n — ± N and cn = 0 otherwise, is absolutely continuous; cf. [11], pp.
519, 524. This result will be generalized in the following theorem:

(VI) Let the real sequence {cn}, n = 0, ± 1, ± 2, satisfy (1)

define the associated matrices A, T and F as in § 1, and suppose that

A is bounded. Then T is absolutely continuous whenever F is absolutely

continuous.
As remarked above, the boundedness of A implies that of all other

operators considered. It follows from the argument of [10] (cf. p. 1027,
formula line (4)) when applied to (6) that

(10) H[dE(X) = 0 ,

where Z denotes any set of one-dimensional Lebesgue measure zero and
H is defined by (3). (The square root H1'2 appearing in [10] loc. cit. can
clearly be taken to be any self-ad joint square root of the non-negative
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self-ad joint operator H. The H appearing there corresponds to a positive
multiple of the operator H2 of the present paper.) Next let y be any

element in the range of I dE(λ) so that

(11) y

Since, by (10), Hy = 0, it follows from (7) that Ky = 0. Consequently,

by (4), Ty = Fy. For n = 0, 1, 2, ., Tny = ί dE(X)Tnx is also in the

range of dE(X), and it follows that Tn+1y == . F Γ ^ . Hence

(12) Γwi/ - Fny (n = 0, 1, 2, . T° - F° - /) ,

where 2/ is defined by (11). But (12) implies E{\)y = F(λ)y, where

(13) F = ί λdi^λ)

is the spectral resolution of ί7, and hence \ dE(X)y — I dF(X)y. But,

whenever F is absolutely continuous, I dF(X) = 0 and so, by (11),

I dE(X)x — 0 for all #. That is, T is absolutely continuous and the
}z
proof of (VI) is now complete.

4. Unitary equivalence* It was shown in [11] that each TN (see
the beginning of § 3 above) is absolutely continuous and that moreover
TN is unitarily equivalent to the corresponding F = FN. This result will
be considerably refined in the following theorem:

(VII) Let the real sequence {cn} satisfy (1) and the condition

(14) \cn\ < const. an ( w = 1 , 2 , •••)

for some constant α, 0 < a < 1. Then the associated matrices T and
F are unitarily equivalent thus, there exists a unitary matrix U such
that

(15) T = UFU* .

The condition (14) easily assures Y\cn\ < 00 and hence the bounded-
ness of A and therefore (cf. § 1 above) that of all other operators con-
sidered. If all cn — 0, then T and F are both the zero operator (matrix)
and (15) is trivial. Suppose then that not all cn are 0. It will first be
shown that F is absolutely continuous.

To this end, consider f(z) — 2^Tcn cosw£ for the complex variable
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z = x + ίy. It is clear that \cosnz\ = i\eίnz + e~ίnz\ < i(env + e~nv) <
enlyl and hence, by (14), \cncosnz\ < const. (aehJ])n. Since 0 < a < 1, it
follows that aely] < 1 for 7/ sufficiently small and so f(z) φ. 0 and is
analytic in a strip containing the real axis. Consequently df(θ)ldθ can
be zero at most a finite number of times on 0 < θ < π and it follows
that the (possibly many-valued) inverse function of f(θ) on [0, π\ is
absolutely continuous (more precisely, that each of the finite number of
branches of the inverse of f(θ) on 0 < θ < π is absolutely continuous).
Moreover, if λ = 2 cos θ, the operator F can be represented (cf. (5)) as

5 2

h(X)dEι{\) where Eλ{\) is the resolution of the identity belong-
ing to the matrix /. Since h(X) = f(θ) via the substitution λ = 2 cos θ
it is clear that h{\) has a (possibly many-valued) absolutely continuous
inverse and it follows (cf. [11], pp. 521-522) that F is absolutely con-
tinuous, as was to be shown. In fact, if one considers the spectral
resolution of F as given by (13), it is seen from a comparison with (5)
that zero sets on the λ-interval — 2 < λ < 2 correspond to zero on the
^-interval 0 < θ < π via the mapping λ = 2 cos θ and that F is absolutely
continuous if and only if the relation

(16) {#;/(#) in Z} is a zero set

holds whenever Z is a zero set.
By (VI) it now follows that T also is absolutely continuous. More-

over, since by (14),

Σ Σ c?+j = Σ w ^ + i < °° i
i j n

K is completely continuous. In order to complete the proof it will be shown

that

(17) tr\K\< oo ,

where \K\ denotes the non-negative square root of K2. An application
of a theorem of Rosenblum ([12], p. 998, will then yield the desired
unitary equivalence relation (15). See also Kato [6].

