FAITHFUL*-REPRESENTATIONS OF NORMED ALGEBRAS

Bertram Yood

1. Introduction. Let B be a complex Banach algebra with an involution $x \rightarrow x^{*}$ in which, for some $k>0,\left\|x x^{*}\right\| \geqq k\|x\|\left\|x^{*}\right\|$ for all x in B. Kaplansky [8, p. 403] explicitly made note of the conjecture that all such B are symmetric. An equivalent formulation is the conjecture that all such B are B^{*}-algebras in an equivalent norm. In 1947 an affirmative answer had already been provided by Arens [1] for the commutative case. We consider in $\S 2$ the general (non-commutative) case. It is shown that the answer is affirmative if k exceeds the sole real root of the equation $4 t^{3}-2 t^{2}+t-1=0$. This root lies between .676 and .677. In any case these algebras are characterized spectrally as those Banach algebras with involution for which self-adjoint elements have real spectrum and there exists $c>0$ such that $\rho(h) \geqq c\|h\|, h$ self-adjoint (where $\rho(h)$ is the spectral radius of h).

A basic question concerning a given complex Banach algebra B with an involution is whether or not it has a faithful*-representation as operators on a Hilbert space. In § 3 we give a necessary and sufficient condition entirely in terms of algebraic and linear space notions in B. This is that $\rho(h)=0$ implies $h=0$ for h self-adjoint and that $R \cap(-R)=(0)$. Here R is the set of all self-adjoint elements linearly accessible [11, p. 448] from the set of all finite sums of elements of the form $x^{*} x$. This is related to a previous criterion of Kelley and Vaught [10] which however involves topological notions (in particular, the assumption that the involution is continuous).

If B is semi-simple with minimal one-sided ideals a simpler discussion of *-representations (§5) is possible even if B is incomplete. For example if B is primitive then B has a faithful*-representation if and only if $x x^{*}=0$ implies $x^{*} x=0$. The incomplete case has features not present in the Banach algebra case. In the former case, unlike the latter, a^{*}-representation may be discontinuous. A class of examples is provided in $\S 5$.
2. Arens*-algebras. Let B be a complex normed algebra with an involution $x \rightarrow x^{*}$. An involution is a conjugate linear anti-automorphism of period two. Elements for which $x=x^{*}$ are called self-adjoint (s. a.) and the set of s. a. elements is denoted by H. Let \mathfrak{F} be a Hilbert space and

[^0]$\mathfrak{F}(\mathfrak{F})$ be the algebra of all bounded linear operators on \mathfrak{S}. By a*-representation of B we mean a homomorphism $x \rightarrow T_{x}$ of B into some $\mathscr{C}(\mathfrak{l})$ where $T_{x^{*}}$ is the adjoint of $T_{x} . A^{*}$-representation which is one-to-one is called faithful.

We shall be mainly, but not exclusively, interested in the case where B is complete (a Banach algebra). In § 2 we shall assume throughout that B is a Banach algebra with an involution $x \rightarrow x^{*}$.

As in [5, p. 8] we set $x \circ y=x+y-x y$ and say that x is quasi-regular with quasi-inverse y if $x \circ y=y \circ x=0$. The quasi-inverse of x is unique, if it exists, and is denoted by x^{\prime}. As, for example, in [16, p. 617] we define the spectrum of $x, \operatorname{sp}(x)$, to be the set consisting of all complex numbers $\lambda \neq 0$ such that $\lambda^{-1} x$ is not quasi-regular, plus $\lambda=0$ provided there does not exist a subalgebra of B with an identity element and containing x as an invertible element. (The treatment of zero as a spectral value plays no role below.) The spectral radius $\rho(x)$ if x is defined to be $\sup |\lambda|$ for $\lambda \in s p(x)$.

We say that B is an Arens*-algebra [1] if there exists $k>0$ such that * $\left\|x^{*} x\right\| \geqq k\|x\|\left\|x^{*}\right\|, x \in B$. As usual, we say that B is a B^{*}-algebra if $\left\|x^{*} x\right\|=\|x\|^{2}, x \in B$.
2.1. Lemma. Let B an Arens*-algebra with $\left\|x x^{*}\right\| \geqq k\|x\|\left\|x^{*}\right\|$, $x \in B$. Then for each s. a. element $h, \rho(h) \geqq k\|h\|$ and $s p(h)$ is real.

That the spectrum of a s. a. element h is real is shown in [1, p. 273]. By use of the inequality $\left\|h^{2^{n}}\right\| \geqq k\left\|h^{2^{n-1}}\right\|^{2}$ as in [16, p. 626] it follows that $\rho(h) \geqq k\|h\|$. We shall show (Theorem 2.4) that the spectral conditions of Lemma 2.1 imply that B is an Arens*-algebra.
2.2. Lemma. Suppose that for each s. a. element $h, \rho(h) \geqq c\|h\|$ and $s p(h)$ is real, where $c>0$. Let h be s.a., $s p(h) \subset[-a, b]$ where $a \geqq 0$, $b \geqq 0$ and let $r>0$. Then
(1) $\left\|\left(-t^{-1} h\right)^{\prime}\right\|<r$ if $t>(1-c r) b / c r$ and $t>(1+c r) a / c r$,
(2) $\left\|\left(t^{-1} h\right)^{\prime}\right\|<r$ if $t>(1-c r) a / c r$ and $t>(1+c r) b / c r$.

Note that (2) follows from (1) as applied to the element-h. By [18, Theorem 3.4] the involution is continuous on B. Therefore h generates a closed*-subalgebra B_{0}. Let \mathfrak{M} be the space of regular maximal ideals of B_{0}. For $t>a$ set $u=\left(-t^{-1} h\right)^{\prime}$. By [8, Theorem 4.2], $u \in B_{0}$. It is readily seen that u is s. a. Since $-t^{-1} h+u+t^{-1} h u=0$ we have, for each $M \in \mathfrak{M}$, $u(M)=h(M) /(t+h(M))$. By, [8, p. 402] the spectrum of h is the same whether computed in B or in B_{0} so that $-a \leqq h(M) \leqq b$. Since $\lambda /(t+\lambda)$ is an increasing function of λ we see that $-a /(t-a) \leqq u(M) \leqq b /(t+b)$. Now $\rho(u)=\sup |u(M)|, M \in \mathfrak{M}$. Therefore, since u is s.a.,

$$
\begin{equation*}
c\|u\| \leqq \rho(u) \leqq \max [a /(t-a), b /(t+b)] \tag{2.1}
\end{equation*}
$$

From formula (2.1), $\|u\|<r$ if $a_{l}^{\prime}(t-a)<c r$ and $b /(t+b)<c r$. This yields (1).

Note that, under the given hypotheses, $c \leqq 1$.
2.3. Lemma. Let x and y be quasi-regular. Then $x+y$ is quasiregular if and only if $x^{\prime} y^{\prime}$ is quasi-regular.

The formulas $x^{\prime} \circ(x+y) \circ y^{\prime}=x^{\prime} y^{\prime}$ and $x+y=x \circ\left(x^{\prime} y^{\prime}\right) \circ y$ yield the desired result. Let $r>0$. If $\left\|x^{\prime}\right\|<r$ and $\left\|y^{\prime}\right\|<r^{-1}$ it follows from Lemma 2.3 and [12, p. 66] that $(x+y)^{\prime}$ exists.

Consider the situation of Lemma 2.2 and let h_{k} be s. a., $k=1,2$ where $N=\max \left(\rho\left(h_{1}\right), \rho\left(h_{2}\right)\right) . \quad$ By Lemma 2.2, $\left.\|\left(t^{-1} h_{k}\right)\right)^{\prime} \|<1$ and $\left\|\left(-t^{-1} h_{k}\right)^{\prime}\right\|<1$ if $t>(1+c) N / c$. Then, by Lemma 2.3,

$$
\begin{equation*}
s p\left(h_{1}+h_{2}\right) \subset[-(1+c) N / c,(1+c) N / c] . \tag{2.2}
\end{equation*}
$$

Suppose next that $s p\left(h_{k}\right) \subset[0, \infty), k=1,2$. Then $\left\|\left(t^{-1} h_{k}\right)^{\prime}\right\|<1$ if $t>(1+c) N / c$ and $\left\|\left(-t^{-1} h_{k}\right)^{\prime}\right\|<1$ if $t>(1-c) N / c$. Then by Lemma 2.3,

$$
\begin{equation*}
s p\left(h_{1}+h_{2}\right) \subset[-(1-c) N / c,(1+c) N / c] \tag{2.3}
\end{equation*}
$$

2.4. Theorem. Suppose that for each s. a. element $h, \rho(h) \geqq c\|h\|$ and $s p(h)$ is real, where $c>0$. Then B is an Arens*-algebra with $\left\|x x^{*}\right\| \geqq$ $k\|x\|\left\|x^{*}\right\|, x \in B$, where k can be chosen to be $c^{5} /(1+c)\left(1+2 c^{2}\right)$.

