
INTRINSIC OPERATORS IN THREE-SPACE

VICTOR L. SHAPIRO

l Introduction. In Euclidean three-space there are three im-
portant classical intrinsic operators, namely the intrinsic curl, the in-
trinsic divergence, and the intrinsic (or generalized) Laplacian. Usually
they are given in terms of differential operators, but the occasion arises
sometimes when they cannot be so defined. In particular if u is the
Newtonian potential due to a continuous distribution, then in general u
is only a function in class C\ and consequently the usual Laplacian of
u, the usual curl of grad u, and the usual divergence of grad u cannot
be defined. Nevertheless, as it is easy to show, the intrinsic curl of
grad u is equal to zero, the intrinsic (or generalized) Laplacian of u
equals the intrinsic divergence of grad u, and furthermore Poisson's
equation holds. The question arises whether the converse is true. The
answer to questions of this nature is the subject matter of this paper.
In particular we shall establish the following result (with the precise
definitions given in the next section):

THEOREM 1. Let D be a domain in Euclidean three-space and let
v be a continuous vector field defined in D. Then a necessary and
sufficient condition that v be locally in D the gradient of a potential
of a distribution with continuous density is that the intrinsic curl of
v be zero in D and the intrinsic divergence of v be continuous in D.

2. Definitions and notation. We shall use the following vectorial
notation: x = (xlf x2, x3), ax + βy = (axλ + βy17 ax2 + βy2, ax3 + βy3), (xf y) =
the usual scalar product, x x y — the usual cross product, and | x | =
(x, xf'\

Let v{x) — [vλ(x), v2(x), vz(x)] be a continuous vector field defined in
the neighborhood of the point x0. Then we define the upper intrinsic
curl of v at x0 to be the vector, curl *v(x0) — [wf(x0), wt{x0), wt(x0)] where
wj(xo) = lim supr_0(τrr2)-1 \ (v, dx), j — 1, 2, 3, with Cj(x0, r) the cir-

cumf erence of the circle of radius r and center xQ in the plane through
x0 normal to the a^-axis where Cj(x0, r) is oriented in the counterclock-
wise direction when seen from the side in which the #Γaxis points. In
a similar manner using lim inf, we define the lower intrinsic curl of v
at x0, curl* v(xQ). If curl* v(x0) = curl* v(x0) is finite, we call this
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common value the intrinsic curl of v at x0 and designate it by cwc\v(x0).
This definition is essentially the intrinsic definition of the curl as given
in [4, p. 71].

Next, we define the intrinsic divergence. Let v(x) be a continuous
vector field defined in a neighborhood of the point xQ. Then with S(x0, r)
the spherical surface with center xQ and radius r, we define the upper
intrinsic divergence of v at x0 as follows

div* v(xQ) = l i m s u p ^ ^ r 3 ) " 1 \ (v, n)dS
JS(xo,rϊ

where n is the outward pointing unit normal on S(x09 r) and dS is the
natural surface area element on S(x0, r). Similarly we define the lower
intrinsic divergence, άiv*v(x0), using lim inf. If div*v(x0) = div*v(#0) is
finite, we call this common value the intrinsic divergence of v at x0

and designate it by άivv(x0) (see [9]).
If u(x) is a continuous function defined in a neighborhood of the

point a?0, then the upper intrinsic (or generalized) Laplacian of u at the
point x09 Lapw(#0), is usually defined as

Lap*tφ0) = limsup J(4ττr2)- 1[ udS
L }s(xQ,rϊ

Similarly we define Lap* %(#<,) using lin inf. If Lap*w(&0) = Lap^u(^0) is
finite, we call this common value the intrinsic (or generalized) Laplacian
of u at xQ and designate it by Lap^(^0).

It is clear that if v(x) is in class C1 and u(x) is in class C2, then
curlv(a ), divφθ> and Laptφ?) exist and equal the usual curl, divergence,
and Laplacian respectively, defined in terms of the partial derivatives.

