
ON THE IMBEDDABILITY OF THE REAL PROJECTIVE
SPACES IN EUCLIDEAN SPACE1
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1* Introduction. Let Pn denote ^-dimensional real projective space.
This paper is concerned with the following question: What is the lowest
dimensional Euclidean space in which Pn can be imbedded topologically
or differentiably ? Among previous results along this line, we may
mention the following;

(a) If n is even, then Pn is a non-orientable manifold, and hence
cannot be imbedded topologically in (n + l)-dimensional Euclidean space,
Rn+1.

(b) For any integer n > 1, Pn cannot be imbedded topologically in
Rn+\ because its mod 2 cohomology algebra, H*(Pn, Z2), does not satisfy
a certain condition given by R. Thorn (see [6], Theorem V, 15).

(c) If 2IC~1 ̂  n < 2fc then Pn cannot be imbedded topologically in
Euclidean space of dimension 2k — 1. This result follows from knowledge
of the Stiefel-Whitney classes of Pn (see Thorn, loc. cit., Theorem III.
16 and E. Stiefel, [5]; also [4]).

In the present paper, we prove the following result: If m = 2fc, k > 0,
then P3 w_! cannot be imbedded differentiably in Rim. For example P5

cannot be imbedded differentiably in Rs, nor can Pn be imbedded in RιG.
Of course if n > m, Pn cannot, a fortiori, be imbedded differentiably
in R4m. Thus for many values of n our theorem is an improvement over
previous results on this subject.1

The proof of this theorem depends on certain general results on
the cohomology mod 2 of sphere bundles. These general results are
formulated in § 2, and in § 3 the proof of the theorem is given. Finally
in § 4 some open problems are discussed.

The author acknowledges with gratitude that he has benefited from
several stimulating conversations with F. P. Peterson on this topic.

2* Steenrod squares in a sphere bundle with vanishing charac-
teristic* Let p : E -• B be a locally trivial fibre space (in the sense of
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partially supported by a grant from the National Science Foundation. An abstract an-
nouncing the main result of this paper was submitted to the American Mathematical Society
in December, 1958; see the Notices of the American Mathematical Society, 6 (1959), 61.

1 This result partially solves a problem proposed by S. S. Chern (see Ann. Math., 6O
(1954), p. 222). It follows that Pn cannot be imbedded in Rn+2 for n > 3 except possibly
in case n = 2k - 1, k > 2. The case n — 2k - 1 is still open. The importance of this prob-
lem, and some of its implications, were emphasized by H. Hopf in his address at the
International Congress of Mathematicians held in Cambridge, Massachusetts in 1950. This
address is published in volume I of the Proceedings of the Congress (see pp. 193-202),
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[6]) with fibre a sphere of dimension k — 1. We will use the following
notation (due to Thom) for the Gysin sequence with the integers mod 2,
Z2y as coefficients:

> Hq-*(B) -^-> Hq(B) -?-+ H\E) -^U Hq-k+1{B) > . . .

Recall that the homomorphism μ is multiplication by the mod 2 charac-
teristic class: μ(x) = x wk for any x e Hq~k(B). In case wk = 0, then
μ — 0, and the Gysin sequence splits up into pieces of length three as
follows:

0 > Hq(B)^> H%E)-^-* Hq'k+1(B) >

Moreover, if we choose an element a e Hkl(E) such that ψ(a) — 1 e H°(B),
then any element x e Hq(E) may be expressed uniquely in the form

( 1 ) x - p*(u) + a . p*(v)

where u e Hq(B) and v e Hq~k+1(B) (the proof is the same as that given
in § 8 of [3] except that here we are using Z2 for coefficients). It is
clear from this formula that the Steenrod squares and cup products in
H*(E) are completely determined provided we know the Steenrod squares
and products in H*(B), and provided we can express Sq^a) for 1 5g i ^
k — 1 in the form (1), i.e., provided the cohomology classes a.te Hk~1+i(B)
and βί e Hι(B) in the expression

( 2 ) Sqι(a) = p^a,) + a . p*(ft)

are known for 1 <Ξ i 5g fc — 1. Of course the classes a and a} are not
uniquely determined. If a' is any other element of Hk~\E) such that
ψ(a') = 1, then by exactness of the Gysin sequence there exists an uni-
que element 6 e Hk~\B) such that

a' = a + p*(6) .

Corresponding to formula (2) there is an analogous formula

( 2') Sqι(af) - p*(α;) + a' p ^ ^ ) .

An easy computation shows that

= at + bβ, + Sq%b) ,

Thus ft is unique; it is an invariant of the given fibre space. However,
only the coset of a-h modulo the subgroup \βLb + Sqιb: b e Hk~\B)} is
unique. This coset is also an invariant of the given fibre space.
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LEMMA. βi = wu the ith Stiefel-Whitney class mod 2 of the fibre
space.