Let $x=u+i v$ where u and v are s. a. Then $x^{*} x=u^{2}+v^{2}+i(u v-v u)$, $x x^{*}=u^{2}+v^{2}+i(v u-u v)$ and $x x^{*}+x^{*} x=2 u^{2}+2 v^{2}$. We next compare $\rho\left(u^{2}\right)=[\rho(u)]^{2}$ and $\rho\left(v^{2}\right)$ with $\rho\left(x x^{*}\right)$. For this purpose we may suppose that $\rho(u) \geqq \rho(v)$ for otherwise we can replace x by $i x=-v+i u$. If $\lambda \neq 0$ then $\lambda \in \operatorname{sp}\left(x x^{*}\right)$ if and only if $\lambda \in s p\left(x^{*} x\right)$. Thus $\rho\left(x x^{*}\right)=\rho\left(x^{*} x\right)$. By (2.2), $s p\left(x x^{*}+x^{*} x\right) \subset\left[-(1+c) \rho\left(x x^{*}\right) / c,(1+c) \rho\left(x x^{*}\right) / c\right]$. Now $2 u^{2}=$ $x x^{*}+x^{*} x-2 v^{2}$. Let $r>0, t>0$. By Lemma 2.2,

$$
\begin{equation*}
\left\|\left[t^{-1}\left(x x^{*}+x^{*} x\right)\right]^{\prime}\right\|<r, t>(1+c r)(1+c) \rho\left(x x^{*}\right) / c^{2} r \tag{2.4}
\end{equation*}
$$

Since $s p\left(-2 v^{2}\right) \subset(-\infty, 0]$ and $\rho\left(2 v^{2}\right), \leqq \rho\left(2 u^{2}\right)$, by Lemma 2.2 we have, for $t>0$,

$$
\begin{equation*}
\left\|\left[t^{-1}\left(-2 v^{2}\right)\right]^{\prime}\right\|<r^{-1}, t>(r-c) \rho\left(2 u^{2}\right) / c \tag{2.5}
\end{equation*}
$$

we select $c<r<2 c$. For such r, Lemma 2.3 and formulas (2.4) and (2.5) show that $\left[t^{-1}\left(2 u^{2}\right)\right]^{\prime}$ exists if $t>\max \left\{(1+c r)(1+c) \rho\left(x x^{*}\right) / c^{2} r,(r-c) \rho\left(2 u^{2}\right) / c\right\}$. Now $(r-c) / c<1$ and $s p\left(2 u^{2}\right) \subset[0, \infty)$. Therefore, letting $r \rightarrow 2 c$, we have

$$
\begin{equation*}
\rho\left(2 u^{2}\right) \leqq\left(1+2 c^{2}\right)(1+c) \rho\left(x x^{*}\right) /\left(2 c^{3}\right) . \tag{2.6}
\end{equation*}
$$

On the other hand $\|x\| \leqq\|u\|+\|v\| \leqq[\rho(u)+\rho(v)] / c \leqq 2 \rho(u) / c$ and $\left\|x^{*}\right\| \leqq 2 \rho(u) / c$. Therefore, by (2.6),

$$
\begin{equation*}
\|x\|\left\|x^{*}\right\| \leqq 4 \rho\left(u^{2}\right) / c^{2} \leqq(1+2 c)(1+c) \rho\left(x x^{*}\right) / c^{5} \tag{2.7}
\end{equation*}
$$

But $\rho\left(x x^{*}\right) \leqq\left\|x x^{*}\right\|$. This together with (2.7) completes the proof.
2.5. Corollary. Under the hypotheses of Theorem 2.4, the norm of the involution as an operator on B does not exceed $(1+c)\left(1+2 c^{2}\right) / c^{5}$.

In (2.7) we may replace $\|x\|\left\|x^{*}\right\|$ by $\left\|x^{*}\right\|^{2}$ and $\rho\left(x x^{*}\right)$ by $\|x\|\left\|x^{*}\right\|$. This gives $\left\|x^{*}\right\| \leqq(1+c)\left(1+2 c^{2}\right)\|x\| / c^{5}$.

We denote by $P(N)$ the set of $x \in B$ such that $s p\left(x^{*} x\right) \subset[0, \infty)\left(s p\left(x^{*} x\right) \subset\right.$ ($-\infty, 0]$).
2.6. Lemma. For an Arens*-algebra B the following are equivalent.
(a) B is a B^{*}-algebra in an equivalent norm.
(b) $N=(0)$.
(c) $P=B$.

Suppose that $N=(0)$. Let $y \in B$. Since the involution on B is continuous, the element $y^{*} y$ generates a closed*-subalgebra B_{0}. Let \mathfrak{M} be the space of regular maximal ideals of B_{0}. By [1, p. 279] the commutative algebra B_{0} is *-isomorphic to $C(\mathfrak{M})$. Also $s p\left(y^{*} y\right)$ is real. Hence there exist $u, v \in B_{0}$ such that $u(M)=\sup \left(y^{*} y(M), 0\right)$ and $v(M)=-\inf \left(y^{*} y(M), 0\right)$, $M \in \mathfrak{M}$. Then u and v are s. a., $y^{*} y=u-v$ and $u v=0$. As in [14, p. 281], $(y v)^{*}(y v)=-v^{3}$ so that $y v=0$ by hypothesis. Then $v=0$ and $s p\left(y^{*} y\right) \subset$ $[0, \infty)$.

A theorem of Gelfand and Neumark [13] asserts that if B is semi-simple, has a continuous involution, is symmetric $(B=P)$ and has an identity then there exists a faithful*-representation $x \rightarrow T_{x}$ of B. This theorem is also valid when B has no identity [4, Theorem 2.16]. In our situation, B is semi-simple [18, Lemma 3.5] and the involution is continuous. Thus a faithful*-representation exists. This representation is bi-continuous by [18, Corollary 4.4].

That (a) implies (b) follows from the well-known fact that any B^{*}-algebra is symmetric [14, p. 207 and p. 281].

The equation $4 t^{3}-2 t^{2}+t-1=0$ has exactly one real root a. This root a lies between ${ }^{\circ} .676$ and . 677 .
2.7. ThEOREM. Suppose that for each s. a. element $h, \rho(h) \geqq c\|h\|$ and $s p(h)$ is real, where $c>0$. Then there is an equivalent norm for B in which B is a B^{*}-algebra if $c>a$.

Suppose that $s p\left(x^{*} x\right) \subset(-\infty, 0]$. By Lemma 2.6 it is sufficient to show that $x=0$. Suppose that $x \neq 0$. By Theorem 2.4 it is clear that $x^{*} x \neq 0$ and $\rho\left(x^{*} x\right) \neq 0$. Set $x=u+i v$ where u and v are s.a. As in the proof of Theorem 2.4, $x x^{*}+x^{*} x=2 u^{2}+2 v^{2}$ and we may assume that $\rho(u) \geqq \rho(v)$. Since $\operatorname{sp}\left(u^{2}\right) \subset[0, \infty), s p\left(v^{2}\right) \subset[0, \infty)$ formula 2.3 shows that $s p\left(2 u^{2}+2 v^{2}\right) \subset$ $\left[-(1-c) \rho\left(2 u^{2}\right) / c,(1+c) \rho\left(2 u^{2}\right) / c\right]$. Let $r>0, t>0$. From Lemma 2.2,
$\left\|\left[-t^{-1}\left(2 u^{2}+2 v^{2}\right)\right]^{\prime}\right\|<r$ if $t>(1-c r)(1+c) \rho\left(2 u^{2}\right) /\left(c^{2} r\right)$ and $t>(1+c r)$ $(1-c) \rho\left(2 u^{2}\right) /\left(c^{2} r\right)$.

We write $x^{*} x=2 u^{2}+2 v^{2}+\left(-x x^{*}\right)$. By Lemma 2.2, $\left\|\left[-t^{-1}\left(-x x^{*}\right)\right]^{\prime}\right\|<$ r^{-1} if $t>0$ and $t>(r-c) \rho\left(x^{*} x\right) / c$ since $s p\left(-x x^{*}\right) \subset\left[0, \rho\left(x^{*} x\right)\right]$. By Lemma 2.3, $\left(-t^{-1} x^{*} x\right)^{\prime}$ exists if $t>\max \left\{(1+c r)(1-c) \rho\left(2 u^{2}\right) / c^{2} r,(1-c r)(1+c) \rho\left(2 u^{2}\right) /\right.$ $\left.c^{2} r,(r-c) \rho\left(x^{*} x\right) / c\right\}$. Since $s p\left(x^{*} x\right) \subset(-\infty, 0], \rho\left(x^{*} x\right)$ cannot exceed this maximum. Now select $r, 1 \leqq r<2 c$ which is possible since $c>a$. Then $(r-c) / c<1$ and $(1+c r)(1-c) \geqq(1-c r)(1+c)$. Therefore $\rho\left(x^{*} x\right) \leqq$ $(1+c r)(1-c) \rho\left(2 u^{2}\right) / c^{2} r$. Letting $r \rightarrow 2 c$ we obtain

$$
\begin{equation*}
\rho\left(x^{*} x\right) \leqq\left(1+2 c^{2}\right)(1-c) \rho\left(2 u^{2}\right) / 2 c^{3} . \tag{2.8}
\end{equation*}
$$

Next we express $-2 u^{2}=2 v^{2}+\left(-x x^{*}-x^{*} x\right)$. By formula (2.3), $s p\left(-x x^{*}-x^{*} x\right) \subset\left[-(1-c) \rho\left(x^{*} x\right) / c,(1+c) \rho\left(x^{*} x\right) / c\right]$. Recall that $\rho\left(2 v^{2}\right) \leqq$ $\rho\left(2 u^{2}\right)$. Repeating the above reasoning we see that for $r>0, t>0$, $\left(-t^{-1}\left(-2 u^{2}\right)\right)^{\prime}$ exists for $t>\max \{1-c r)(1+c) \rho\left(x^{*} x\right) / c^{2} r,(1+c r)(1-c) \rho\left(x^{*} x\right) \mid$ $\left.c^{2} r,(r-c) \rho\left(2 u^{2}\right) / c\right\}$. But $s p\left(-2 u^{2}\right) \subset(-\infty, 0]$. Then by the argument above we obtain

$$
\begin{equation*}
\rho\left(2 u^{2}\right) \leqq\left(1+2 c^{2}\right)(1-c) \rho\left(x^{*} x\right) / 2 c^{3} \tag{2.9}
\end{equation*}
$$

From formulas (2.8) and (2.9) we see that $\left(1+2 c^{2}\right)(1-c) \geqq 2 c^{3}$ or $4 c^{3}-2 c^{2}+c-1 \leqq 0$. This gives $c \leqq a$ which is impossible by hypothesis.

