CHAINABLE CONTINUA AND INDECOMPOSABILITY

C. E. Burgess

This paper includes a study of continua ${ }^{1}$ which are both linearly chainable and circularly chainable. Since there exist indecomposable continua and 2 indecomposable continua which are linearly chainable, it follows from Theorem 7 that there exist indecomposable continua and decomposable continua which have both of these types of chainability.

A linear chain C is a finite collection of open sets $L_{1}, L_{2}, \cdots, L_{n}$ such that
(1) each element of C contains an open set that does not intersect any other element of C,
(2) $\rho\left(L_{i}, L_{j}\right)>0$ if $|i-j|>1$, and
(3) $L_{i} \cdot L_{j} \neq 0$ if $|i-j| \leq 1$. If this is modified so that $L_{1} \cdot L_{n} \neq 0$, then C is called a circular chain. Each of the sets $L_{1}, L_{2}, \cdots, L_{n}$ is called a link of C, and C is sometimes denoted by ($L_{1}, L_{2}, \cdots, L_{n}$) or $C\left(L_{1}, L_{2}, \cdots, L_{n}\right)$. If ε is a positive number and C is a linear chain such that each link of C has a diameter less than ε, then C is called a linear ε-chain. A circular ε-chain is defined similarly.

If C is either a linear chain or a circular chain and $H_{1}, H_{2}, \cdots, H_{n}$ are connected sets covered by C, then these sets are said to have the order $H_{1}, H_{2}, \cdots, H_{n}$ in C provided (1) no link of C intersects two of these n sets and (2) for each $i(i<n)$, there is a linear sub-chain in C which covers $H_{i}+H_{i+1}$ and which does not intersect any other of the sets $H_{1}, H_{2}, \cdots, H_{n}$.

A continuum M is said to be linearly chainable ${ }^{2}$ if for every positive number ε, there is a linear ε-chain covering M. A continuum M is said to be circularly chainable if for every positive number ε, there is a circular ε-chain covering M.

A tree T is a finite coherent ${ }^{3}$ collection of open sets such that
(1) each element of T contains an open set that does not intersect any other element of T,
(2) each two nonintersecting elements of T are a positive distance apart, and
(3) no subcollection of T consisting of more than two elements is a circular chain. If ε is a positive number and T is a tree such that

[^0]each element of T has a diameter less than ε, then T is called an ε-tree. A continuum M is said to be tree-like if for every positive number ε, there is an ε-tree covering M.

A continuum M is said to be the essential sum of the elements of a collection G if the sum of the elements of G is M and no element of G is a subset of the sum of the other elements of G. If n is a positive integer and the continuum M is the essential sum of n continua and is not the essential sum of $n+1$ continua, then M is said to be n - $i n$ decomposable. ${ }^{4}$

A continuum M is said to be unicoherent if the intersection of each two continua having M as their sum is a continuum. A continuum M is said to be bicoherent if for any two proper subcontinua M_{1} and M_{2} having M as their sum, the set $M_{1} \cdot M_{2}$ is the sum of two continua that do not intersect.

A continuum M is said to be a triod if M is the essential sum of three continua such that their intersection is a continuum which is the intersection of each two of them.

Theorem 1. If the continuum M is either linearly chainable or circularly chainable, then M does not contain a triod. ${ }^{5}$

Proof. Since it is easy to see that every proper subcontinuum of M is linearly chainable, it will be sufficient to show that M is not a triod.

Suppose that M is a triod. Let M_{1}, M_{2}, and M_{3} be three continua having M as their essential sum such that their intersection is a continuum H which is the intersection of each two of them. For each $i(i \leq 3)$, let p_{i} be a point of M_{i} that is not in either of the other two of the continua M_{1}, M_{2}, and M_{3}. Let ε be a positive number which is less than each of the numbers $\rho\left(p_{1}, M_{2}+M_{3}\right), \rho\left(p_{2}, M_{1}+M_{3}\right)$, and $\rho\left(p_{3}, M_{1}+M_{2}\right)$. Let C be either a linear ε-chain or a circular ε-chain which covers M. Since no link of C intersects two of the sets p_{1}, p_{2}, p_{3}, and H, consider the case in which these four sets are in C in the order named. This would involve the contradiction that M_{2} intersects either the link of C that contains p_{1} or the link of C that contains p_{3}. A similar contradiction results from supposing any other order of the sets p_{1}, p_{2}, p_{3}, and H in C.

