SILOV TYPE C ALGEBRAS OVER A CONNECTED
LOCALLY COMPACT ABELIAN GROUP

ALFRED B. WILLCOX

A certain class of commutative Banach algebras of functions on a
compact abelian group has been studied by G. E. Silov [6]. His algebras,
which he calls homogeneous rings, are partially characterized by the
property of containing arbitrary translates of elements. The most inter-
esting examples are various algebras of complex functions on the circle
or torus of any dimension with various differentiability properties and
algebras of continuous functions on a compact abelian group which have
absolutely convergent Fourier series. Silov’s results have been extended
by Mirkil [5] to algebras over non-abelian compact groups. We present
here some results which generalize parts of the theory to translation
closed algebras over connected locally compact abelian groups. The major
problem in an extension in this direction centers about a replacement
for the type of classical Fourier analysis for continuous functions on
compact groups which has no satisfactory analog even in the abelian
non-compact case. Our approach to this problem is to recapture locally
some of the compact case when it becomes necessary. This approach
makes it necessary to add to Silov’s conditions various additional assump-
tions. Nevertheless, a considerable portion of the theory survives;
enough, in fact, to include analogs of all the interesting examples from
the compact case. In §1 we present the basic construction on which
the structure theorems of §2 are based. In § 3 various examples are
discussed. It will be assumed that the reader is familiar with the
general theory of commutative regular Banach algebras. An account
assuming an identity can be found in [6]. The results extend easily to
algebras without identity. Such extensions can be found in [2], [3], [4],
or, for certain non-commutative algebras, in [8].

1. In this section we describe a method of constructing a Banach
algebra from the following ingredients:

(i) a connected locally compact abelian group G,

(ii) a primary commutative Banach algebra K with identity, maxi-
mal ideal @, and norm | - |, and

(iii) a homomorphism ® of the character group G of G into the
coset of the identity in K modulo Q.

By well-known structure theorems [7, section 29] G = E, x G, where
E, is the p-dimensional vector group and G, is compact abelian. From
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this it follows easily that G is o-compact, i.e., G contains a sequence
{C,} of compact neighborhoods of the identity 0 such that

(1) C, is contained in C,,, for all #» and
(2) 6G=UC¢C,.

Such a sequence {C,} will be called a o-covering of G. If fisa cpmplex
function defined on G and {C,} is a fixed g-covering we denote by [f]™
the function defined by

[FI™@) =f@#), teC,
[F1»@ =0, t¢C,.

Now suppose that for each n =1,2, --- we have a linear combination
of characters >V".¢;nXin» Cin COmplex, ¥, € (. Form the sequence { f™y
with f@® = [S¥2 ¢ Xwl™. Such a sequence will be called w-Cauchy if
it is Cauchy in the metric

N(f® = f™) = sup | 3 il Yinl (OO (in) — 2 €l ] OO sm) | -

N(f™) is defined in the obvious way, and it is clear that
IN(f®) = N(f™)| S N(f™ — f™).

Thus the complex sequence {N(f™} is Cauchy if {f™} is w-Cauchy.
We define || {f™} || to be lim N(f™), n— oo. If {f™} and {g™} are
w-Cauchy then {(f — g)™} is also w-Cauchy. {f®™} and {g™} will be
called equivalent if || {(f — 9)™} || = 0. The resulting set of equivalence
classes of w-Cauchy sequences {f ™} will be denoted by K, (G). In K. (G)
we introduce the obvious operations a{f ™}, {f™} + {g™} and {f™} -
{g™}. With the above norm K,(G) is clearly a normed complex algebra.

THEOREM 1.1. K, (G) is a Banach algebra independent of the choice
of the a-covering {C,}.

We omit the details of the proof of this theorem. The second
statement follows readily from remark (A) below, and a more or less
standard diagonalization process shows that K, (G) is complete.

Two remarks on the structure of K, (G) are immediate.

(A) K@) is isomorphic and isometric to an algebra of continuous
K-valued functions defined on G and vanishing at -, the norm being
the usual sup norm. This can be seen as follows. Each element {f ™}
of K,(G) is a Cauchy sequence in the Banach algebra of all bounded
K-valued functions on G with the sup norm. Assign to {f™} its limit
f in this algebra. f(¢) is necessarily continuous since any t, € G has a
neighborhood within which f™(¢) is continuous for all sufficiently large
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n. f (t)—0 as t— sir;ce each f™(t) has compact support. The mapping
{f™} — f is clearly a homomorphism. Moreover,

HF™} I = lim N(f ) = lim sup | 35 cinl)in] P (E)(2in) |
= S?p hgn l Z Cin[Xin](n)(t)w(Xin) |

zsgpif(t)l-

80 the correspondence is an isometry.