Thus if $c>a$ we have $N=(0)$. We subsequently show (Corollary 2.11) that, in any case, N and P are closed in an Arens*-algebra B.

Following Rickart [16, p. 625] we say that B is an A^{*}-algebra if there exists in B an auxiliary normed-algebra norm $|x|$ (B need not be complete it this norm) such that, for some $c>0,\left|x^{*} x\right| \geqq c|x|^{2}$. He raises the question of whether every A^{*}-algebra has a faithful*-representation.
2.8. Corollary. An A^{*}-algebra B where $\left|x^{*} x\right| \geqq c|x|^{2}, x \in B$, in the auxiliary norm has a faithful*-representation if $c>a$.

Observe that $\left|x^{*} \| x\right| \geqq c|x|^{2}$ so that $\left|x^{*}\right| \leqq c^{-1}|x|, x \in B$. Thus the involution on B is continuous in the topology provided by the norm $|x|$. Let B_{0} be the completion of B in the norm $|x|$. We extend the function $|x|$ from B to B_{0} by continuity. Likewise the involution $x \rightarrow x^{*}$ can be extended by continuity to provide a continuous involution $y \rightarrow y^{*}$ on B_{0}. We then have $\left|y^{*} y\right| \geqq c|y|^{2}, y \in B_{0}$. As in [16, p. 626] we obtain $\rho(h) \geqq c|h|$ for h s. a. in B_{0} where $\rho(h)$ is the spectral radius computed for h as an element of the Banach algebra $B_{0}, \rho(h)=\lim \left|h^{n}\right|^{1 / n}$. Also $\left|y^{*} y\right| \geqq c^{2}\left|y^{*}\right||y|$, $y \in B_{0}$, so that B_{0} is an Arens*-algebra. Hence, by Lemma 2.1, the spectrum of each s. a. element of B_{0} is real. By Theorem 2.7, B_{0} is a B^{*}-algebra in an equivalent norm. Therefore B has the desired faithful*-representation.

We have no information on the truth or falsity of Theorem 2.7 for $c \leqq a$.

To prove Theorem 2.7 without restriction on the size of c one can assume without loss of generality that B has an identity. For suppose that B has no identity, $\left\|x^{*} x\right\| \geqq k\left\|x^{*}\right\|\|x\|, x \in B$. Adjoin an identity e to B to form the algebra B_{1} with the norm defined in B_{1} by the rule

$$
\|\lambda e+x\|=\sup _{\substack{\|y\|=1 \\ y \in B}}\|\lambda y+x y\|
$$

Then B_{1} is a Banach algebra with the involution $(\lambda e+x)^{*}=\bar{\lambda} e+x^{*}[1, \mathrm{p}$. 275]. By changing in minor ways arguments in [14, p. 207] we see that B_{1} is an Arens*-algebra. There is a constant K such that $\left\|x^{*}\right\| \leqq K\|x\|$, $x \in B$. Choose $0<r<1$. Given $\lambda e+x \in B_{1}$ there exists $y \in B,\|y\|=1$, such that

$$
\begin{aligned}
r^{2}\|\lambda e+x\|^{2} & <\|\lambda y+x y\|^{2} \leqq K\left\|(\lambda y+x y)^{*}\right\|\|\lambda y+x y\| \\
& \leqq K k^{-1}\left\|y^{*}(\lambda e+x)^{*}(\lambda e+x) y\right\| \\
& \leqq K^{2} k^{-1}\left\|(\lambda e+x)^{*}(\lambda e+x)\right\| .
\end{aligned}
$$

Then
$\left\|(\lambda e+x)^{*}(\lambda e+x)\right\| \geqq k K^{-2}\|\lambda e+x\|^{2} \geqq\left(k K^{-2}\right)^{2}\|\lambda e+x\|\left\|(\lambda e+x)^{*}\right\|$.
We use this fact later.
Some results on spectral theory in Arens*-algebras were obtained by Newburgh [15]. In a B^{*}-algebra $\rho(x)$ is a continuous function on the set H of s.a. elements since $\rho(h)=\|h\|, h \in H$. This property holds for all Arens*-algebras.
2.9. Theorem. In any Arens*-algebra, $\rho(x)$ is a continuous function on H.

We assume that $\rho(h) \geqq c\|h\|$ and $s p(h)$ is real, $h \in H$. We shall use the following principle [12, p. 67]. If y^{\prime} exists and $\|z\|<\left(1+\left\|y^{\prime}\right\|\right)^{-1}$ then $(y+z)^{\prime}$ exists.

Let $h \in H, h \neq 0$. Select $t>\rho(h)$ and set $u=\left(t^{-1} h\right)^{\prime}$. We proceed as in the proof of Lemma 2.2. Let B_{0} be the closed*-subalgebra generated by h and let \mathfrak{M} be its space of regular maximal ideals. Then $u \in B_{0}$. Since $t^{-1} h \circ u=0$ we obtain, for each $M \in \mathfrak{M}, u(M)=h(M) /(h(M)-t)$. Since $\lambda /(\lambda-t)$ is a decreasing function of $\lambda, \sup |u(M)|$ can be majorized by $\rho(h) /(t-\rho(h))$. Then $(1+\|u\|)^{-1} \geqq\left(1+c^{-1} \rho(u)\right)^{-1} \geqq c(t-\rho(h)) ;(c t+(1-c) \rho(h))=$ $a(t)$, say.

Therefore $t^{-1} h+t^{-1} h_{1}$ is quasi-regular if $\left\|t^{-1} h_{1}\right\|<\alpha(t)$ or if

$$
\begin{equation*}
c t^{2}-c\left[\rho(h)+\left\|h_{1}\right\|\right] t-(1-c) \rho(h)\left\|h_{1}\right\|>0 \tag{2.10}
\end{equation*}
$$

We apply this to $h_{1} \in H,\left\|h_{1}\right\|<\rho(h)$. The larger zero d of the left hand side of (2.10) is given by

$$
\begin{equation*}
2 d=\rho(h)+\left\|h_{1}\right\|+\left[\left(\rho(h)-\left\|h_{1}\right\|\right)^{2}+4 c^{-1} \rho(h)\left\|h_{1}\right\|\right]^{1 / 2} \tag{2.11}
\end{equation*}
$$

The radical term of (2.11) is majorized by $\rho(h)-\left\|h_{1}\right\|+2\left(c^{-1} \rho(h)\left\|h_{1}\right\|\right)^{1 / 2}$. Hence $d \leqq \rho(h)+\left(c^{-1} \rho(h)\left\|h_{1}\right\|\right)^{1 / 2}$. Thus $t \notin s p\left(h+h_{1}\right)$ if $t>\rho(h)+\left(c^{-1} \rho(h)\left\|h_{1}\right\|\right)^{1 / 2}$. Likewise $t \notin s p\left(-h-h_{1}\right)$ under the same condition. This shows that

$$
\begin{equation*}
\rho\left(h+h_{1}\right) \leqq \rho(h)+\left(c^{-1} \rho(h)\left\|h_{1}\right\|\right)^{1 / 2} . \tag{2.12}
\end{equation*}
$$

provided $h_{1} \in H$ and $\left\|h_{1}\right\|<\rho(h)$.
Note that $\rho\left(h+h_{1}\right) \geqq c\left\|h+h_{1}\right\| \geqq c\left(\|h\|-\left\|h_{1}\right\|\right) \geqq c\left(\rho(h)-\left\|h_{1}\right\|\right)$. Therefore if $\left\|h_{1}\right\|<c\left(\rho(h)-\left\|h_{1}\right\|\right)$ or equivalently if $\left\|h_{1}\right\|<c \rho(h) /(1+c)$ we have $\left\|h_{1}\right\|<\rho\left(h+h_{1}\right)$. We may then apply the above analysis to the pair of s. a. elements $\left(h+h_{1}\right),-h_{1}$, to obtain (if $\left\|h_{1}\right\|<c \rho(h) /(1+c)$)

$$
\begin{equation*}
\rho(h) \leqq \rho\left(h_{1}+h_{2}\right)+\left(c^{-1} \rho\left(h+h_{1}\right)\left\|h_{1}\right\|^{1 / 2} .\right. \tag{2.13}
\end{equation*}
$$

From (2.12), $\rho\left(h+h_{1}\right) \leqq\left[c^{-1 / 2}+1\right] \rho(h)$. Inserting this estimate in the radical term of (2.13) we obtain

$$
\begin{equation*}
\rho(h) \leqq \rho\left(h+h_{1}\right)+\left(c^{-1}+c^{-3 / 2}\right)^{1 / 2}\left(\rho(h)\left\|h_{1}\right\|\right)^{1 / 2} \tag{2.14}
\end{equation*}
$$

Combining (2.12) and (2.14) we obtain

$$
\left|\rho\left(h+h_{1}\right)-\rho(h)\right| \leqq\left[\left(c^{-1}+c^{-3 / 2}\right) \rho(h)\left\|h_{1}\right\|\right]^{1 / 2}
$$

provided $\left\|h_{1}\right\|<c \rho(h) /(1+c)$.
This show that $\rho(x)$ is continuous on H at $x=h$. Clearly we have continuity on H at $x=0$.