There remains then to prove (17). Let {φn}, n — 1,2, •••, denote
the complete orthonormal sequence of vectors for which the w-th com-
ponent of φn is 1 and all others are 0. Then

tr\κ\ - Σ(\κ\φn, φn) < Σll \κ\φn -

+J1/2 < Σ Σ K + J < Σ

the last inequality by (14). Thus (17) is proved and, as remarked earlier,
the proof of (VII) is complete.
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The proof of (VII) makes clear the following assertion:

(VIII) Let the real sequence {cn} satisfy (1) and suppose that (16)
holds for every zero set Z. In addition, suppose that

(18) Σ*n\cn+1\ < O3 , or even Σ ( Σ < £ + J 1 / a < «> .
n n vι

Then (15) holds.
It is clear that (18) implies Σ k J < co and hence that A is bounded

(cf. §1 above). In addition (18) implies Σ^ c w+i< °° &nd hence the
complete continuity of K; as shown before, (18) implies (17). Moreover,
unless T and F are both 0, it follows from (16) that F (hence, by (VI),
also T) is absolutely continuous. Relation (15) now follows from Rosen-
blum's theorem as before.

It was shown in [4], p. 878, that whenever T is self-ad joint (not
even necessarily bounded) it has no point spectrum. On the other hand,
F has a point spectrum whenever f(θ) has an interval of constancy, or
more generally, whenever f(θ) = const, holds on a set of positive measure.
This situation can of course easily obtain for non-trivial f(θ) (f(θ) ^ const.,
i.e., since c0 = 0, f(θ) Ξ£ 0) possessing derivatives of arbitrarily high
order (but, of course, for which f(z) is not analytic). But if f(θ) is of
class Cp, its Fourier coefficients are O(n~p~2) and so it is clear that the
hypothesis (14) of (VII) guaranteeing unitary equivalence cannot be
weakened to, say, \cn\ < const. n~m (n — 1, 2, •) for any positive con-
stant m. Of course, as (VIII) implies, relation (14) is not necessary for
(15).

5. Hilbert matrices, A case of special interest is afforded by the
sequence {cn} defined by cQ = 0, cn = n~λ if n > 0 and c_w = cn. This
sequence is of the type considered at the beginning of this paper and
moreover T = (\i - j \ - 1), H = ((i + j - I)"1) and S = A - A* - ((i - j)"1),
with the understanding of course that the (i, i) elements of T and S
are 0. The matrices S and H are known to be bounded (Hubert; cf.,
e.g., [2], pp. 212-213, 223). Moreover, the spectrum of H is exactly
the interval [0, π] and, in fact, is purely continuous ([6]). The matrix
T is known to be unbounded ([2]), p. 214). Concerning T, there will
be proved the following theorem:

(IX) The matrix T — (\i — j\~λ) is a self-adjoint operator and is

absolutely continuous thus if T —\ XdE(X) is the spectral resolution of

measureT, then \ dE(\) = 0 for every set Z of one-dimensional Lebesgue

zero.
That Z is self-ad joint follows from an application of a theorem of
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Hartman and Wintner [4], p. 878, if it is noted that if(θ) = - log(2jsin £θ\)
^'^"n~1cosnθ on (— π, π) is half-bounded. Another proof of the as-
sertion follows from (I) if it is noted that H, hence also K (cf. (7)), is
bounded, since the odd function g{θ) defined by g(θ) ~ i(π — θ)
^ Σ Γ w ^ s i n w# on (0, π) is bounded.