Theorem 2. If the unicoherent continuum M is not a triod and M_{1}, M_{2}, M_{3} are three continua having M as their essential sum, then

[^1]some two of these continua do not intersect and the other one intersects each of these two in a continuum.

Proof. Suppose that each two of the continua M_{1}, M_{2}, and M_{3} intersect. It follows from the unicoherence of M that each of the sets $M_{1} \cdot\left(M_{2}+M_{3}\right)$ and $M_{2} \cdot\left(M_{1}+M_{3}\right)$ is a continuum and their sum is a continuum. Let $N=M_{1} \cdot\left(M_{2}+M_{3}\right)+M_{2} \cdot\left(M_{1}+M_{3}\right)=M_{1} \cdot M_{2}+M_{1} \cdot M_{3}$ $+M_{2} \cdot M_{3}$. Hence M is the essential sum of the three continua $M_{1}+N$, $M_{2}+N$, and $M_{3}+N$ such that N is the intersection of each two of them and the intersection of all three of them. Since this is contrary to the hypothesis that M is not a triod, it follows that some two of the continua M_{1}, M_{2}, and M_{3} do not intersect. Consider the case in which M_{1} and M_{3} do not intersect. Then M_{2} intersects both M_{1} and M_{3}, and since $M_{1} \cdot M_{2}=M_{1} \cdot\left(M_{2}+M_{3}\right)$ and $M_{3} \cdot M_{2}=M_{3} \cdot\left(M_{2}+M_{1}\right)$, it follows from the unicoherence of M that each of the sets $M_{1} \cdot M_{2}$ and $M_{3} \cdot M_{2}$ is a continuum.

Theorem 3. If the unicoherent continuum M is circularly chainable, then M is either indecomposable or 2-indecomposable.

Proof. Suppose that M is the essential sum of three continua M_{1}, M_{2}, and M_{3}. By Theorem 1, M is not a triod. Hence by Theorem 2, one of these three continua, say M_{2}, intersects each of the other two such that $M_{1} \cdot M_{2}$ and $M_{2} \cdot M_{3}$ are continua and M_{1} does not intersect M_{3}. For each $i(i \leq 3)$, let p_{i} be a point of M_{i} which is not in either of the other two of the continua M_{1}, M_{2}, and M_{3}. Let ε be a positive number which is less than each of the numbers $\rho\left(p_{1}, M_{2}+M_{3}\right), \rho\left(p_{2}, M_{1}+M_{3}\right)$, $\rho\left(p_{3}, M_{1}+M_{2}\right)$, and $\rho\left(M_{1}, M_{3}\right)$. Let C be a circular ε-chain which covers M. A contradiction can be obtained as follows for each of the three types of order in C for the five sets $p_{1}, p_{2}, p_{3}, M_{2} \cdot M_{1}$, and $M_{2} \cdot M_{3}$.

Case 1. If these five sets have the order $p_{i}, p_{j}, p_{k}, M_{2} \cdot M_{1}, M_{2} \cdot M_{3}$ in C, then M_{j} would intersect a link of C that contains one of the points p_{i} and p_{k}, contrary to the choice of ε.

Case 2. If these five sets have the order $p_{1}, M_{2} \cdot M_{1}, p_{i}, p_{i}, M_{2} \cdot M_{3}$ in C, then M_{2} would intersect a link of C that contains one of the points p_{1} and p_{3}, contrary to the choice of ε.

Case 3. If these five sets have the order $p_{2}, M_{2} \cdot M_{1}, p_{i}, p_{j}, M_{2} \cdot M_{3}$ in C, then each link of one of the linear chains of C from p_{1} to p_{3} would lie in $M_{1}+M_{3}$. This would involve the contradiction that some link of C intersects both M_{1} and M_{3}.