For x s.a. in an Arens*-algebra let $[a(x), b(x)]$ be the smallest closed interval containing $s p(x)$.
2.10. Corollary. For an Arens*-algebra $B, a(x)$ and $b(x)$ are continuous functions of x on H.

As remarks above indicate, there is no loss of generality in supposing that B has an identity e. Let h be s.a. Choose $\lambda>0$ such that $s p(\lambda e+h) \subset$ $[1, \infty)$. Let $h_{n} \rightarrow h$, where each h_{n} is s.a., and choose $0<\varepsilon<1$. We have $\rho(\lambda e+h)=b(\lambda e+h)=\lambda+b(h)$. By the "spectral continuity theorem" (see e.g. [15, Theorem 1]) for all n sufficiently large $s p\left(\lambda e+h_{n}\right) \subset$ $(1-\varepsilon, b(\lambda e+h)+\varepsilon)$. Also for all n sufficiently large $\left|\rho\left(\lambda e+h_{n}\right)-\rho(\lambda e+h)\right|<\varepsilon$ by Theorem 2.9. Since, for such $n, s p\left(\lambda e+h_{n}\right) \subset(0, \infty)$, then $\lambda+b\left(h_{n}\right)=$ $\rho\left(\lambda e+\mathrm{h}_{n}\right) \rightarrow \lambda+b(h)$. Therefore $b\left(h_{n}\right) \rightarrow b(h)$. A similar argument shows that $a\left(h_{n}\right) \rightarrow a(h)$.
2.11. Corollary. For an Arens*-algebra B, N and P are closed sets.

This follows directly from the continuity of the involution on B and Corollary 2.10. Likewise the set H^{+}of all s.a. elements whose spectrum is non-negative is closed.
3. Faithful*-representations. Let B be a Banach algebra with an involution $x \rightarrow x^{*}$. Our aim here is to give necessary and sufficient conditions for B to possess a faithful*-representation. Our criterion (Theorem 3.4) is in terms of algebraic and linear space properties of B. A criterion of Kelley and Vaught [10] is largely topological in nature. To discuss this we first prove a simple lemma. We adopt the following notation. Let R_{0} be the collection of all finite sums of elements of B of the form $x^{*} x$. Let $R=$ $\left\{x \in H \mid\right.$ there exists $y \in R_{0}$ such that $\left.t y+(1-t) x \in R_{0}, 0<t \leqq 1\right\}$. In the notation of Klee [11, p. 448], $R=\operatorname{lin} R_{0}$ (computed in the real linear space H, the union in H of R_{0} and the points of H linearly accessible from R_{0}). Let P be the closure in B of R_{0}. If B has an identity e and the involution is continuous then H is closed, e is an interior point of $R_{0}[10]$ and $R=P$ [11, p. 448]. If B has no identity or if the involution is not assumed continuous we see no relation, in general, between R and P other than $R \subset P$.
3.1. Lemma. Suppose that B has a continuous involution $x \rightarrow x^{*}$ and an identity e. Then there is an equivalent Banach algebra norm $\|x\|_{1}$ where $\left\|x^{*}\right\|_{1}=\|x\|_{1}, x \in B$, and $\|e\|_{1}=1$.

We first introduce an equivalent norm $\|x\|_{0}$ in which $\left\|x^{*}\right\|_{0}=\|x\|_{0}$, $x \in B$, by setting $\|x\|_{0}=\max \left(\|x\|,\left\|x^{*}\right\|\right)$. Let $L_{x}\left(R_{x}\right)$ be the operator on B defined by left (right) multiplicaton by $x ; L_{x}(y)=x y$ and $R_{x}(y)=y x$. Let $\left\|L_{x}\right\|$ be the norm of L_{x} as an operator on B where the norm $\|y\|_{0}$ is used for B. $\left\|R_{x}\right\|$ is defined in the same way. We set $\|x\|_{1}=\max \left(\left\|L_{x}\right\|\right.$, $\left.\left\|R_{x}\right\|\right)$. Then $\|x+y\|_{1} \leqq\|x\|_{1}+\|y\|_{1}$ and $\|x y\|_{1} \leqq\|x\|_{1}\|y\|_{1}$. Clearly $\|x\|_{1} \leqq\|x\|_{0}$. Moreover $\left\|L_{x}\right\| \geqq\|x\|_{0} /\|e\|_{0}$ and the norms $\|x\|_{0}$ and $\|x\|_{1}$ are equivalent. Trivially $\|e\|_{1}=1$. Also

$$
\left\|L_{x^{*}}\right\|=\sup _{\|y\|_{0}=1}\left\|x^{*} y\right\|_{0}=\sup _{\|y\| \|_{0}=1}\left\|y^{*} x\right\|_{0}=\left\|R_{x}\right\| .
$$

Then $\left\|x^{*}\right\|_{1}=\max \left(\left\|L_{x^{*}}\right\|,\left\|R_{x^{*}}\right\|\right)=\max \left(\left\|L_{x}\right\|,\left\|R_{x}\right\|\right)=\|x\|_{1}$.
In view of Lemma 3.1 the result [10, p. 51] of Kelley and Vaught in question may be expressed as follows.
3.2. Theorem. Let B be a Banach algebra with an identity and an involution $x \rightarrow x^{*}$. Then B has a faithful*-representation if and only if ${ }^{*}$ is continuous and $P \cap(-P)=(0)$.

As it stands this criterion breaks down if B has no identity. For let $B=C([0,1])$ with the usual involution $x \rightarrow x^{*}$ and norm. Let B_{0} be the algebra obtained from B by keeping the norm and involution but defining all products to be zero. Then* is still continuous and $P \cap(-P)=(0)$. But B_{0} has no faithful*-representation, for otherwise B_{0} would be semi-simple [16, p. 626].

As in [4] we call the involution $x \rightarrow x^{*}$ in B regular if, for h s.a., $\rho(h)=0$ implies $h=0$. By [4, Lemma 2.15]. * is regular if and only if every
maximal commutative *-subalgebra of B is semi-simple. Also every maximal commutative*-subalgebra of B is closed [4, Lemma 2.13].

By a positive linear functional f on B we mean a linear functional such that $f\left(x^{*} x\right) \geqq 0, x \in B$. The functional f is not assumed to be continuous. If B has an identity then [13, p. 115], $f(h)$ is real for h s.a. and $f\left(x^{*}\right)=\overline{f\left(x^{*}\right)}$. Trivial examples show this to be false, in general. However, from the positivity of $f, f\left(x^{*} y\right)$ and $f\left(y^{*} x\right)$ are complex conjugates which is the fact really needed for the introduction of the inner product in Theorem 3.4.
3.3 Lemma. Let the involution on B be regular. Then
(1) a positive linear f satisfies the inequalities

$$
\begin{align*}
& f\left(y^{*} h y\right) \leqq f\left(y^{*} y\right)\|h\|, y \in B, h \in H \tag{3.1}\\
& f\left(y^{*} x^{*} x y\right) \leqq f\left(y^{*} y\right)\left\|x^{*} x\right\|, x, y \in B \tag{3.2}
\end{align*}
$$

(2) if B has an identity e, any $h \in H,\|e-h\| \leqq 1$ has a s.a. square root and, moreover, any positive linear functional is continuous on H.

Suppose first that B has an identity $e,\|e-h\| \leqq 1, h$ s.a. In the course of the proof of [4, Theorem 2.16] it was shown that h has a s.a. square root. Next do not assume that B has an identity. Let B_{1} be the Banach algebra obtained by adjoining an identity e to B. Consider the power series $(1-t)^{1 / 2}=1-t / 2-t^{2} / 8 \cdots$. Let $h \in B, h$ s.a. and $\|h\| \leqq 1$. Then the expansion $-h / 2-h^{2} / 8-\cdots$ converges to an element $z \in B$. Let B_{0} be a maximal abelian*-subalgebra of B containing h. As noted above, B_{0} is a semi-simple Banach algebra. The involution is continuous on B_{0} ($[16$, Corollary 6.3]). Therefore z is s.a. Also $(e+z)^{2}=e-h$. Let $y \in B$ and set $k=y+z y$. Then $k^{*} k=\left(y^{*}+y^{*} z\right)(y+z y)=y^{*}(e+z)^{2} y=y^{*} y-y^{*} h y$. For any positive linear functional f on $B, f\left(k^{*} k\right) \geqq 0$ which yields (3.1). Formula (3.2) is a special case.

Suppose that B has an identity e. If we set $y=e$ in (3.1) we obtain $|f(h)| \leqq f(e)\|h\|$ which shows that f is continuous on H.
3.4. Theorem. B has a faithful*-representation if and only if* is regular and $R \cap(-R)=(0)$.

Suppose that B has a faithful*-representation $x \rightarrow T_{x}$ as operators on a Hilbert space \mathfrak{S}. Let h be s.a. and $\rho(h)=0$. Then $\rho\left(T_{h}\right)=0$. As T_{h} is a s.a. operator on a Hilbert space, $T_{h}=0$ and therefore $h=0$. Thus the involution is regular. Let $x \in R \cap(-R)$ and let f be a positive linear functional on B. Then clearly $f(y) \geqq 0, y \in R_{0}$. From the definition of R there exists $y \in R_{0}$ such that $t f(y)+(1-t) f(x) \geqq 0,0<t \leqq 1$. It follows that $f(x) \geqq 0$ and hence $f(x)=0$. Let $\xi \in \mathfrak{S}$ and set $f(x)=\left(T_{x} \xi, \xi\right)$. Then $\left(T_{x} \xi, \xi\right)=0$ for all $\xi \in \mathfrak{S}$. Since T_{x} is a s.a. operator we see that $T_{x}=0$ and $x=0$.