This lemma is due essentially to Liao, [2]. See also an analogous
proof in Massey, [3], § 9.

Thus βt is identified with a standard invariant of sphere spaces.
On the other hand, the coset of ah does not seem to be related to any
standard invariants. It may be thought of as a sort of "secondary
characteristic class", defined for all sphere spaces for which the mod 2
characteristic class wk vanishes.

In view of this lemma we may write the above equations in the
following form:

( 4 ) Sq\a) = p*(α4) + a p*{w%)

( 5 ) αj = α, + bwt + Sq\b) , b e H*-\B) .

3 Application to the problem of imbedding manifolds in Eucli*
dean space. Our method of applying the results of the preceding section
to prove that certain manifolds cannot be imbedded differentiably in
r-dimensional Euclidean space is essentially the same as that used in
our earlier paper [3]. To save the reader the trouble of referring to
this earlier paper, we give a brief summary of the essential points of
this method.

Let Mn be a compact connected differentiate manifold which is
imbedded differentiably in an (n + ά)-sphere, Sn+Ic. We assume that
gn+ic k a s k e e n g i v e n a Riemannian metric. Choose a positive number ε
so small that given any point a e Sn+k of distance < ε from Mn, there
exists a unique geodesic segment through a of length ^ ε normal to
Mn. Let N denote the set of all points a e Sn+Ic whose distance from Mn

is < ε. TV is an open tubular neighborhood of Mn in Sn+fc. Let E denote
the boundary of N, and p: E -* Mn the projection defined by assigning
to each point a e E the point p(a) e Mn where the unique geodesic
segment through a of length ε normal to Mn meets Mn. Then (E, p, Mn)
is a realization of the normal (k — l)-sphere bundle of Mn for the given
imbedding, and E is a hyper surf ace in Sn+Iΰ. Let V denote the com-
plement of N is Sn+Ic, and let y.E-+ V denote the inclusion map.

For convenience we introduce the following notation: Aq denotes
the image of the homomorphism y*: Hg(V, G) -> Hq(E, G), where G is the
coefficient ring, and A* - ΣAq. Then A* and p*[H*(Mn, G)] are both
sub-rings of H*(E, G), and they are obviously closed under any cohomolo-
gy operations such as Steenrod squares and reduced pth powers. Even
more, A* and p*[H*(Mn, G)] are " permissible sub-algebras ?? of H*(E, G)
in the terminology of Thorn, [6], p. 177. The sub-ring A* must satisfy
the following conditions:



786 W. S. MASSEY

( 6 ) i ° = H°{E, G)

( 7 ) Hq(E, G) = A1 + p*HtJ(Mn, G) (0 < q < n + 1, direct sum)

( 8 ) A1 = 0 f or g ^ w + fc - 1 .

The proof that conditions (6), (7), and (8) hold is based on Theorem
V.14 of Thorn [6]; see also § 14 of [3]. The existence of the sub-algebra
A* satisfying these conditions is a rather stringent requirement on
H*(E, G).

Our program for trying to prove that a certain manifold Mn cannot
be imbedded differentiably in Sn+Ic (or equivalently, in Euclidean (n + k)-
space, Rn*k) may be briefly outlined as follows. Assume that such an
imbedding is possible, and let p:E-^Mn denote the normal (k — 1)~
sphere bundle of this imbedding. By a well-known theorem of Seifert
and Whitney, the characteristic class of the normal bundle vanishes,
hence the Gysin sequence splits up into pieces of length three as de-
scribed in the preceding section. Then if one can determine the struc-
ture of the cohomology ring of E and perhaps determine some other
cohomology operations in E, it may be possible to prove that H] (E, G)
does not admit any sub-ring A* satisfying the conditions stated in the
preceding paragraph. But this is a contradiction.

Using this method with G = Z2, we will now prove our main result:

THEOREM. If m = 2fc, k > 0, then PZm^λ{R) cannot be imbedded dif-
ferentiably in Rim.

Proof. Let x be the generator or H^P^^y Z2). As is well known,
the cohomology algebra H*(Pz,n-lf Z2) is the truncated polynomial algebra
generated by x and subject to the sole relation x6m = 0. According to
a result of E. Stiefel [5], the total Stiefel-Whitney class w = ^ ^
of the tangent bundle of P3w_i is given by the formula

w = (1 + x)3m .