(B) Since @(X)(Q) =1 for each y € G we have | S ¢, [(in] ™ ()| <
IS el inl ™ (@E)0(Xin) | Thus each element of K,(G) determines uniquely
a complex function f(¢) such that sup|f ()| = || {f“}|]. The mapping
{f™} — f is a continuous homomorphism of K,(G) onto a subalgebra of
Cy(G), the Banach algebra of all continuous complex functions vanishing
at o on G. K, (G) will be said to be radical or to separate points of
G accordingly as the corresponding subalgebra of Cy(G) is zero or separates
points of G.

In the sequel we shall denote a general element of K (G) by f as
suggested by (A) and the image of this element in the corresponding
subalgebra of Cy(G) by f.

ExAMPLES. (1) Remark (B) and the Stone-Weierstrass theorem
show that if ® is the trivial homomorphism sending each y into the
identity in K then K (G) = Cy(G).

(2) Let G = E, and K be the Banach algebra with two generators
1, © with 2> = 0. K is the set of all polynomials «, + a2, a; complex,
with norm defined by |a, + x| = |a,| + |a,|. K is primary with @
the subalgebra generated by x. G = E, and a general character is
x(t) = e*, A e E\. Define by o(X) = wo(\) =1+ i:\x. o is clearly a
continuous homomorphism. A general element {f™} of K,(G), with

F® =TI Cpndon]™, is a function F(t) = £ (&) + g(t)x where
9(t) = hnm zp: Can’pn(t)

and both limits are uniform in a neighborhood of each ¢, € E,. Thus
g(t) = f'(t) and both £(t) and f'(t) tend to 0 at . K, (G) is the algebra
D(E) of Example 1, §3. Various properties of K, (G) are immediate
from standard theorems on Fourier series. We point out several which
play roles in subsequent theorems of this section. The homomorphism

f—f of remark (B) is clearly an isomorphism in this case. Moreover,
if £ is any complex continuously differentiable function on FE, with
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compact support then f e K. (G). This is obvious if we take for a o-
covering the collection of intervals [—m, #] and look at the Fourier series
for such a function on an arbitrary interval [—m, n] containing the
support of f. To obtain a sequence {f ™} deﬁningf” we need only take,
for each sufficiently large 7, a suitable partial sum of the Fourier series
for f on [—n,n]. Thus K, (G) contains elements f such that f(t) =1
on an arbitrary compact subset of G and f(f) =0 on a disjoint closed
set. By Theorem 1.5 below G is the space of maximal regular ideals of
K, (G) so K, (G) is a regular Banach algebra. In fact, by the definition
of the norm K,(G) contains a bounded sequence {f -} for which f,,(t) =1
on [—m,n] and f,(t) has compact support. Such a sequence is an
““gpproximate identity”’ in K, (G), i.e., lim ff, = f for any F e K (G).
Thus the elements with compact support are dense in K, (G). Finally,
any element f’ whose support is contained in [—m,n] can be approxi-
mated uniformly on [—m,n] by K-valued functions of the form
Se,o(Yp)Xx(t) where each yx, is constant on the subgroup {0, +n, +2n,
...}, or, equivalently, each yx, is an integral multiple of 27/n (cf. con-
dition (A) below). This, too, follows from a glance at the Fourier series
for the image f on the interval [—=, n].

LEMMA 1.2. For any K, (G) we have the following:

(@) f@)=rQ@NQ) for any f e K(G), )

(b) K,(G) is closed wunder multiplication by G in the sense that
for f € K (9) and X € G there exists an element X f e K. (G) such that
[XFI0) = xOe()F () for all ¢ € G. )

(¢) K.(G) is closed under translation in the sense that for f € K (G)

and s € G there exists an element fi € K.(G) such that f(t) =f(t — s)
for all t € G.

Proof. For each t e G,

FOQ) = [lim e, 1] )01 1(Q)
= lim 3,6, [L IO {0(0a(Q)} = £(t)

since o(%;,)(Q) = 1. This proves (a). (b) is clear: if Fe {f™} then
fo {lxf1}. (c) would be equally trivial if it were true that
XI™(@E — s) = y(—s)[x1™(t) for all £ € G. Since this is not the case a
slight extra argument is necessary. Let f € K, (G) with

~

sup | Sl Xinl ™ E)O(Nsn) — f(E)| — 0 as 7 — oo.

For each n pick an integer #’ in such a way that ' — o as n— o
and C,, > C, — s for all n. Then for any ¢t € C,
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[ 128 — 8) = [Liw ] (@) + Lin(—3)

We may assume that | f(t)| < ¢ for ¢t ¢ C,, n sufficiently large, so it
follows that

S}ég | 2iCin Lin (=) Xin ] @)OYin') — f(E —8)| < &

for sufficiently large ». This means that f, € K (G).