Suppose now that* is regular and $R \cap(-R)=(0)$. We show first that the regularity of the involution makes available a general representation procedure of Gelfand and Neumark [13].

Let f be a positive linear functional on B. Let $I_{f}=\left\{x \mid f\left(x^{*} x\right)=0\right\} . I_{f}$ is a left ideal of B. Let π be the natural homomorphism of B onto B / I_{f}. Since $f\left(x^{*} y\right)=f\left(y^{*} x\right), \mathfrak{S}_{f}^{\prime}=B / I_{f}$ is a pre-Hilbert space if we define $(\pi(x)$, $\pi(y))=f\left(y^{*} x\right)$. As in [13, p. 120] we associate with $y \in B$ an operator A_{y}^{f} on $\mathfrak{S}_{f}^{\prime}$ defined by $A_{y}^{f}[\pi(x)]=\pi(y x)$. Formula (3.2) yields

$$
\begin{equation*}
\left\|A_{y}^{f}[\pi(x)]\right\|^{2}=f\left(x^{*} y^{*} y x\right) \leqq\left\|y^{*} y\right\|\|\pi(x)\|^{2} \tag{3.3}
\end{equation*}
$$

Thus A_{y}^{f} is a bounded operator with norm not exceeding $\left\|y^{*} y\right\|^{1 / 2}$. It may then be extended to T_{y}^{f}, a bounded operator on the completion \mathfrak{K}_{f} of $\mathfrak{W}_{f}^{\prime}$. The mapping $x \rightarrow T_{x}^{f}$ is a *-representation of B with kernel $\left\{y \in B \mid y x \in I_{f}\right.$, for all $x \in B\}=K$. Note that $K^{*}=K$.

Now take the direct sum \mathfrak{S} of the Hilbert spaces \mathfrak{S}^{f} as f ranges over all positive linear functionals on $B([13, \mathrm{p} .95])$. Since $\left\|T_{y}^{f}\right\| \leqq\left\|y^{*} y\right\|^{1 / 2}$ by (3.3) and this estimate is independent of f, the direct sum ([13, p. 113]) $x \rightarrow T_{x}$ of the representations $x \rightarrow T_{x}^{f}$ yields a*-representation of B as bounded operators on \mathfrak{S} with kernel $\left\{y \in B \mid y x \in \cap I_{f}\right.$, for all $\left.x \in B\right\}$. If B has an identity, the kernel is the reducing ideal of B ([13, p. 130]), namely $\cap I_{f}$.

Supppose first that B has an identity e. The set R_{0} has the property that $x, y \in R_{0}, \lambda, \mu \geqq 0$ imply $\lambda x+\mu y \in R_{0}$. By Lemma 3.3, $R_{0} \supset$ $\{x \in H \mid\|e-x\| \leqq 1\}$. Thus e is an interior point of R_{0}. By the theory of convex sets in normed linear spaces, R is the closure in H of R_{0} and R is a closed cone in H ([11, p. 448]).

Let f be a positive linear functional on B. By Lemma 3.2, f is continuous on H. Also $f(w) \geqq 0, w \in R$. Let H^{\prime} be the conjugate space of H and $G=\left\{g \in H^{\prime} \mid g(w) \geqq 0, w \in R\right\}$. It is easy to see ([10, p. 48]) that G, the dual cone of R, is the set of linear functionals on H which are the restrictions to H of positive linear functional on B. There is no loss generality in assuming that $\|e\|=1$. Let $x \in H$. By [10, Lemma 1.3], $\operatorname{dist}(-x, R)=\sup \{g(x) \mid g \in G, g(e) \leqq 1\}$.

We show that $R \cap(-R)=H \cap\left(\cap I_{f}\right)$. Let $y \in H, y \in \cap I_{f}$. For any fixed $f, T_{y}^{f}=0$ and $\left(T_{y}^{f} \xi, \xi\right)=0, \xi \in \mathcal{S}_{j}$. Then $(\pi(y x), \pi(x))=0$ for all $x \in B$ in the notation used above. Therefore $f\left(x^{*} y x\right)=0, x \in B$. Setting $x=e$ we see that $f(y)=0$. Then by the distance formula, $-y \in R$. Likewise $y \in R$. Suppose conversely that $y \in R \cap(-R)$. It is easy to see that for each $z \in B, z^{*} R_{0} z \subset R_{0}$. Therefore $z^{*} R z \subset R$. Hence $z^{*} y z \in R \cap(-R), z \in B$. From the distance formula, sup $\left\{f\left(z^{*} y z\right) \mid f\right.$ positive, $\left.f(e) \leqq 1\right\}=0=$ $\sup \left\{f\left(-z^{*} y z\right) \mid f\right.$ positive, $\left.f(e) \leqq 1\right\}$. Hence $f\left(z^{*} y z\right)=0$ for each positive linear functional. Then $\left(T_{y}^{f} \pi(z), \pi(z)\right)=0$ for all z whence $T_{y}^{f}=0$. Therefore $T_{y}=0$ and $y \in H \cap\left(\cap I_{f}\right)$.

This proves the theorem in case B has an identity. Suppose that B has no identity. Let B_{1} be the algebra obtained by adjoining an identity e to B. We extend the involution to B_{1} by setting $(\lambda e+x)^{*}=\overline{\lambda e}+x^{*}$. The involution on B_{1} is regular [4, Lemma 2.14]. Let R_{0}^{\prime} and R^{\prime} be the sets R_{0} and R respectively computed for the algebra B_{1}. By the above it is sufficient to show that $R \cap(-R)=(0)$ implies $R^{\prime} \cap\left(-R^{\prime}\right)=(0)$. Suppose that $R \cap(-R)=(0)$.

Let $x, y \in B$. Then $y^{*}(\lambda e+x)^{*}(\lambda e+x) y=(\lambda y+x y)^{*}(\lambda y+x y)$. This shows that $y^{*} R_{0}^{\prime} y \subset R_{0}$ which implies $y^{*} R^{\prime} y \subset R$. Note also that B is semisimple [18, Lemma 3.5] which implies that $z B=(0)$, or $B z=(0), z \in B$, can hold only for $z=0$.

Suppose that $\lambda e+x \in R^{\prime} \cap\left(-R^{\prime}\right)$ where $x \in B$ and λ is a scalar. We derive a contradiction from $\lambda \neq 0$. For every $y \in B, y^{*}(\lambda e+x) y \in R \cap(-R)$. Setting $u=-x / \lambda$ we have $y^{*}(e-u) y=0$ or $y^{*} y=y^{*} u y$ for all $y \in B$. Then

$$
\begin{equation*}
h^{2}=h u h, h \text { s.a. } \tag{3.4}
\end{equation*}
$$

Let h_{1} and h_{2} be s.a. Then $\left(h_{1}+h_{2}\right)^{2}=\left(h_{1}+h_{2}\right) u\left(h_{1}+h_{2}\right)$. From (3.4) we obtain

$$
\begin{equation*}
h_{1} h_{2}+h_{2} h_{1}=h_{1} u h_{2}+h_{2} u h_{1} \tag{3.5}
\end{equation*}
$$

Also $\left(h_{1}-i h_{2}\right)\left(h_{1}+i h_{2}\right)=\left(h_{1}-i h_{2}\right) u\left(h_{1}+i h_{2}\right) \quad$ From (3.4) we get

$$
\begin{equation*}
h_{2} h_{1}-h_{1} h_{2}=h_{2} u h_{1}-h_{1} u h_{2} \tag{3.6}
\end{equation*}
$$

From (3.5) and (3.6) we see that $h_{1} h_{2}=h_{1} u h_{2}$. Consequently for h_{k} s.a., $k=$ $1,2,3,4$, we see that $\left(h_{1}+i h_{2}\right)\left(h_{3}+i h_{4}\right)=\left(h_{1}+i h_{2}\right) u\left(h_{3}+i h_{4}\right)$. In other words

$$
\begin{equation*}
z w=z u w, z, w \in B \tag{3.7}
\end{equation*}
$$

From (3.7) $(z-z u) w=0$ for all $w \in B$ so that $z=z u$ for each z. Hence u is a right identity for B. Likewise from $z(w-u w)=0$ for all $z \in B$ we see that u is an identity for B. But this is impossible since we are considering the case where B has no identity.

We now have $x \in R^{\prime} \cap\left(-R^{\prime}\right)$. Then $y^{*} x y=0$ for all $y \in B$. Therefore $h x h=0, h$ s.a. Also for h_{k} s.a., $k=1,2,\left(h_{1}+h_{2}\right) x\left(h_{1}+h_{2}\right)=0$ so that $h_{2} x h_{1}+h_{1} x h_{2}=0$. Also $\left(h_{1}-i h_{2}\right) x\left(h_{1}+i h_{2}\right)=0$ so that $h_{1} x h_{2}-h_{2} x h_{1}=0$. Therefore $h_{1} x h_{2}=0$. It follows that $z x w=0$ for all $z, w \in B$. This implies that $x=0$ and completes the proof.
4. Preliminary ring theory. Let R be a semi-simple ring with minimal one-sided ideals. For a subset A of R let $\mathcal{R}(A)=\{x \in R \mid x A=(0)\}$ and $\mathfrak{R}(A)=\{x \in R \mid A x=(0)\}$. Consider a two-sided I of R. If $x \in R(I), y \in R$, $z \in I$ then $z y \in I, z(y x)=0$ so that $\Re(I)$ is a two-sided ideal of R. Therefore $\mathfrak{R}(I) I$ is an ideal. But $[\Re(I) I]^{2}=(0)$. Thus, by semi-simplicity, $\mathfrak{R}(I) I=(0)$
and $\mathfrak{R}(I) \subset \mathscr{R}(I)$. Likewise we have $\mathscr{R}(I) \subset \mathfrak{R}(I)$ and thus $\Re(I)=\mathcal{R}(I)$. Let S be the socle [5, p. 64] of R. This is the algebraic sum of the minimal left (right) ideals of R. S is a two-sided ideal. Therefore $\mathcal{R}(S)=\Re(S)$. This set we denote by S^{\perp}. Note that $S \cap S^{\perp}=(0)$.