THEOREM 4. If the circularly chainable continuum M is separated
by one of its subcontinua, then M is linearly chainable.
Proof. Let K be a subcontinuum of M which separates M. Then M is the sum of two continua M_{1} and M_{2} such that K is their intersection. Let p_{1} and p_{2} be points of $M_{1}-K$ and $M_{2}-K$, respectively, let ε be a positive number less than each of the numbers $\rho\left(p_{1}, M_{2}\right)$ and $\rho\left(p_{2}, M_{1}\right)$, and let C be a circular ε-chain covering M. Then each link of one of the linear chains in C from p_{1} to p_{2} is a subset of $M-K$. Let $L_{1}, L_{2}, \cdots, L_{n}$ be the links of C such that L_{1} contains p_{1} and there is a positive integer r such that L_{r} contains p_{2} and no link of the linear chain $\left(L_{1}, L_{2}, \cdots, L_{r}\right)$ intersects K. There exist integers i and j such that L_{i} is the first link of $\left(L_{1}, L_{2}, \cdots, L_{r}\right)$ which intersects M_{2} and L_{j} is the last link of ($L_{1}, L_{2}, \cdots, L_{r}$) which intersects M_{1}. Then ($M_{2} \cdot L_{i}, M_{2} \cdot L_{i+1}$, $\cdots, M_{2} \cdot L_{r}, L_{r+1}, \cdots, L_{n}, M_{1} \cdot L_{1}, M_{1} \cdot L_{2}, \cdots, M_{1} \cdot L_{j}$) is a linear ε-chain covering M.

Theorem 5. Every circularly chainable continuum M is either unicoherent or bicoherent. Furthermore, M is unicoherent provided some subcontinuum of M separates M, and M is bicoherent provided no subcontinuum of M separates M.

Proof. Suppose that M is the sum of two continua H and K such that $H \cdot K$ is the sum of three mutually separated sets Y_{1}, Y_{2}, and Y_{3}. There exist three open sets D_{1}, D_{2}, and D_{3} containing Y_{1}, Y_{2}, and Y_{3}, respectively, such that the closures of D_{1}, D_{2}, and D_{3} are disjoint. For each $i(i \leq 3)$, there exists a subcontinuum K_{i} of K irreducible from Y_{i} to $M-D_{i}$. The continuum $H+K_{1}+K_{2}+K_{3}$ is a triod, and this is contrary to Theorem 1. Hence it follows that if M_{1} and M_{2} are two continua having M as their sum, then the set $M_{1} \cdot M_{2}$ is either a continuum or the sum of two continua.

It follows from Theorem 4 that M is linearly chainable, and hence unicoherent [3], provided some subcontinuum of M separates M. From this and the argument in the previous paragraph, it follows that M is bicoherent provided no subcontinuum of M separates M.

Theorem 6. If the circularly chainable continuum M is irreducible about some finite set consisting of n points, then there is a positive integer k not greater than n such that M is k-indecomposable.

Proof. By Theorem 5, M is either unicoherent or bicoherent. If M is unicoherent, it follows from Theorem 3 that M is either indecomposable or 2 -indecomposable. If M is bicoherent, it follows from Corollary 6.1 of [5] that there is a positive integer k not greater than n such that M is k-indecomposable.

Theorem 7. If the continuum M is linearly chainable, then in order that M should be circularly chainable, it is necessary and sufficient that M be either indecomposable of 2-indecomposable.

Proof of necessity. Since every lineary chainable continuum is unicoherent [3], it follows from Theorem 3 that M is either indecomposable or 2-indecomposable.

Proof of sufficiency. The case where M is indecomposable and the case where M is 2-indecomposable will be considered separately.