LemmA 1.3. K (G) is either radical or separates points of G.

This follows immediately from Lemma 1.2, parts (b) and (c¢) together
with the fact that G separates points of G. This lemma together with
remark (B) yield the following lemma. Again we omit the details of
the easy proof. We denote the structure space of maximal regular
ideals of K.(G) by M.

LEMMA 1.4. For t e G the set M,= {f ¢ K. (G)|f(t) =0} is a
maximal regular ideal of K.G). Given an arbitrary f ¢ K. (G) the
image f(M,) of f modulo the maximal regular ideal M, is f(t). If
K, (G) is mot radical then the mapping t — M, is one-to-one of G into
M.

Denote by TK,(G) the ‘‘Tauberian part” of K.G), that is, the
closed subalgebra of K,(G) generated by the elements f(¢) which have
compact support. Lemmas 1.2, 1.3, and 1.4 hold for the algebra TK,(G),
and we denote its structure space by 9,r. Given the conditions of
Lemma 1.4 we will identify G with its image in M, or M. We will
be interested in algebras K, (G) and TK,(G) primarily when they are
regular. Whether there actually exists a non-regular K, (G) is an inter-
esting open question to which we will refer again in some remarks at
the end of this section.

THEOREM 1.5. Let w be continuous. If TK,(G) is not radical then
G = WM. If TK(G) is regular then the group topology im G 1is the
same as the WM, -topology.

Proof. The proof of the first statement is very similar to Silov’s
proof of the analogous theorem for the compact case so we omit most
of the details. If M, € M, consider ¢ € TK,(G) such that é(t) has
compact support and é(M,) = 1. Let m(x) = [xel(M,). One shows that
m(y) is a homomorphism of G into the complexes of modulus 1. Since
w 1s continuous it follows that m is continuous. Thus by the duality
theorem m(y) = x(t,) for some t, € G. This says that f£(M,) = f(t,) for
any element which is a linear combination of elements y¢, hence, by
definition of TK,(G), for any element ge with g € TK,(G). The desired
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result follows since é(M;) = 1. The second statement in the theorem
follows from standard theorems in topology. By definition of the Gelfond
topology, the M, -topology is weaker than the group topology on G.
Both are Hausdorff and locally compact, and if TK,.(G) is regular then
an M,.-compact set K is G-compact (since TK,(G) has a unit modulo
the kernel of K and all elements tend to zero at c« on G). Thus the
topologies are the same.
The last part of the above proof also yields the following.

COROLLARY 1.6. If K.(G) 1is regular then G is closed in M, and
its topology s imherited from Mg.

We can now formulate a necessary and sufficient condition for any
regular TK(G) to be semi-simple. Recall that G = E, x G, so that G
clearly contains a discrete subgroup D for which G/D is compact (D is
essentially the group I,, where I is the group of integers) and a com-
pact neighborhood C of the identity such that the natural map of C
into G/D is one-to-one. TK,(G), or, more, generally, any algebra R of
continuous K-valued funections on G, will be said to satisfy Condition
(4) if:

(1) TK.G) (or R) contains elements f (t) with f(¢) not identically
zero such that f£(¢) has support contained in C, and

(2) every f e TK.(G) (or R) with support in C is a uniform limit
on C of functions of the form ey, (t)w(y;) where the y, are elements
of G which are constant on D, i.e., each y,; is a character of G/D.

Condition (A) implies that any f e TK,(G) supported by C deter-
mines uniquely a function f(f) on G/D such that f(f) is an element of
K;(G/D) where @ is the homomorphism of the character group of G/D
into K which is induced by w. Thus TK,G) is locally rather firmly
tied to the compact case.

The following lemma is stated in a form in which it will be appli-
cable both in the present discussion and later in § 2.

LEMMA 1.7. Let R be a semi-simple regular Banach algebra of
continuous functions f’ from G to K wvanishing at o with || f | =
sup | f @)|; v € G. Suppose M(R) = G and that R is closed under trans-
lation and multiplication by G in the sense of Lemma 1.2. Then

(8) for any f e R, f(t) vanishes on any open set in G on which
fit) = f (M,) vanishes, and

(b) R satisfies Condition (A).