We call an idempotent e of R a minimal idempotent if $e R$ is a minimal right ideal.
4.1. Lemma. (a) Let I be a left (right) ideal of $R, I \neq(0)$. Then I contains no minimal left (right) ideal of R if and only if $I \subset S^{\perp}$.
(b) R / S^{\perp} is semi-simple. If S_{0} is the socle of R / S^{\perp} then $S_{0}^{\perp}=(0)$.

Let $I \neq(0)$ be a left ideal of R. Suppose that $I \subset S^{\perp}$. Then I cannot contain a minamal left ideal J of R for any such J would be contained in $S \cap S^{\perp}$. Next suppose that $I \not \subset S^{\perp}$. We must show that I contains a minimal left ideal of R. There exists a minimal idempotent e such that e $I \neq(0)$. Choose $u \in I$ such that $e u \neq 0$. By semi-simplicity and the minimality of $e R, e R=e u R$. Thus there exists $z \in R$ such that $e u z=e$. Since $(e u z)^{2}=e$, we have $j \neq 0$ where $j=z e u$. Note that $j^{2}=j$. As $u \in I$ we have $R j \subset I$. To see that $R j$ is the desired minimal ideal it is sufficient to see that $j R j$ is a division ring [5, p. 65].

Note that $j z=z e u z=z e \neq 0 . \quad$ Then $R z e=R e$ so that there exists $v \in R$ where $v z e=e$. Then $v j=v z e u=e u$ and $v j z=e$.

We assert that $j x_{1} j=j x_{2} j$ if and only if $e u x_{1} z e=e u x_{2} z e . \cdot$ For if $j x_{1} j=$ $j x_{2} j$, multiply on the left by v and on the right by z and use the relations $v j=e u$ and $j z=z e$. If $e u x_{1} z e=e u x_{2} z e$ multiply on the left by z and on the right by u and use $z e u=j$.

Therefore the mapping $\tau: \tau(j x j)=e u x z e$ is a well-defined one-to-one mapping of $j R j$ into $e R e$. The mapping is onto. For let $e w e \in e R e$. Then $e w e=e u z w v z e=\tau(j z w v j) . \quad \tau$ is clearly additive. But also $\tau[(j x j)(j y j)]=$ $\tau(j x j y j)=e u x j y z e=(e u x z e)(e u y z e)=\tau(j x j) \tau(j y j)$. Therefore τ is a ring isomorphism of $j R j$ onto $e R e$. Since $e R e$ is a division ring so is $j R j$.

Let J be the radical of R / S^{\perp} and π be the natural homomorphism of R onto R / S^{\perp}. Suppose that $J \neq 0$. Then $\pi^{-1}(J) \supset S^{\perp}$ and $\pi^{-1}(J) \neq S^{\perp}$. By (a), $\pi^{-1}(J)$ contains a minimal idempotent e of R. We then have $\pi(e) \in J$, $\pi(e) \neq 0$. This is impossible since the radical of a ring contains no non-zero idempotents.

Let S_{0} be the socle of R / S^{\perp} and e be a minimal idempotent of R. Clearly $\pi(e) \neq 0$ and π is one-to-one on $e R e$. Then $\pi(e) \pi(R) \pi(e)$ is a division ring so that, since R / S^{\perp} is semi-simple, $\pi(e) \in S_{0}$. Let $\pi(x) \in S_{0}^{\perp}$. Then $\pi(e x)=0$ so that $e x \in S^{\perp} \cap S=(0)$. Hence $x \in S^{\perp}$ and $\pi(x)=0$.

The following result is due to Rickart [17, Lemma 2.1.]:
4.2. Lemma. Let A be any ring. Let $x \rightarrow x^{*}$ be a mapping of A onto A such that $x^{* *}=x,(x y)^{*}=y^{*} x^{*}$ and $x x^{*}=0$ implies $x=0$. Then any
minimal right (left) ideal I of A can be written in the form $I=e A(I=A e)$ where $e^{2}=e \neq 0, e^{*}=e$.

We improve this result by relaxing the conditions on $x \rightarrow x^{*}$ but at the expense of assuming the ring to be semi-simple.
4.3. Lemma. Let R be semi-simple with minimal one-sided ideals. Let $x \rightarrow x^{*}$ be a mapping of R onto R satisfying $x^{* *}=x$ and $(x y)^{*}=y^{*} x^{*}$. Then the following statements are equivalent.
(1) Every minimal right ideal is generated by a s.a. idempotent.
(2) Every minimal left ideal is generated by a s.a. idempotent.
(3) $j j^{*} \neq 0$ for each minimal idempotent j of R.
(4) $x x^{*}=0$ implies $x \in S^{\perp}$

We say that the idempotent e is s.a. if $e^{*}=e$. Note that $x \rightarrow x^{*}$ is one-to-one and $0^{*}=0$. As a preliminary we show that j^{*} is a minimal idempotent if j^{*} is a minimal idempotent. The ideal $I=j R$ is a minimal right ideal. Then $I^{*}=R j^{*}$ is a left ideal $\neq(0)$. Suppose $I^{*} \supset K \neq(0)$, $I^{*} \neq K$ where K is a left ideal of R. By semi-simplicity there exists $x \in K$ such that $x^{2} \neq 0$. Then $I^{*} \supset R x \neq(0), I^{*} \neq R x$. This implies that $I \supset x^{*} R \neq(0), I \neq x^{*} R$. This is impossible. Therefore I^{*} is a minimal left ideal and j^{*} is a minimal idempotent. It is clear from this argument that (1) and (2) imply each other.

Assume (1). Let j be a minimal idempotent, $I=R j$ a minimal left ideal. We can write $I=R e$ where e is a s.a. idempotent. Then for some $v \in R, v j=e$. But $e=e e^{*}=v j j^{*} v$. Therefore $j j^{*} \neq 0$. Thus (1) implies (3).

Assume (3). Suppose that $x x^{*}=0, x \neq 0$. Let $I=R x$. Then $I \neq(0)$. Suppose that I contains a minimal left ideal $R j$ of R where j is a minimal idempotent. We can write $j=y x, y \in R$. Then $0 \neq j j^{*}=y x x^{*} y^{*}=0$. This shows that I contains no minimal left ideal of R. By Lemma 4.1, $I \subset S^{\perp}$. Then for any minimal idempotent $e, 0=e(e x)$ and $x \in S^{\perp}$. Thus (3) implies (4).

Assume (4). If j is a minimal idempotent and $j j^{*}=0$ then $j \in S^{\perp}$. But $j \in S$ and $S \cap S^{\perp}=(0)$. This shows that (4) implies (3).

Assume (3). Let j be a minimal idempotent, $I=j R$. Since $j j^{*} \neq 0$, $j j^{*} R=I$. There exists $u \in R, j j^{*} u=j$. As noted above j^{*} is a minimal idempotent. By $(3), 0 \neq j^{*} j$. Then $0 \neq\left(u^{*} j j^{*}\right)\left(j j^{*} u\right)=u^{*}\left(j j^{*}\right)^{2} u$. Therefore $\left(j j^{*}\right)^{2} \neq 0$. Set $h=j j^{*}$. Since I is minimal, $I=h I$. As in the proof of [17, Lemma 2.1] there exists $u \in I$ such that $h=h u$. Set $e=u u^{*}$. As in that proof, e is a s.a. idempotent and it remains only to check that $e \neq 0$ to obtain (2) from (3). If $e=0$ then $0=u u^{*}=h u u^{*} h=h^{2}$ which is impossible.
5. Normed algebras with minimal ideals. We are concerned here with*-representations of semi-simple normed algebras B with an involution
where B has minimal one-sided ideals. B may be incomplete.
5.1. Lemma. Let B be a complex semi-simple normed algebra with minimal one-sided ideals. Let e_{1}, e_{2} be minimal idempotents of B. Then the following statements are equivalent.
(1) $e_{1} B e_{2} \neq(0)$.
(2) $e_{2} B e_{1} \neq(0)$,
(3) $e_{1} B e_{2}$ is one-dimensional.
(4) $e_{2} B e_{1}$ is one-dimensional.

Suppose (1). There exists $u \in B, e_{1} u e_{2} \neq 0$. Since $e_{1} u e_{2} B=e_{1} B$, there exists $v \in B$ where $e_{1} u e_{2} v=e_{1}$. Then $e_{2} v e_{1} \neq 0$ and (1) implies (2). Let $E=$ $\left\{\lambda e_{2} v e_{1} \mid \lambda\right.$ complex $\}$. Clearly $e_{2} B e_{1} \supset E$. Let $e_{2} x e_{1} \in e_{2} B e_{1}$. Then $e_{2} x e_{1}=$ $e_{2} x\left(e_{1} u e_{2} v e_{1}\right)=\left(e_{2} x e_{1} u e_{2}\right) e_{2} v e_{2}$, a scalar multiple of e_{2} by the Gelfand-Mazur Theorem. Thus (1) implies (4). The remainder of the argument is trivial.