If f(x) is a function defined in a neighborhood of the point xQ and
if f{x) is in L1 in S^Xo, r) for some r > 0 where Syix09 r) is the open
solid sphere with center x0 and radius r, we shall designate by A*/(»o)
the following upper limit:

A*f(x0) - l i m s u p ^ π r 3 ) - ^ f(x)dx .

Similarly, we shall designate by A*f(xQ) the corresponding value obtained

by using lim inf. As is well-known, for almost all x in Sx(x0, r), A#f(x) —

A*f(x).
Given v{x) a continuous vector field defined in a domain D, we shall

say that v(x) is locally in D the gradient of a potential of a distribution
with bounded density if for each point x0 in D there exists an S^XQ, r)
contained in D and two functions f(x) and h(x) defined in S^Xa, r) with
f{x) bounded in Sx{xQ, r) and h(x) harmonic in S^Xo, r) such that

(1) u{x) - -(4π-)-1f f(v)\x-v\ ~'dy + h(x) for x in S ^ r) ,
JSιCxQ,r)



INTRINSIC OPERATORS IN THREE-SPACE 1259

and v(x) — gradu(x) for x in S^x^ r). It is understood that f(x) is
bounded in S^x^ r) but need not be bounded in D.

It is well-known that if u(x) is defined by (1), then u(x) is in class
C1 in SjiXo, t), and furthermore Lap^(x) = f(x) (see [7]) at every point
where A*f(x) = A*f(x). We shall show that curl gradw(#) = 0, div*
gvadu(x) = A*f(x), and div* gradiφ?) = A*f(x).

E will designate the closure of the set E.

3. Statement of main results. We shall prove the theorems stated
below.

THEOREM 2. Let D be a bounded domain in Euclidean three-space,
and let v(x) be a continuous vector field defined in D. Then a neces-
sary and sufficient condition that v(x) be locally in D the gradient of
a potential of a distribution with bounded density is that

(i) curl^(x) and cm\*v(x) be finite-valued in D.
(ii) curl^O*;) = curl*φ?) — 0 almost everywhere in D.
(iii) div^cc) and div*^(#) be locally bounded in D.
In the next theorem, the definitions of regular curves and regular

surfaces are those given in [4, Chapter 4].

THEOREM 3. Let D be a bounded domain in Euclidean three-space,
and let v(x) be a continuous vector field defined in D. Suppose that

(i) CMYV^V(X) and curl^^α;) are finite valued in D.
(ii) there exists a continuous vector-field w(x) such that w(x) —

curl;!ί^(x) = curl*t?(x) almost everywhere in D.
Then curli>($) exists everywhere in D and is equal to w{x). Further-
more Stokes' theorem with respect to v and curl v holds for every open
two-sided regular surface contained in the interior of D, that is

(2) [ (v,dx) = [ (curlv,n)dS

where C is the regular curve which is the boundary of S oriented in
the counter-clockwise sense when seen from the side of S towards which
n points.

The sufficiency conditions of Theorems 1 and 2 follow as corollaries
of Theorem 5 to be stated in §5. As a further corollary of Theorem 5,
we obtain the following extension of a theorem of Beckenbach's [1,
Theorem 1] (i.e. we remove the uniformity conditions stated in his
theorem).

THEOREM 4. Let v(x) be a continuous vector field defined in a bound-
ed domain D of Euclidean three-space. Then a sufficient condition
that v(x) be a Newtonian vector field in D is that
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(i) CVLY\V(X) = 0 in D

(ii) άiγv(x) = 0 in D.
The curl of a vector field which is only assumed continuous in

a domain can be defined in a different manner than that given above,
namely by using spherical surfaces and the cross product. We shall
consider this definition and the analogues of Theorem 1, 2, 3, and 4 in
the concluding section of this paper.