Proof. The proof of (a) is exactly the proof of the corresponding
lemma (4.7.1) in [6] so we omit the details.
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Denote a general element of G by (s, t) where s = (a, @, «++, @,) €
E, t e G, For real a >0 define S(a) = {(s,8)||a;| =, t € G,}. For
the discrete subgroup D we can take the direct product of the usual
discrete subgroup I, of E, and the identity subgroup of G,. G/D is
then the product of an n-torus and G,. We may further assume that
the compact neighborhood S(a) of 0 with the usual identifications, oper-
ations and topology is isomorphic and homeomorphic to G/D. If C is a
compact subset of G containing S(«) then f € R is said to be D-periodic
on C if foranyz € C,d e D for which z +d e C we have f(z + d) =
f(@). Clearly any D-periodic element on C determines uniquely both a
continuous K-valued function on G/D and a similar complex valued fune-
tion. R contains D-periodic functions on any compact set in G since
regularity and part (a) of the theorem provide elements whose support
is in S(a) and these can be extended to all of C by a finite number of
translations by elements of D. (The possibility of multiplying a unit
modulo the kernel of C by characters also yields D-periodic functions,
but for reasons of later applicability we prefer not to make use of this
hypothesis until later in the proof.) Suppose ]’ is D-periodic on S(3a)
and that h € S(a). Then the element f,L is D-periodic on S(2a). Let I
be the kernel of the subset S(a) of M =G and let R = R/I. Denote
the image in R of a general f ¢ R by f. The norm of f in R is
WA =IIfllsw =inf [l g]l; g(x) =f(2) all « e S(a). _Let R, be the
closed subalgebra of R generated by all f, with f and & as above.
Clearly R, can be represented as an algebra of continuous complex funec-
tions on the compact abelian group G/D. Consider one of the generators
9= fhl and an element % in the interior of S(a). By adjusting h, by
an element of D without changing the image f, », We can arrange to have
h,+ h € S(a). Then g, = [}‘hl]h is D-periodic on S(2«a) and its image g,
is in R,. It is an easy exercise to show that if ¢ denotes the image in
G|D of t € G then g,(t) = g(t — h) so g, is a translate of g in R,. The
translation operator T is then defined on a dense subset of E,. We
show that 7T; is bounded. Let f be a general element of this dense
set, i.e., f =3[ J;i]% with f; D-periodic on S(3a), h,z~e S(a). Corlsider
f7, the image of f, as above. We must show that || £, [lsw) < k1] f s
where k is independent of f. Let S = S(@) + h. Clearly S is in the
interior of S(2a). Choose a closed set T such that S(a) USc T C
interior S(2a). It is obvious that HfHSw =||fulls. We show that
Il £ s = I Fulle <k Il f lls. The first inequality is clear since 7' O S(a).
Pick ¢ ¢ R such that e(x) =1 on T, e(x) =0 outside S(2a). Then
Sfre(x) = fu(x) on T and

| f2¢ || = sup | :8(2) | (z € S(2a)) =< || & || sup | fu(@) | (z € S)
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by D-periodicity of f, on S(2a). By part (a) together with continuity
of elements of R we see that || fn lls = sup | fu(@) | (x e S) so we have

WAE=Nhlls- 1€l But [[fllz< A2l so I fulle <111~ [ Falls.
Hence T, is bounded, hence extendible to R, where it clearly defines
the ordinary translate f; of an arbitrary f € R. If & is on the boundary
of S(a) we write h = h, + h,, h; € interior of S(«) and proceed as above.
Since all f € R are unjformly continuous K-valued functions it follows
that all elements of R, are continuous under tranmslation, that is, for
any f and ¢ >0, ||f — f5]| <¢& for all & in some neighborhood of 0.
Thus R, is a homogeneous space of functions in the sense of Silov
satisfying the conditions of [6, 2.7]. We can therefore conclude that
linear combinations of character of G/D are dense in R,.

If ¢ € R is chosen so that e(t) =1 on S(3a) and if y; are characters
of G constant on D, then if § = Ye,[ye] § is in B, and is the corre-
sponding linear combination of characters in that algebra. g(x) = Ye¢,
Yi(@)w(y;) for each © € S(a) so Condition (A) follows from the fact, noted
above, that || 7| = sup |f(2)|(x € S(a)).

THEOREM 1.8. Let @ be continuous. If TK(G) is regular then it
is semi-simple if and only if it satisfies Condition (A). If K, (G) 1is
regular then it satisfies Condition (A) if and only if it is semi-simple
and M = G.

Proof. Suppose TK,(G) is regular. Necessity of the condition is
contained in Lemma 1.7 in view of the results of Theorem 1.5 and
Lemma 1.2. Sufficiency follows readily from the fact that any K, (G)
with G compact abelian is semi-simple [6, Theorem 4.6]. Suppose
fe TK(G) and f(t) =0 for all t € G. Pick ¢ e TK,(G) with support
contained in C and with e(t,) # 0 (by Condition (A)). Then ¢f is sup-
ported by C so &f(t) € K.(G/D) and ef(t) = 0 for all £. Thus &f(¢) =0
for all £ so that & f (t,) = 0. &(t,) has an inverse in K since it is contained
in no maximal ideal of K so we must have f(t)=0. Thus, for each
s e G, fit)=0 which implies that f=0. The statement for K,G)
follows by the same argument if we observe that we have actually
proved that Condition (A) is equivalent to the vanishing of the kernel
of G. For TK,(G) this is semi-simplicity since G = M,,, For K. (G)
the vanishing of this kernel is equivalent to semi-simplicity plus the
condition that G = M, since we know by Corollary 1.6 that G is closed
in M.