For the remainder of $\S 5, B$ denotes a semi-simple complex normed algebra with an involution and with minimal one-sided ideals.
5.2. Theorem. The following statements concerning B are equivalent.
(1) Every minimal one-sided ideal is generated by a s.a. idempotent.
(2) There exists a^{*}-representation with kernel S^{\perp}.
(3) There exists a^{*} representation with kernel contained in S^{\perp}.
(4) $j-j^{*}$ is quasi-regular for every minimal idempotent j.
(5) $j B j^{*} \neq(0)$ for every minimal idempotent j and $x x^{*}=0$ implies $x^{*} x \in S^{\perp}, x \in B$.
Suppose that (1) holds. Let Q be the set of all s.a. minimal idempotents of B and let $j \in Q$. By the Gelfand-Mazur Theorem, $j B j=\{\lambda j \mid \lambda$ complex $\}$. Suppose $j x^{*} x j=\lambda j$. Taking adjoints, $\lambda=\bar{\lambda}$ so λ is real. We show that $j x^{*} x j=-j$ is impossible. For suppose $j x^{*} x j=-j$. Now $j x j=\alpha j$ for some scalar $\alpha=a+b i$, where a, b are real. Set $c=a+\left(a^{2}+1\right)^{1 / 2}$. By the use of $j x^{*} x j=-j$ one obtains $\left(j x^{*}-c j\right)\left(j x^{*}-c j\right)^{*}=0$. From Lemma 4.3 we have $j x^{*}-c j=0$. Then $(a-b i) j=j x^{*} j=c j$. It follows that $c=a$ and $b=0$. This is impossible.

For $j \in Q$ we define the functional $f_{j}(x)$ on B by the rule $f_{j}(x) j=j x j$. By the above, $f_{j}\left(x^{*} x\right) \geqq 0, x \in B, x \in B$ and $f_{j}\left(x^{*}\right)=\overline{f_{j}(x)}$. The functional f_{j} is a positive linear functional on B and is continuous on B.

The following inequality of Kaplansky [9, p. 55] is then available.

$$
\begin{equation*}
f_{j}\left(y^{*} x^{*} x y\right) \leqq \nu\left(x^{*} x\right) f_{j}\left(y^{*} y\right), x, y \in B \tag{5.1}
\end{equation*}
$$

where $\nu\left(x^{*} x\right)=\lim \left\|\left(x^{*} x\right)^{n}\right\|^{1 / n}$. Let $I_{j}=\left\{x \mid f_{j}\left(x^{*} x\right)=0\right\}$. Let π be the natural homomorphism of B onto B / I_{j}. The definition $(\pi(x), \pi(y))=f_{j}\left(y^{*} x\right)$ makes B / I_{j} a pre-Hilbert space. Let \mathcal{F}_{2}, be its completion. See the discussion of the Gelfand-Neumark procedure in § 3. To each $y \in B$ we correspond
the operator A_{y}^{j} defined by $A_{y}^{j}[\pi(x)]=\pi(y x)$. Then

$$
\left\|A_{y}^{j}[\pi(x)]\right\|^{2}=f_{j}\left(x^{*} y^{*} y x\right) \leqq \nu\left(y^{*} y\right)\|\pi(x)\|^{2}
$$

by (5.1). Thus A_{y}^{j} can be extended to a bounded linear operator T_{y}^{j} on \mathfrak{S}_{j}, and the mapping $y \rightarrow T_{y}^{j}$ is a*-representation of B.

Since $\left\|T_{y}^{j}\right\| \leqq \nu\left(y^{*} y\right)^{1 / 2}$ and the estimate is independent of $j \in Q$ we can take the direct sum \mathfrak{S}_{2} of the Hilbert spaces $\mathfrak{F}_{\boldsymbol{\prime}}, j \in Q$ and the direct sum $x \rightarrow$ T_{x} of the representations $x \rightarrow T_{x}^{j}$. This gives a*-representation of B with kernel K where

$$
K=\left\{x \in B \mid x y \in \bigcap_{j \in Q} I_{j}, \text { for all } y \in B\right\}
$$

We show that $K=S^{\perp}$.
It is clear that $S^{*}=S$ and therefore $\left(S^{\perp}\right)^{*}=S^{\perp}$. Using this and Lemma 4.3 we obtain the following chain of equivalences: $x \in \cap I_{j} \leftrightarrow j x^{*} x j=$ 0 , all $j \in Q \leftrightarrow j x^{*} \in S^{\perp}$, all $j \in Q \leftrightarrow j x^{*}=0$, all $j \in Q \leftrightarrow x^{*} \in S^{\perp} \leftrightarrow x \in S^{\perp}$. Therefore $\cap I_{j}=S^{\perp}$. Thus $K=\left\{x \mid x y \in S^{\perp}\right.$, all $\left.y \in B\right\}$. If $x \in K$ then $x j \in S^{\perp} \cap S=(0)$ for all $j \in Q$ and $x \in S^{\perp}$. Clearly $S^{\perp} \subset K$. Therefore $K=S^{\perp}$. Hence (1) implies (2). Clearly (2) implies (3).

Assume (3) and let φ be a*-representation whose kernel $\subset S^{\perp}$. Let j be a minimal idempotent of B. Let A be the subalgebra of B generated by j and j^{*}. By the Gelfand-Mazur Theorem, $j j^{*} j=\lambda j$ for some scalar λ. Thus A is the linear space spanned by $j, j^{*}, j j^{*}$ and $j^{*} j$. A is finite-dimensional and $A \subset S$. Since $S \cap S^{\perp}=(0), \varphi$ is one-to-one on A. Note that $A=A^{*}$. Let E be the B^{*}-algebra obtained by taking the closure in the operator algebra on the appropriate Hilbert space of $\varphi(B)$. Clearly $\varphi(A)$ is a closed*-subalgebra of E. The element $\varphi\left(j-j^{*}\right)$ is a skew element of E and therefore quasi-regular in E. By [8, Theorem 4.2] its quasi-inverse in E already lies in $\varphi(A)$. As φ is one-to-one on $A, j-j^{*}$ has a quasi-inverse in A. Thus (3) implies (4).

Assume (4). Let j be a minimal idempotent of B. There exists $u \in B$ such that $j-j^{*}+u-\left(j-j^{*}\right) u=0$. If $j j^{*}=0$ then left multiplication by j gives $j=0$ which is impossible. Therefore $j j^{*} \neq 0$. By Lemma 4.3, we see that (4) implies (1). Clearly (1) implies (5) by Lemma 4.3. Assume (5). Let j be a minimal idempotent of B. If $j^{*} j=0$ then $0=x^{*} j^{*} j x=$ $(j x)^{*}(j x)$. Also $j x x^{*} j^{*} \in S^{\perp} \cap S=(0)$ for all $x \in B$. Since $j B j^{*} \neq(0), j B j^{*}$ is one-dimensional by Lemma 5.1. Hence there exists $u \neq 0$ in B and a linear functional $f(x)$ on B such that $j x j^{*}=f(x) u$. Then $f\left(x x^{*}\right)=0$ for all $x \in B$. Expanding $0=f\left[(x+y)(x+y)^{*}\right]=f\left[(x+i y)(x+i y)^{*}\right]$ we see that $f\left(x y^{*}\right)=0$ for all $x, y \in B$. Hence f vanishes on B^{2}. Take any $z \in B$. We have $f(j z)=0$ or $j z j^{*}=0$. Thus $j B j^{*}=(0)$ which is impossible. Therefore $j^{*} j \neq 0$. By Lemma 4.3, (5) implies (1).

Algebras to which Theorem 5.2 can be applied most easily are those for
which $S^{\perp}=(0)$. Examples are semi-simple annihilator algebras studied by Bonsall and Goldie [3] and primitive algebras (Corollary 5.4).
5.3. Corollary. If B is an Arens*-algebra with non-zero socle then $N \subset S^{\perp}$.

Let $x_{0} \in N, s p\left(x_{0} x_{0}^{*}\right) \subset(-\infty, 0]$. Then we can write $x_{0} x_{0}^{*}=-h^{2}$ where h is s.a. The ideal S^{\perp} is closed and self-adjoint. Let π be the natural homomorphism of B onto B / S^{\perp}. An involution can be defined in B / S^{\perp} by the rule $[\pi(x)]^{*}=\pi\left(x^{*}\right)$. Since B is semi-simple, B / S^{\perp} has non-zero socle. Let $\pi(x)$ be a minimal idempotent of B / S^{\perp}. Then $[\pi(x)]^{*}-\pi(x)=\pi\left(x^{*}-x\right)$ is quasi-regular in B / S^{\perp} since $x^{*}-x$ is quasi-regular in B. By Theorem 5.2 and Lemma 4.1, B / S^{\perp} has a faithful*-representation. Then, by Theorem 3.4, $\pi\left(x_{0} x_{0}^{*}\right)=0=\pi\left(h^{2}\right)$. Therefore $x_{0} x_{0}^{*} \in S^{\perp}$ and $\left(j x_{0}\right)\left(j x_{0}\right)^{*}=0$ for each minimal idempotent j of B. Therefore $j x_{0}=0$ for all such j and $x_{0} \in S^{\perp}$.

We call the involution $x \rightarrow x^{*}$ proper if $x x^{*}=0$ implies $x=0$. We call the involution quasi-proper if $x x^{*}=0$ implies $x^{*} x=0$. Not every involution is quasi-proper. For example let B be all 2×2 matrices with the involution defined by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{*}=\left(\begin{array}{rr}
\bar{a} & -\bar{c} \\
-\bar{b} & \bar{d}
\end{array}\right) .
$$

To see that this is not quasi-proper choose x as

$$
\left(\begin{array}{ll}
1 & i \\
0 & 0
\end{array}\right)
$$

Every proper involution is quasi-proper but the converse is false. Consider, for example $B=C([0,1])$ and set $x^{*}(t)=\overline{x(1-t)}$.
5.4. Corollary. Let B be primitive with non-zero socle. Then the following statements are equivalent.
(1) The involution* is proper.
(2) The involution* is quasi-proper.
(3) There exists a faithful*-representation of B.