4. Proof of Theorem 3* Since we need the result of Theorem 3
in order to establish Theorems 1, 2, and 4, we shall prove the former
theorem first. In order to do this, we need the following lemma:

LEMMA 1. Let v(x) — [v1(x)f v2(x)f v3(x)] be a continuous vector field
defined and continuous in a neighborhood of the point x0, and let X(x)
be a non-negative function in class C1 in a neighborhood of the point
x0. Let v\x) — X(x)v(x), that is Vj(x) = X(x)Vj(x)f j — 1, 2, 3. Then

(a) curl* v'(x0) = X{x0) curl* v(x0) + gradλ(#0) x v(xQ)
(b) curl*ι/(a;0) = X(x0) curl* v(xQ) + gradλ(α?0) x v(x0)

where X(x0) curl* v(x0) = X(x0) curl* v(x0) = 0 in case X(x0) = 0.
To prove the lemma, it is sufficient to prove (a) for (b) will follow

on considering -— v(x). To prove (a), we have to show with w*(x0) =
that

X(xo)wU%o) + VjiXtύX^Xo) - v

= lim sup^Trr 2 )" 1 ! X{x)vi{x)dxi + X{x)v1{x)dxj
J O C )

where (ΐ, j , k) is a cyclic permutation of (1, 2, 3) and X(xo)w£(xo) — 0 in
case X(x0) = 0. But this follows immediately from [9, Lemma 8].

To prove Theorem 3, it is sufficient to establish

[(V,dx) = [ (w, n)dS
JO JS

for every open two-sided regular surface S contained in the interior of
D. For once (3) is established, it holds in the particular case when S
is a disc. Consequently the assumed continuity of w in D and (3)
implies that

0 , dx) = Wj(x0) j = 1, 2, 3 .

Therefore curl?; exists everywhere in D and is equal to w, and conse-
quently (3) is equivalent (2).

We shall now proceed to establish (3). In order to do this, we first
notice that with no loss of generality (since we are going to use Fourier
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series to prove (3)) we can assume that the closure of our domain D is
contained in the interior of the three-dimensional torus Γ3 = {x, —π<
Xj ^ π, j = 1, 2, 3}. Now let S be a given open two-sided regular sur-
face contained in the interior of D. Since S itself is a closed point set,
between S and D we can put two domains Df and D" with the following
property:

Scΰ'cfl'cΰ"cfl"cflcflcT3.

Letting X(x) be a localizing function which is non-negative and in
class C°° on T3 and which takes the value one on Dr and the value zero
on T3 ~ D", we set vf(x) — X(x)v(x) and w'{x) = X(x)w(x) + gradλ(x) x
v(x) for x in D and i/(cc) = w'(α?) = 0 for x in T3 — D. Since v\x) —
v(x) and t^'(^) = w(x) for α? on S, (3) will be established once we can
show that

( 4 ) ( (v', dx) = [ (w'f n)dS .

In order to establish (4), we first observe from Lemma 1 and (i) and
(ii) of Theorem 3 that

( 5 ) curl*i/(αθ and cwΛ*v'(x) are finite-valued in T3

( 6 ) c\xr\*vr(x) = curl^^^x) = ^'(x) almost everywhere in T3.

Next we designate the multiple Fourier series of v] and w) respec-
tively by

( 7 ) v'j(x) ~ Σ*<etCm'*>
m

3 = 1, 2, 3

where m represents an integral lattice point in three-space.
The essential step in proving (4) is to show that

( 8 ) b«m = i(mβal - mya
β

m)

where (a, β, 7) is a cyclic permutation of (1, 2, 3).
In order to do this we fix xΛ and observe that

(9 ) v'j(x) - Σ Σ,<ΆmMeίCmβxβ+m^ for j - β, 7

where

(10) αipWγ(a?Λ)

Now by (5),
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(11) lim sup^Trr 2)- 1 ! v'β(xa, yβy yy)dyβ + v'y(xΛy yβ, yy)dyy

Jc^O)

is finite-valued in Γ3 with a similar statement holding for lim inf, and
by (6),

(12) l im^^r 2 )" 1 ! v'β(xΛ, yβ, y)dyβ + vy(xΛf yβ, yΫ)dy.,

= Wa(xa9 xβ, xy) for almost every (xβf xy) if xΛ lies in

( — π,π] — EΛ where Ea is a set of linear measure zero.