Case 1. Suppose M is indecomposable, and let $C\left(L_{1}, L_{2}, \cdots, L_{n}\right)$ be a linear ε-chain covering M. There exist two disjoint continua K_{1} and K_{2} of M such that each of them intersects each of the sets $L_{1}-\operatorname{cl}\left(L_{2}\right)$ and $L_{n}-\operatorname{cl}\left(L_{n-1}\right)$. If follows that there exist a positive number ε^{\prime}, a linear ε^{\prime}-chain C^{\prime} covering M, and two subchains C_{1} and C_{2} of C^{\prime} such that
(1) each link of C^{\prime} is a subset of some link of C,
(2) C_{1} and C_{2} have no common link, and
(3) each of the chains C_{1} and C_{2} has one end link in $L_{1}-\operatorname{cl}\left(L_{2}\right)$ and the other end link in $L_{n}-\operatorname{cl}\left(L_{n-1}\right)$. Let W_{1} denote the set of all points of M that are covered by C_{1} and let W_{2} denote $M-W_{1}$. Then $\left(L_{1}, W_{1} \cdot L_{2}, W_{1} \cdot L_{3}, \cdots, W_{1} \cdot L_{n-1}, L_{n}, W_{2} \cdot L_{n-1}, W_{2} \cdot L_{n-2}, \cdots, W_{2} \cdot L_{2}\right)$ is a circular ε-chain covering M.

Case 2. If M is 2-indecomposable, there exist two indecomposable continua M_{1} and M_{2} such that M is their essential sum and $M_{1} \cdot M_{2}$ is a continuum. Let ε be a positive number. There exists a linear ε-chain C covering M such that M_{1} intersects $L_{1}-c l\left(L_{2}\right)$ and M_{2} intersects $L_{n}-\operatorname{cl}\left(L_{n-1}\right)$. Since each composant of $M_{i}(i=1,2)$ is everywhere dense in M_{i}, it follows that for each $i(i=1,2)$ there exist two disjoint subcontinua K_{i} and H_{i} of M_{i} such that
(1) each of them intersects each link of C that intersects M_{i},
(2) H_{i} contains $M_{1} \cdot M_{2}$,
(3) each of the continua H_{1} and K_{1} intersects $L_{1}-c l\left(L_{2}\right)$, and
(4) each of the continua H_{2} and H_{2} intersects $L_{n}-c l\left(L_{n-1}\right)$. Hence there exist a positive number ε^{\prime}, a linear ε^{\prime}-chain C^{\prime} covering M, and three subchains C_{1}, C_{2}, and C_{3} of C^{\prime} such that
(1) each link of C^{\prime} is a subset of a link of C,
(2) no two of the chains C_{1}, C_{2}, and C_{3} have a common link,
(3) one end link of C_{1} is in $L_{1}-\operatorname{cl}\left(L_{2}\right)$,
(4) one end link of C_{2} is in $L_{n}-c l\left(L_{n-1}\right)$,
(5) some link of C contains a link of C_{1} and a link of C_{2}, and
(6) C_{3} has one end link in $L_{1}-\operatorname{cl}\left(L_{2}\right)$ and the other end link in $L_{n}-c l\left(L_{n-1}\right)$. Let W denote the set of all points of M that are covered by C_{3}, and let Y denote $M-W$. Then $\left(L_{1}, W \cdot L_{2}, W \cdot L_{3}, \cdots, W \cdot L_{n-1}\right.$, $L_{n}, Y \cdot L_{n-1}, Y \cdot L_{n-2}, \cdots, Y \cdot L_{2}$) is a circular ε-chain covering M.

Theorem 8. If n is a positive integer and for each proper subcontinuum H of the continuum M there is a positive integer r not greater than n such that H is r-indecomposable, then there is a positive integer k not greater than n such that M is k-indecomposable.

Proof. Suppose that M is the essential sum of $n+1$ continua $M_{1}, M_{2}, \cdots, M_{n+1}$. Some n of these continua have a connected sum, so consider the case in which $M_{2}+M_{3} \cdots+M_{n+1}$ is connected. There is an open set D which intersects M_{1} such that the closure of D does not intersect $M_{2}+M_{3}+\cdots+M_{n+1}$. There is a subcontinuum M_{3}^{\prime} of M_{1} irreducible from the closure of D to $M_{2}+M_{3}+\cdots+M_{n+1}$. This involves the contradiction that $M_{1}^{\prime}+M_{2}+M_{3}+\cdots+M_{n+1}$ is a proper subcontinuum of M and is the essential sum of $n+1$ continua.

Theorem 9. If every proper subcontinuum of the continuum M is circularly chainable, then every subcontinuum of M is either indecomposable or 2-indecomposable.