It is easy to verify that

(19) ST - TS = 2H2 ,

a relation similar to (6). Moreover, since 0 is not in the point spectrum
of H (cf., e.g. [7], p. 699 and the reference there to [1]), Theorem 13
of [11] implies, at least formally, the absolute continuity of T. The
trouble stems from the fact that boundedness restrictions were imposed
in [10] and [11] and that, although S and H in (19) are bounded, T is
not. As a consequence, equation (19), although a valid matrix equation,
conceivably cannot be regarded as an operator equation in Hubert space.
More precisely, it is not clear that whenever x is in the domain of T,
Dτ, then (19) holds, so that

(20) STx - TSx = 2H2x ,

with the understanding that STx and TSx of (20) should mean S(Tx)
and T(Sx) respectively. (For operator equations the associative law is
of course essentially a matter of definition.) It will be shown below
that in fact (20) does hold as an operator equation valid at least for all
x in Dτ. Once this has been established, it is easy to carry out the
same reasoning as in [10], cf. pp. 1027-1028 (where the boundedness of
all operators was supposed) and to obtain the equation (10) above, cor-
responding to formula line (4) in [10]. The absolute continuity of T
then follows (cf. Theorem 13 of [11]) from the fact that 0 is not in the
point spectrum of H.

In order to complete the proof there remains to be shown that if
x is in Dτ then (20) holds. To this end, it will be shown that if x is
in Hubert space, that is if \\x\\ < co, then each of the series

-i J_j timSmnXn

m n

is absolutely convergent for ί = 1, 2, , where, for convenience, T =
(tij) and S — (su). Grant, for the moment, that this has been shown.
Then, from the absolute convergence of the first series of (21), it follows
that in the iterated series the orders of summation may be interchanged,
and hence that, for x in Hubert space, the corresponding components of
the vectors (ST)x and S(Tx) are identical. Now, if it is assumed in
addition that x is in DTy then the vector S(Tx) is in Hubert space, since
S is bounded. Consequently (ST)x is in Hubert space and, since H2 is
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bounded, it follows from the (matrix) equation (19) that (TS)x is in
Hubert space. The absolute convergence of the second series of (21)
then implies that (TS)x = T(Sx), so that T(Sx) is in Hubert space (that
is, essentially, that Sx is in Dτ). Moreover, it is now seen that (19)
implies the validity of (20) as an operator equation valid at least for all
vectors in Dτ.

Thus, in order to complete the proof of (IV) there now remains to
be shown that the series of (21) are absolutely convergent whenever
110511 < oo. Consider the series S t = Σm Σin\sίmtmnxn\. Since ttJ > 0 for
all i, j and su > 0 or su < 0 according as i > j or i < j , it is clear that

(22) S, = - Σ ^ Σ ^ A . k j ) + Έ^^SiJ^lXnl) .

But the inside series of the first double series on the right of equation
(22) is finite and, consequently, the orders of summation may be inter-
changed to obtain — Σm-iS i m(Σ«-i^mnl^Λl). Since x and the rows of
T are in Hubert space, the inside summation of this last series is al-
ways convergent by the Schwarz inequality. Hence the first series of
(21) is absolutely convergent if and only if the series

(23) j

obtained through modification of Si in (22) by changing the sign of the
first series, is convergent. Now the inside summation of (23) is the
(if n) element of ST = D ~ (din). Since S is bounded and the columns
of T are in Hubert space, the columns of D are in Hubert space, that
is Σ« din < °°. But the matrix equation (19) can be written as D + D* =
2if2; hence, since H2 is bounded, the columns of D* and therefore the
rows of D, are also in Hubert space. Hence Σra^L < oo and so (23) is
convergent by the Schwarz inequality. It has now been proved that the
first series of (21) is absolutely convergent (for i = 1, 2, •). Using the
fact that \su\ = ttJ it is seen that the absolute convergence of the first
series of (21), that is, the convergence of Σ m Σ w U m J ^ L whenever
II#11 < °°, implies the absolute convergence of the second series of (21).
Thus both series are convergent for all x in Hubert space and (IX)
follows as indicated above.
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