Consequently it follows from (10), (11), (12), a modified version of
[9, Lemma 8], and [9, Theorem 2] that for mβ and my any two integers
and xΛ in (—π, π] ~ Ea that

(13) ί[mβalβmγ(xa) - myaξlβ7ny(xa)']

= (47Γ2)-1l I β- ί ( m β x β + m v x γ%;(x α , α?β, xy)dxβdxy .
J — π J — JΓ

Letting mα be any integer, multiplying both sides of (13) by
(2πyie'imΛx«9 and then integrating over ( — π,π], we conclude from (10),
the fact that EΛ is of linear measure zero, and (7) that

i(mβal - WvO = bί ,

which is (8).
(4) follows now fairly easily. We introduce for ί > 0, the vector

fields vf(x, t) and w\x, t) where

(14) v'j(x,t) =
j = 1, 2, 3 .

w'j(x,t) = ̂ 6ie*c»».»)-ι«ιί

Then, since v'(x, t) and w'(a?, t) are vector fields in class C°° on JΓ3 and
since we can differentiate under the summation signs in (14), we con-
clude from (8) that cuτlv'(x, t) = w'(x, t). Consequently,

(15) f {v\x, ί), dx) = [ (w'(x, ί), w)dS for ί > 0.
Jc is

But as is well-known [2], v\x, t) —> v'(aj) and ^f(a;, ί) —> w'(a?) as ί —> 0
uniformly for a? in Γs. Therefore from the definition of a regular curve,

it follows that I {v\x, t), dx) —• I (v\ dx), and from the definition of a re-
Jc Jc

gular surface, it follows that \ (w'(x, t), ̂ )cZS -> I (wf, ̂ )diS. We conclude
is Js

from (15) that

f (V\ dx) - ( {w', n)dS
jC J S
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which is precisely (4), and the proof of Theorem 3 is complete.

5. Proof of Theorem 1, 2, and 4* The necessary conditions of
Theorems 1 and 2 follow immediately from the following lemma (for
an analogous two-dimensional result, see [3]), which we shall prove:

LEMMA 2. Let u(x) = — (4π)-1\ f(y)\% ~ y\~λdy where f(x) is

bounded in S^XQ, r0) with r0 > 0. Then for x in S^XQ, r0)
(a) curl grad ^(#) = 0
(b) A*f(x) = div^ grad?φθ and A*f(x) = div*grad%(#)
(c) div* gradw(x) ^ Lsφ*u(x) ^ Lap* u(x) ^ div* gmdu(x)
To prove the lemma, it is clearly sufficient to prove it in the case

x = x0, and furthermore with no loss of generality, we can assume xQ is
the origin.

Setting v(x) — grad^(x), we observe that

(16) vlx) = (4τr)-1( f(y)(xj - y3) \x - y \ -*dy j = 1, 2, 3 ,
J SΊCO.Ϊ Q)

and Vj(x) is a continuous function. Observing that

\ (grad I x — y \ ~\ dx) = 0

for 7/ not on (7,(0, r) j = 1, 2, 3, we conclude from (16) and Fubini's

theorem that \ (v, dx) = 0 for j = 1, 2, 3. Consequently (a) of the

lemma is established.

Observing the — \ (grad \x — y\~\ n)dS = 4ττ if y is in S^O, r)
JS(0,r)

and = 0 if y is not in S^O, r), we obtain from (16) and Fubini's theorem
that for 0 < r < r0.

(17)

Dividing both sides of (17) by 4ττr3/3 and then taking liminfr^0 of both
sides and next lim sup,.^, gives us precisely part (b) of the lemma.