THEOREM 1.9. Let @ be continuous. If TK(G) (K.(G)) is regular
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and semi-simple then it is an algebra of type C.

Proof. Using part (a) of Lemma 1.7 one easily proves that the set

{f1F(t) = 0} is a closed primary ideal. It is immediate, then, that the
norm in K,(G) is smaller than the type C norm. But the opposite in-
equality always holds.

Before turning to some structure theorems based on the above
construction we mention several questions concerning the algebras TK, (G)
and K, (G). The first one concerns the connectivity assumption on G.
The results in this section hold in slightly more generality. The de-
finitions and most of the early results require only that G be g-compact.
Condition (A), Lemma 1.7, and Theorem 1.8 require only that G be
generated by a compact neighborhood of the identity (so that G = E, x
G, x G4, G, discrete [7, section 29]). Full use of connectivity is used
only in the next section in the proof of Theorem 2.3. Whether con-
nectivity could be dropped in favor of, say, g-compactness is an open
question. Further open questions concern some of the separation con-
ditions we have employed. Does there exist a radical K, (G)? Does
there exist a non-regular K, (G)? Does a K, (G) exist for which TK(G) +
K. (G)? These questions are closely related to the question of regularity
of K, (G) in the compact case, and a complete answer to this question
is not known. Silov has sufficient conditions for regularity of K (G) for
compact G [6, section 5.8], but no necessary conditions. In case G = E,
and K is finite dimensional there is some evidence which suggests that
TK.(G) is regular and equal to K, (G). This is true, for instance, for
dimension <3, but the proof requires a classification of primary algebras
of these dimensions. This approach is not promising in the general
finite dimensional case, however, since a classification of all finite
dimensional primary algebras is not known. (Such a classification would
involve a classification of finite dimensional nilpotent algebras, a more
familiar unsolved problem.) In case G = E| it is not hard to exhibit
sufficient conditions for regularity of TK.(G) or K. (G) by reducing to the
compact case where Silov’s conditions can be applied. We state one
such result without proof. If G = E, we may identity G with E,, the
circle group C with E,/I(p) where I(p) is the subgroup of integral
multiples of p, » a positive integer, and C with the group of integers.
The homomorphism @ of E, into K induces, for each p, a homomorphism
w, of C into K: w,(n) = w(n/p). If Kwp(C) is regular for each p =
1,28, -+« then K (FE,) and TK(E\) are regular.

1 A commutative regular B-algebra R is of type C if its norm is equivalent to the
norm ||| f||| =sup || f|lx, where M ranges over the structure space of maximal regular

ideals and || f|lx is the norm of the image of f in the difference algebra R/J(M) (see
section 2).
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2. In §1 we have seen that under certain conditions algebras
TK(G) or K, G) are semi-simple commutative Banach algebras of type
C closed under multiplication by G and under translation. In this
section we consider the converse problem.

We follow Silov in calling a Banach algebra R homogeneous over G
if R satisfies the following conditions: R is a semi-simple regular com-
mutative Banach algebra whose space of maximal regular ideals is a
locally compact abelian group G, R is closed under translation, the norm
in R is translation invariant, and the elements of R are continuous under
translation in the norm of R (it is sufficient to assume that R contains
a set of generators continuous under translation). Further, in case G
is not compact, we assume that R is Tauberian in the sense that the
elements with compact support are dense in R.

For ¢, € G let the corresponding maximal regular ideal be M,. M,
contains a unique minimal closed primary ideal J(¢,) which can be
characterized as the closure of the set of all f € R such that f(¢) =0
in a neighborhood of ¢,, (If R were not Tauberian the above f would
have to be assumed in addition to have compact support.) Also, since
R is Tauberian, it is easy to see that an element ¢ with compact support
for which e(t) = 1 for all ¢ in a neighborhood of ¢, is a unit modulo
J(t,)-

Later in this section we will make use of the extensions to algebras
without unit element of the theorems on regular commutative Banach
algebras contained in [6, section 3]. As far as we know, some of these
generalizations are not available in the literature (in particular, the
results of sections 3.5-3.9 on algebras of type C). However, they are
all routine, and under the Tauberian condition the facts mentioned above
make Silov’s proofs applicable almost without change.