(This may be proved directly by the method of Wu [7].) Using the
Whitney duality theorem, one sees that the total Stiefel-Whitney class
w = Σigo^ί of the normal bundle is given by

since

ww = (1 + xYm(l + x)m = (1 + x)im = 1 + x4m = 1

(Recall that m = 2k). It follows that w1 — 0 and wm = xm. Now as-
sume that the differentiate imbedding of P3 m_! in Sim is possible and
let p:E-^P3m^ denote the normal bundle, whose fibre is an m-sphere.
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The characteristic class wm+1 — 0, hence we can apply the method of
§ 1. Choose a e Hm{E, Z2) such that ψ(a) = 1. Then equations (4) of
§ 2 applied to this case give

α2 = Sqm(a) = p*am + a p*(xm) .

If a' e H'(E, Z2), ψ(a') = 1, and α' Φ a, then of necessity a' = a + p*(b)
with b = x"\ Therefore equation (5) of § 2 gives

a[ = a, + Sq\xm) = aλ

< = ocm + xm xm + Sqmxm - am .

Hence ax and am are invariants, independent of the choice of α. Since
Hm(E, Z2) admits the direct sum decomposition

H»(E, Z2) = A" + p ^ ^ ί P ^ - x , ZJ\

by (7), it follows that we may choose the cohomology class a so that it
belongs to Am. From now on we assume such a choice has been made.
Note also that it follows directly from the Gysin sequence that for q > 0.

rank A" = r a n k i ^ - ^ P ^ , Z2)

where Aq and Hq"m{P^m^) are considered as vector spaces over the field

Z2. Thus rank Aq = 0 or 1 for all values of q it follows that Aa has

at most one non-zero element.
First, we consider the invariant ax. Two cases are possible: ax = 0,

or ax — p*(αsm+1). If ax — p*(xm+1), then the sαb-ring A* is not closed
under the operation Sq\ which is already a contradiction. For the re-
mainder of the proof we will assume that ax = 0, i.e. Sqxa = 0, and show
that this also leads to a contradiction.

Next we consider the invariant am. Here again two cases are pos-
sible, am — 0 or am = x2m. First let us consider the case where am —
0, i.e.., α2 — a p*{xm). Since a2 Φ 0, it must be the unique non-zero
element of A2m. Let y denote the unique non-zero element of A2m~ι.
It is clear that either

y = p^x21""1) + a / ( r - 1 ) or 2/ = a - p^x™"1) .

Now a2y e Aim~\ therefore a2 y = 0 by equation (8). An easy calcula-
tion shows that α2(α p*xm-1) = α p*^3"1"1) ^ 0. It follows that y —
p*(x2m"1) + α p:¥{xm-1). Next, a computation shows that

Sq\y) = Sq'lp^x2711-1 + a p*^771"1] = p*(α;2ίn) + α p*(a;m) .

Thus Sq\y) and α2 are distinct non-zero elements of A2m which is
obviously impossible. Thus we see that the assumption am — 0 leads to
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a contradiction.
Next, consider the case where am — xλm, i.e. a1 = p*(sc2w) + α p*(xm).

The pattern of the proof in this case is the same as in the preceding
paragraph. Let y be the unique non-zero element of A2™-1 as before,
then either y = p*(x2m~L) + a p^(xm"1) or y — a- p * ( r - 1 ) , and we must
have a2y — 0 exactly as before. Once again an easy calculation shows
that α2(2?*a32m"1 + a p * ^ " 1 ) ^ 0, hence we must have y — a p*xm-1.
Again, one finds that Sqιy = a p*xm φ a\ which is a contradiction.
Thus we have shown that the assumption that P3m_i can be imbedded
differentiably in Sim leads to a contradiction.

4. Some open problems. H. Hopf has proved in [1] that Pn can
be imbedded differentiably in R271-1 or R2n, according as n is odd or even,
i.e., according as Pn is orientable or not. This result, together with our
main theorem and the previous results mentioned in the introduction,
enables one to settle definitely the question of imbedding Pn in the
lowest possible dimensional Euclidean space for n fg 5: for n ^ 5, Hopf s
result is the best possible. The first undecided case is P6. It follows
from Hopfs result that it can be imbedded in Rr\ and from our result
that it cannot be imbedded in R\ Can it be imbedded in i?9?

The invariants a% introduced in § 2 raise many interesting questions.
Are these invariants of the normal bundle the same for any imbedding
of a manifold in Euclidean space ? Or, is it possible to give an example
of different imbeddings of a manifold in Euclidean space which give rise
to different sets of invariants a% for the corresponding normal bundles T
In any case, it seems reasonable to hope that a further investigation of
their properties may furnish new tools for proving non-imbeddability
theorems for manifolds.

One may also carry out an analogous investigation using the integers
mad p, Zp, for any odd prime p as coefficients, and using Steenrod pth
powers instead of Steenrod squares.
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