(c) follows from (b), the boundedness of /, and [5].
Theorem 4 and the sufficiency conditions of Theorems 1 and 2 follow

from the following more general theorem:

THEOREM 5. Let D be a bounded domain in Euclidean three-space,
and let v(x) be a continuous vector field defined in D. Suppose that

(i) curl^(#) and curl*^(x) are finite-valued in D
(ii) cur\^v(x) — curF^(x) = 0 almost everywhere in D
(iii) ά\γ^v(x) and div*^(^) are finite-valued in D
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(iv) there exists a function f(x) such that f(x) is in Lι on every
closed subdomain of D and such that div* v(x) ^ f(x) for x
in D.

Then (a) ά\vv{x) exists almost everywhere in D
(b) ά\vv(x) is in L1 on every closed subdomain of D

(c) for every closed sphere S^x^ r0) contained in D, there exists
a function u(x) in class C1 in S^XQ, r0) such that for x in
Si(Xo9 ro)» v(x) = gχa,du(x) and furthermore

u(x) = — (47Γ)-11 diγv(y)\x — y\ ~xdy + h(x) a.e. in S ^ , r0)

where h(x) is harmonic in S^XQ, r0).
In order to prove Theorem 5, we first need the following lemma

(see [8, p. 381]):

LEMMA 3. Let u(x) be in class C1 in S^XQ, r0). Then div^grad u(xQ) ^
6(xo) ^ Lap*^(#0) ^ div* grad^(^0)

With no loss in generality, we assume that x0 is the origin. Then
by the mean value theorem

(47r)~1\ \ u(tsin #cos φ, ίsin ^sin φ, icon ^)sin θdθdφ — u(ϋ) /f6"1

CitC2it

= (47Γ)"1! \ ^ t(rsin θcosφ, rsin ^sin^, rcos θ) sin
Jo Jo

where 0 < r < t. We conclude that

sup Γ(4τrr2)-1( udS - ^(
0<r<ίL J^(O,r)

^ sup (4πr3)-13\ [grad^, n\dS .
0<r<ί Js(0,r)

Consequently from their very definitions, Lap*^(0) ^ div* grad^(O). Simi-
larly we show that div* grad^(O) ^ Lap^^(O), and the proof to the lemma
is complete.

It follows immediately from the three-dimensional analogue of [9,
Theorem 2] that (a) and (b) of Theorem 5 hold. To obtain (c) of Theorem
5, we observe that there exists a positive ε such Sx(xϋ, r0 + ε) c D. Let
x be in S^x^ r0 + s), and let P(x) be the line segment connecting xQ

with x and directed to x. Then we define u(x) = \ (v, dy), and ob-
JP(X)

serve, since by Theorem 3 curl?; — 0 everywhere in Sλ(xύ, r0 + ε) and
Stokes' theorem with respect to v and curlv holds in this domain, that
u(x) is in class C1 in S^XQ, r0 + ε) and furthermore that v(x) = grad^(^).
Consequently by Lemma 3 and (iii) of the theorem

(18) Lap*w(#) and Lap*w(#) are finite-valued in S^XQ, r0 + ε) ,

and by (a) and (b) of the theorem and Lemma 3
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(19) Laptφ?) = divi (^) almost everywhere in S^XQ, r0 + ε) .

Therefore by (b) of the theorem, (18), (19), and the three-dimensional
analogue of [6, Theorem 1], it follows that for almost all x in S^x^ r0)

u(x) = — (4τr)"1\ divv(y) \ x — y \ ~λdy + h(x)

where h(x) is harmonic in S^XQ, r0). But this is precisely (c) of Theorem
5, and the proof to the theorem is complete.

6. The spherical intrinsic curU Let v(x) be a continuous vector field
defined in a neighborhood of the point x0. Then as mentioned earlier,
the upper and lower intrinsic curl of v at x0 can be defined by means of
the cross product and spherical surfaces. In short, we define the upper
spherical intrinsic curl to be the component-wise upper limit, curlf v(x0) =
lim supr^0(47rr3)"13l (nxv)dS. Similarly we define the lower spherical

intrinsic curl, curl^^cco), using lim infr_0. In case curl|^(a;0) = c\xr\*sv(x0)
is finite, we say the spherical intrinsic curl of v exists at the point x0,
and we designate this common value by cm\sv(x0).