If 0 is the identity element of G let K = R/J(0). K is a commuta-
tive primary Banach algebra Wlth 1dent1ty and maximal ideal @ = M,/J(0).

LemMmA 2.1. If R is a homogeneous algebra over the locally compct
abelian group G then for all s € G, R|J(s) is isomorphic and isometric
to R|J(0) = K, and R can be represented as an algebra of continuous
K-valued functions on G vanishing at o.

Proof. The isomorphism is f + J(0) — f, + J(s). Clearly it is a
homomorphism of K onto R/J(s). It is an isomorphism since by definition
f € J(0) implies f, € J(s). By invariance of the norm in R under
translation it is immediate that || f ||, = || fs || where || g ||, denotes the
norm of the image of g in R/J(t). For fe R, t € G let f(t) be the
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image of f under the mapping R — R/J(t) —» K. The collection of func-
tions f£(t) is the algebra isomorphic to R. Since || f|| = || £l = sup|f ()|
(t € G), continuity of the functions f follows from continuity of the
elements of R under translation. Since R is Tauberian it is an easy
exercise to show that each f(t) vanishes at oo.

LEMMA 2.2. Let R be homogeneous over G and let R’ be the set
of all elements of R with compact support. Suppose R’ is closed under
multiplication by G, i.e., for each f € R and y € G there ewists an
element yf € R' such that yf(t) = x()f(t) for all t. Then

(a) R determines a homomorphism @ of G into the coset of 1 in
K = R/J(0) modulo Q = M,/J(0),

(b) for any f € R and any ¥ € G for which g = LS exsists in R,
J(t) = x®w() f(t) for all t € G, and

(c) if the mapping Y — Xf ts continuous then ® is continuous.

Proof. Pick e € R with compact support and with e(t) =1 on a
compact neighborhood C of 0. As we have remarked above, e is a unit
modulo J(0). For x e G consider the element xe- If w(x) denotes the
image of yxe in R/J(0) = K the homomorphism is y — w(y). Clearly
o()(Q)=1. Since, for y, 1. € G, [Hx— e - %.€)(t)=0 in a neighborhood
of 0 and outside a compact set we have w(y,x.) = o(x)w(x,). A similar
argument shows that ® is independent of the choice of C and the choice
of e. Let h = ye, then h(t) = y(t)e(e) = x(s)x(t — s)e(t — s) provided both
t and t — s are in C. If s is in the interior of C then let U be a
neighborhood of 0 such that U c C, U + s c C then the above holds
for all ¢t € U+ s. Thus h — y(s)h, € J(s) so via the mapping R—
R|J(s) — K wehave h — h 4 J(s) = y(s)h, + J(s)— x(s)k + J(0) = X(s)w (),
this is, A(s) = y(s)w(x) for s in the interior of C. The equality extends
to all of C by continuity. Now let g = yf for any f € R for which the
product is defined. Fix ¢, € G, let C be a compact neighborhood of 0
containing ¢, in its interior, and consider the corresponding e and i = ye.
It follows easily that §(t,) = §é(t,) = hf(t) = y(t)o(x)f(t,). Part (c) is
obvious.

Two Banach algebras R, and R, with the same structure space M
will be called locally tisomorphic in case for each ¢ € I there exist
homeomorphic neighborhoods U, and U, of ¢ such that every element
of R, restricted to U, is carried by the homeomorphism into an element
of R, restricted to U,, and conversely. Two algebras of K-valued fune-
tions on G will be called locally K-isomorphic in case the analogous
condition holds for the K-valued functions.

THEOREM 2.3. Let R be a homogeneous Bamnach algebra over a
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connected locally compact abelian group. If R is of type C then R 1is
closed under multiplication by G. R can be represented as a closed
subalgebra of TKJ(G) where K = R|J(0) and w is the homomorphism
given in Lemma 2.2. TK(G) is semi-simple and R and TK,(G) are
locally K-isomorphic. If w 1is continuous then R and TK(G) are
locally isomorphic.

Proof. Several remarks on Lemma 1.7 and its proof will produce
a large part of the proof of the present theorem. In the first place,
we know by Lemma 2.1 that R satisfies all the conditions of Lemma
1.7 except closure under multiplication by G. This hypothesis is ex-
pendable, however. It was needed in the lemma only because we lacked
the machinery for an intrinsic construction of the homomorphism .
The proof of 1.7 shows (without using the hypothesis in question) the
existence in R, of a generating set X of characters which distinguish
between points of G/D. Since the set S(a) is the structure space of
R and y(t) # 0 for all ¢, it follows from standard Banach algebra theorems
that with each y € X R contains its complex conjugate y~*. But the
-only subgroup of (G/D)" which separates points of G/D is (G/D)" itself
(by Stone-Weierstrass and orthonormality of (G/D)") so R contains all
characters of G/D. Thus for any character ¥ which is identically 1 on
D, R contains an element which is x(t) on S(a). Furthermore, in the
proof of 1.7 more general ‘‘rectangles’