Proof. Since each proper subcontinuum of M is a proper subcontinuum of another proper subcontinuum of M, it follows that every proper subcontinuum of M is linearly chainable. Hence by Theorem 7, every proper subcontinuum of M is either indecomposable or 2-indecomposable. Consequently, it follows from Theorem 8 that M itself is either indecomposable or 2 -indecomposable.

Examples. A pseudo-arc [1;6] is an example of an indecomposable continuum which satisfies the hypothesis of Theorem 9 , and a continuum which is the sum of two pseudo-arcs with a point as their intersection is an example of a 2 -indecomposable continuum which satisfies this hypothesis.

Theorem 10. If the tree-like continuum M is circularly chainable, then M is linearly chainable.

Pooof. Let ε be a positive number, and let $C\left(L_{1}, L_{2}, \cdots, L_{n}\right)$ be a circular $\varepsilon / 3$-chain covering M. Then M is covered by a tree T such that
(1) each element of T is a subset of a link of C,
(2) some element K_{0} of T intersects only one element of C, and
(3) no element of T intersects three elements of C. A function f will be defined as follows over T. For each element K of T, there is only one linear chain ($K_{0}, K_{1}, \cdots, K_{m}=K$) from K_{0} to K in T. Let $f\left(K_{0}\right)=0$, and suppose that for some integer $i(0 \leq i \leq m), f\left(K_{i}\right)$ has been defined. Then define $f\left(K_{i+1}\right)$ as follows:
(1) let $f\left(K_{i+1}\right)=f\left(K_{i}\right)+1$ provided K_{i} lies in some element L_{\jmath} of C and K_{i+1} intersects $L_{j+1, \text { mod } n}$ but K_{i} does not intersect this set,
(2) Let $f\left(K_{i+1}\right)=f\left(K_{i}\right)-1$ provided K_{i+1} lies in some element L_{j} of C and K_{i} intersects $L_{j+1, \text { mod } n}-L_{j}$ but K_{i+1} does not intersect this set, and
(3) let $f\left(K_{i+1}\right)=f\left(K_{i}\right)$ provided neither (1) nor (2) is satisfied. The range of f is an increasing finite sequence of consecutive integers n_{1}, n_{2}, \cdots, n_{r}. For each $t(1 \leq t \leq r)$, let M_{t} denote the sum of all elements X of T such that $f(X)=n_{t}$. Then $\left(M_{1}, M_{2}, \cdots, M_{r}\right)$ is a linear ε-chain covering M.

References

1. R. H. Bing, Concerning hereditarily indecomposable continua, Pacific, J. Math. 1 (1951), 43-51.
2. -, Snake-like contimua, Duke Math. J. 18 (1951), 653-663.
3. - and F. B. Jones, Another homogencous planc continuum Trans. Amer. Math. Soc. 90 (1959), 171-192.
4. C. E. Burgess, Continua which are the sum of a finite number of indecomposable continua, Proc. Amer. Math. Soc. 4 (1953), 234-239.
5. , Separation properties and. n-indecomposablc coniinua, Duke Math. J. 24 (1956), 595-600.
6. E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua, Trans. Amer. Math. Soc. 63 (1948), 581-594.

University of Utah

[^0]: Presented to the American Mathematical Society, August 29, 1957; received by the editors December 5, 1958. This work was supported by the National Science Foundation under G-2574 and G-5880. Most of these results were obtained while the author was a visiting lecturer at the University of Wisconsin.
 ${ }^{1}$ Throughout this paper, a connected compact metric space is called a continuum.
 ${ }^{2}$ In some places in the literature, such continua have been said to be chainable.
 ${ }^{3}$ A collection G of sets is said to be coherent if for any two subcollections G_{1} and G_{2} of G such that $G_{1}+G_{2}=G$, some element of G_{1} intersects some element of G_{2}.

[^1]: ${ }^{4}$ For any such continuum M, there is a unique collection consisting of n indecomposable continua having M as their essential sum [4].
 ${ }^{5}$ Bing [2] has used the fact that no linearly chainable continuum contains a triod, but for completeness a proof is given here for both types of chainability.