We shall prove the following theorems:

THEOREM 6. Theorems 1, 2, 3, 4, and 5 continue to hold if in each
of these theorems curl*i>, curlew, and curl v are replaced by curlfv,

, and c u r l ^ respectively.

THEOREM 7. Let D be a bounded domain in Euclidean three-space,
and let v(x) be a continuous vector field defined in D. Then

(a) if cnv\sv(x) exists and is continuous in D, then Qλxήv{x) exists
everywhere in D and equals cwc\sv(x).

(b) if cwΛv(x) exists and is continuous in D, then QMΪ\SV{X) exists
everywhere in D and equals curlv(ic).

To prove Theorem 6, it follows from the proofs of Theorems 1, 2,
4, and 5 that it is sufficient just to prove Theorem 3 and Lemma 2(a)
when curl*^, curl^'y, and curlτ; are replaced respectively by curlf'y,
curias ^, and curl s^.

The analogue of Lemma 2(a) follows immediately from Fubini's

theorem and the fact that I n x grad | x — y \ ~λdS = 0 if ?/ is not on

S(x0, r).
To prove the new version of Theorem 3, we designate by pj the

unit vector in the direction of the α^-axis and set vj = v x pj for j =
1, 2, 3. Then it follows from the definition of spherical intrinsic curl
and intrinsic divergence that the jth component of curl*'?; is div*^ with
a similar remark holding for curl^?;. Consequently by (i) and (ii) of



1266 VICTOR L. SHAPIRO

the new version of Theorem 3 and by the three-dimensional analogue
of [9, Theorem 2], we obtain that for S ^ , r) contained in D,

(20) f (v3, n)dS == f Wj(x)dx j = 1,2,3 .

But (20) implies that curl^o?) exists everywhere in D and equals
giving the first part of the theorem.

The last part follows in a manner similar to the original version of
Theorem 3, and it suffices to give a sketch of the proof. We first
establish the analogue of Lemma 1 for the spherical intrinsic curl.
Next with D contained in the interior of T3 and S contained in D, we
introduce the periodic vector fields v\x) = X(x)v(x) and w'{x) — X(x)w(x) +
graάX(x) x v(x) where X(x) is a non-negative localizing function in class
C°° which takes the value one in a neighborhood of S and the value
zero outside another neighborhood of S for points in JΓ3. Then with
v'(x, t) and wr(x, t) as in Theorem 3, it follows using the three dimen-
sional analogues of the results in [9] that curl^'^, t) — w'(x, t). But, as
before, this implies that \ (v, dx) — \ (w,n)dS, which fact completes the

JO JS

proof of the theorem.
Theorem 7(a) follows immediately from Theorem 6.
To prove Theorem 7(b), we assume that D is contained in the in-

terior of T3, and we set w(x) = curl v(x). Then with ΊS^XQ, 3r0) contained
in D and X(x) a non-negative localizing function of class C°° which takes
the value one in S^XQ, rQ) and the value zero in T3 — S^XQ, 2r0), we in-
troduce, as before, the periodic vector fields vr{x) — X(x)v(x), w'(x) =
X(x)w(x) + gradλ(#) x v(x), v'(x, t)y and w'(x, t). Exactly as in Theorem
3, we obtain that curl?/(#, t) = w'(x, t). But then on setting vrj(x) =
v'(x) x p3 and v'3(x, t) = v'(x, t) x pj for j — 1, 2, 3, we obtain that

[ (v'3(x, t), n)dS = [ w)(x, t)dx for r > 0 ,

and consequently that

{v!3{x), n)dS = ( w'j(x)dx .

This last fact, however, implies that CUY\SV(XQ) = w(̂ 0)̂  and therefore
completes the proof to Theorem 7(b).
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