S(fufz’ ""En): {(Svt) € GHazl é‘fht € Gc} ’

with the obvious corresponding discrete subgroups D, could have been
used in place of the sets S(a). Since G=E, x G, [2, 85A] it is clear
that any y € G is identically 1 on some such D. It follows that for
any y € G there exists a set S(&, &, «--, E,) such that R contains a
sequence fy, k=1, 2, +-, with f(t) = x(t) on S(k&,, k&, -+, kE,). Since
this latter collection of compact sets is a g-covering of G we conclude
that for any y € G and compact set C c G R contains an element which
is x(t) on C. Any element of R with compact support can therefore
be multiplied by a character, so Lemma 2.2 applies and the homomor-
phism @ is defined. The second part of 2.2, together with the fact that
R is of type C, implies that if f, — f, f, with compact support, then
{xf:} is Cauchy and yf, — yxf. Thus R is closed under multiplication
by G. Conclusion (b) of 1.7 implies that R is a subalgebra of TK,(G).
For it is clear that if {C,} is any o-covering there exist discrete sub-
groups D, such that the mapping C, — G/D, (compact) is one-to-one and
Condition (A) holds for each pair C,, D,. If f e R, f=1limf,, with the
support of f, contained in C,, and if f;(t) is approximated to within
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1/n uniformly on C, by a function £ of the form Ye(t)w(y), then
clearly f corresponds to the element {f™} of K,G). Since R is
Tauberian it is in TK,(G), and R is closed since its norm is the K, (G)
norm. The local K-isomorphism and resulting semi-simplicity of TK.(G)
follow from Lemma 2.2 and regularity of R, and the final conclusion
follows from Theorem 1.5.

THEOREM 2.4. Let R be a homogeneous Banach algebra of type C
over the connected locally compact abelian group G with R closed under
multiplication by G. Suppose that for some g-covering {C,} of G there
exists a bounded sequence {e,} of elements of R with compact support
such that e (t) =1 on C,. Then R = TK,(G) = K(G).

Proof. By Theorem 2.3 we need only show that R D K (G). Let
k =sup|le,|| and suppose that e, (t) vanishes outside C,. Let {f™}
be any w-Cauchy sequence of linear combinations of characters defining
an element of K, (G). Consider the sequence {f™7¢,} in R. Choose
€ > 0, then since {f™} is w-Cauchy it follows from Lemma 2.2 that
there exists a compact set C, such that for sufficiently large n | f™2¢,(t) | <
ek for ¢t ¢ C,. It is also clear that if m and % are sufficiently large
(m > n) then | f®%,(t) — f™%,(t)| < efort e C,. Thus, for sufficient-
ly large m and n

Ilf e, — f™ey,|| < max (e, 2ke) ,

so {f™Ye,} is Cauchy. Its limit is the element we seek.

3. In this section we exhibit three examples of algebras of the
type discussed above.

(1) Let G=E, and R= D,(E) be the algebra of all complex
functions f on K, which have m continuous derivatives all of which tend
to zero together with fat oo. || f|| = sup Dt /2! | fF @) | (—oo <t < ).
It is easy to verify that W D,,) = E, and that J(t) = {f € D, | f¥@t) =0,
©1=1,2,+--,m}. D, is locally isomorphic to D,[a, b], which is thorough-
ly discussed by Silov and to D,(C), C the circle group [6]. D,/J(t,) is
easily seen to be an (m + 1)-dimensional ‘‘truncated’’ polynomial algebra
generated by images of functions which are (¢t — ¢)* k =0,1, ---, m in
a neighborhood of ¢,, D, is of type C; indeed, the norm of f modulo
J(t,) is exactly > 1[4l | f@(¢t,)|. It is also clearly closed under multipli-
cation by G. Since each F®@t)— 0 at o« it is uniformly continuous on
E,. Consequently, for each fe D, ||f—f;||—0 as s—0. D, is
regular and Tauberian by easy proofs. Finally, it is clear that there
exist e, € D, with ||e,]| constant and e, (t) =1 on [—n,n], e,(t) =0
outside [—n — 1, + 1]. This is true for any og-covering of E, provided
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that the distance between C, and the complement of the support of e,
is bounded away from zero. Thus D, = K, (G). Here K = {a, + ax +
@ + +++ + a,a™ | a; complex, ™+ = 0} and for f e D, f(t)=f(t)+
@)z + -+ + A/m)f™(t)2™. ® is given, then, by e** — 1 + Az + «--
+ (A/m!)(@\)"x™ and is clearly continuous.

(2) Let G be any direct product of copies of E, and the circle
group C. One can define a wide variety of algebras on G analogous to
D,(E)). For the circle and torus examples have been discussed by Silov
[6]. We illustrate by considering the algebra D (— 7/2 < 0 < 7/2) of
all continuous functions on the cylinder E, x C which have m continuous
directional derivatives in the direction making an angle 6 from the
generating circle C, all vanishing at . D¢ can easily be seen to be
homogeneous of type C over E, x C and to have a bounded set of units
modulo a o¢-covering of E, x C. Thus D! = K (F, x C). It is easily
seen that K is the same (m + 1)-dimensional algebra which occurred in
(1) and that w is given by

wleMen] = 1 + é (/DN cos 6 + (im)* sin O]e* .

All D¢, m fixed, are locally isomorphic. If we call a curve in E, x C
which intersects each generating circle in a constant angle a an a-curve
then it is clear that given non-zero a #+ (8 there is a homeomorphism of
G onto itself sending each a-curve into a S-curve and each B-curve into
an a-curve, but that no homeomorphism can send a 7/2-curve into a
0-curve. From this it is easy to see that all D?, 0 + 0 are isomorphic
to each other, but that D9 is mot isomorphic to D%, 6 = 0.

In the next example we introduce the C-completion R° of a non-
type C Banach algebra R, that is, the completion of R relative to the
type C norm. The general situation is somewhat as follows: Silov has
shown that if R° is semi-simple then it is an algebra of type C, and
he has examined the connections between R and R° for regular com-
mutative Banach algebras ([6] contains an account assuming an identity,
and the results generalize easily to algebras without identity.). If R is
a homogeneous algebra over a compact abelian group R° is automatically
a K,(G) and is therefore semi-simple. No such clear cut answers appear
to be available in the non-compact case, but given various additional
bits of information about R it is possible to obtain information about
R from the results in § 2. The algebra of the next example is one for
which such additional bits are available.

(8) Let G be a o-compact abelian group, R the Banach algebra of
Fourier transforms f of elements f of L(G@). If fe R with f(t) =
§ 7 (0x@®)dy then for || f|| we use the L;-norm of f Multiplication in R
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ig pointwise and R is isomorphic and isometric to LI(G) with convolution
as multiplication. Several properties of R are immediate or well-known.

(a) G is the structure space of R and R is semi-simple, regular
and Tauberian [2]. If f e Ll(G) and & € G then the function x(h) f 69)
is also in LI(G). But this function corresponds to the function f,(t) =
f(t —h)in R so

(b) R is closed under translation. Clearly || f|| = || f.ll. It is easy
to verify that || f — f, || tends to 0 at 2 =0 so

(c) the elements of R are continuous under translation. If fe R
and y, ¢ G then L) f(t) is the Fourier transform of the translate
fr, € L(@), so

(d) R is closed under multiplication by G. Moreover, by a well-
known theorem on the Haar integral, if f and & are in L(G) then f=é
can be L-approximated by linear combinations of translates of &. In R
this means that

(e) Re is generated by Ge. Finally

@& Hxafll=1r5ll for all fe R, y e G by an easy proof. From
properties (a)-(d) it can easily be seen that R° satisfies all the conditions
of Lemmas 2.1 and 2.2 with the possible exception of semi-simplicity.
The fact that for any unit ¢ modulo a compact set of G Re is generated
by Ge enables one to show directly that R° TK,(G); the type C con-
dition on R and the connectivity condition on G were used in Theorem
2.3 essentially to establish property (e). Property (f) (or, more generally,
I x¥f || = o(n) for all ¥, f) implies that TK,(G) = C(G). For if e is
such that ye — o()) in K then |w(x)| =< || xell. Thus | o(x*™) | = | o(x)*"|
is o(n) and a theorem of Gelfond-Hille [1, p. 715] shows that this implies
in a primary algebra that w(y) = 1. Example 1 of §1 completes the
proof. Thus R° is semi-simple, hence homogeneous of type C so by
Theorem 2.3 R° is locally isomorphic to Cy(G). By theorems of Silov
[6; 3.5, 8.9] extended to algebras without identity R/J(0) is isomorphic
to the corresponding difference algebra in Cy(G), but this is the complex
field. Thus J(0) and hence each J(¢t) is maximal. This provides a proof
of the well known theorem (first proved by Beurling and Segal for the
real line and then by Kaplansky in general) which says that in the
group algebra of a locally compact abelian group closed primary ideals
are maximal. Finally, if G is connected then R° = Cy(R). For R contains
elements with compact support for which f(¢) = 1 on a compact set and
0 < f(t) <1 for all t. Since J(t) = M, this says that the type C norm
of fis 1, so Theorem 2.4 applies to R
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