Suppose that $S^{\perp} \neq(0)$. Then by [5, p. 75], $S \subset S^{\perp}$. Since $S \cap S^{\perp}=(0)$ this is impossible. Therefore $S^{\perp}=(0)$. Assume (2). Let j be a minimal idempotent of B. Then $j B j^{*} \neq(0)$ (see the prooof of [16, Theorem 4.4]) and, consequently (5) of Theorem 5.2 is satisfied. Then by Theorem 5.2, (2) implies (3); the remainder of the proof is obvious.

The equivalence of (1) and (3) was noted by Rickart [17, Theorem 3.5]. By Lemma 4.3 and Theorem 5.2 this equivalence of (1) and (3) holds for any B for which $S^{\perp}=(0)$.

If B is complete the following statements hold. (1) Any*-representation of B is continuous [16, Theorem 6.2]. (2) If B has a faithful*-representation then the involution is continuous [16, Lemma 5.3]. We show that
both these statements can be false for B incomplete. Our discussion is based on work of Kakutani and Mackey [6, p. 56] (see also [7] for the complex case). Let \mathfrak{X} be an infinite-dimensional complex Hilbert space, $(x, x)^{1 / 2}=$ $\|x\|$. Let $\mid\|x\| \|$ be any other norm on \mathfrak{X} such that $\|x\|\|\leqq\| x \|, x \in \mathfrak{X}$. Let $\mathfrak{X}_{1}=\{y \in \mathfrak{X} \mid(x, y)$ is continuous on \mathfrak{X} in the norm $\||x|\|\}$ and endow \mathfrak{X}_{1} with the norm $\left\|\|x\| \mid\right.$. Then [6, p. 56] a linear functional $f(x)$ on \mathfrak{X}_{1} has the form $f(x)=(x, y)$. Moreover \mathfrak{X}_{1} is dense in \mathfrak{X} in both norms. If there exists $c>0$ such that $\|x\| \leqq c\| \| x \|, x \in \mathfrak{X}_{1}$ then $\mathfrak{X}=\mathfrak{X}_{1}$ and \mathfrak{X}_{1} is complete.

Let $\mathfrak{F}\left(\mathfrak{X}_{1}\right)$ be the normed algebra of all bounded linear operators on \mathfrak{X}_{1}. As shown in [6, p. 56], $\mathfrak{F}\left(\mathfrak{X}_{1}\right)$ has an involution $T \rightarrow T^{*}$ where $(T(x), y)=$ $\left(x, T^{*}(y)\right), x, y \in \mathfrak{X}_{1}$. In these terms we show the following.
5.5. ThEOREM. The following statements are equivalent.
(1) \mathfrak{X}_{1} is complete.
(2) The involution in $\mathfrak{F}\left(\mathfrak{X}_{1}\right)$ is continuous.
(3) The faithful*-representation of Theorem 5.2 for $\left(\mathfrak{F}_{\left(\mathfrak{X}_{1}\right)}\right.$ is continuous.

As already noted (1) implies (2) and (3). Assume (2) and let M be the norm of the involution. By [2] any minimal idempotent of $\mathfrak{F}\left(\mathfrak{X}_{1}\right)$ is onedimensional and the operator J defined by the rule $J(x)=(x, u) u$ where $(u, u)=1$ is a minimal idempotent. Since $(J(x), y)=(x, u)(u, y)=(x, J(y))$ we have $J=J^{*}$. The functional f defined by $f(U) J=J U J$ is a continuous positive linear functional on $\mathscr{F}\left(\mathfrak{X}_{1}\right)$. For $z \in \mathfrak{X}_{1}$ define the operator W_{z} by the rule $W_{z}(x)=(x, u) z$. Then we can write the norm of W_{z} as $C||z|| \mid$ where C is independent of z. A simple computation gives $J W_{z}^{*} W_{z} J=(z, z) J$. By formula (5.1), where $\|U\|$ denotes the norm in $\mathfrak{F}\left(\mathfrak{X}_{1}\right)$,

$$
\|z\|^{2}=(z, z) \leqq \nu\left(W_{z}^{*} W_{z}\right) \leqq\left\|W_{z}^{*} W_{z}\right\| \leqq C^{2} M\|z\| \|^{2}
$$

This shows that \mathfrak{X}_{1} is complete.
Assume (3) and let N be the norm of the faithful*-representation. Let $I_{f}=\left\{U \in \mathfrak{E}\left(\mathfrak{X}_{1}\right) \mid f\left(U^{*} U\right)=0\right\}, \pi$ be the natural homomorphism of $\mathfrak{E}\left(\mathfrak{X}_{1}\right)$ onto $\mathfrak{F}\left(\mathfrak{X}_{1}\right) / I_{f}$ and $(\xi, \eta)_{f}$ be the inner product for the pre-Hilbert space $\mathfrak{F}\left(\mathfrak{X}_{1}\right) / I_{f}$. Let $V \rightarrow T_{V}^{f}$ be the partial*-representation induced by f. Its norm cannot exceed N. Now $(\pi(J), \pi(J))_{f}=1$ and

$$
N^{2}\|U\|^{2} \geqq\left\|T_{U}^{f}[\pi(J)]\right\|^{2}=(U J, U J)_{f}=f\left(J U^{*} U J\right)=f\left(U^{*} U\right)
$$

Applying this formula to $U=W_{z}$ we obtain $N^{2} C^{2}\||z|\|^{2} \geqq(z, z)$ and again \mathfrak{X}_{1} is complete.

A specific example is suggested in [6, p. 57]. Let $\mathfrak{X}=l^{2},\left|\left\|\left\{x_{n}\right\} \mid\right\|=\right.$ $\sup \left|x_{n}\right|$. An easy computation gives $\mathfrak{X}_{1}=l^{2} \cap l^{1}$ in the sup norm. Here the involution and*-representation are therefore not continuous.
6. Involutions on $\mathfrak{C}(\mathfrak{K})$. Let \mathfrak{S} be a Hilbert space and $\mathfrak{F}(\mathfrak{N})$ the B^{*} -
algebra of all bounded linear operators on \mathfrak{S}. We determine in Theorem 6.2 all the involutions on $\mathbb{E}(\mathfrak{S})$ for which there are faithful adjoint-preserving representations.
6.1. Lemma. Let be any involution on $\mathfrak{F}(\mathfrak{F})$. Then there exists an invertible s.a. element U in $\mathfrak{F}(\mathfrak{F})$ such that $T^{\#}=U^{-1} T^{*} U$ for all $T \in \mathscr{F}(\mathfrak{E})$. Conversely any such mapping is an involution.

The mapping $T \rightarrow T^{* *}, T \in \mathfrak{F}(\mathfrak{C})$, is an automorphism of $\mathfrak{F}(\mathfrak{S})$. Thus there exists $V \in \mathscr{F}(\mathfrak{S})$ where $T^{* *}=V T V^{-1}, T \in \mathfrak{F}(\mathfrak{F})$. Set $U=V^{*}$. Then $T^{\#}=U^{-1} T^{*} U$. Since $T^{* \#}=T, T=\left(U^{-1} T^{*} U\right)^{\#}=U^{-1} U^{*} T\left(U^{*}\right)^{-1} U$. Thus $U^{-1} U^{*}$ lies in the center of $\mathfrak{F}(\mathfrak{S})$. Consequently $U=\lambda U^{*}$ for some scalar λ. Since $U^{*} U=|\lambda|^{2} U^{*} U$ we see that $|\lambda|=1$. $\operatorname{Set} \lambda=\exp (i \theta)$ and $W=$ $\exp (-i \theta / 2) U$. Then $W^{*}=W$ and $T^{*}=W^{-1} T^{*} W, T \in \mathscr{F}(\mathfrak{F})$. The remaining statement is easily verified.
6.2. Theorem. An involution $T \rightarrow T^{*}$ on $\mathfrak{F}(\mathfrak{F})$ is proper if and only if it can be expressed in the form $T^{\#}=U^{-1} T^{*} U, U \in \mathscr{F}(\mathfrak{S})$ where U is s.a. and $s p(U) \subset(0, \infty)$.

If $T \rightarrow T^{\#}$ is a proper involution then (see [7]) an inner product can be defined in \mathfrak{K} in terms of which T^{\ddagger} is the adjoint of T. Hence the proper involutions are those for which there is an adjoint preserving faithful representation.

Let W be a one-dimensional operator, $W(x)=(x, z) w$ with $w \neq 0, z \neq 0$. Then $W^{*}(x)=(x, w) z$. By Lemma 6.1 we can write $T^{\#}=U^{-1} T^{*} U, T \in \mathfrak{C}(\mathfrak{W})$, where U is s.a. Then $0 \neq W^{\#} W=U^{-1} W^{*} U W$. Hence $0 \neq W^{*} U W$. But $W^{*} U W(x)=(x, z) W^{*} U(w)=(x, z)(U(w), w) z$. Therefore $(U(w), w) \neq 0$ for an arbitrary non-zero $w \in \mathfrak{S}$. Hence $(U(w), w) \neq 0$ for an arbitrary nonzero $w \in H$. Hence $(U(w), w)$ has a constant sign and, by changing to $-U$ if necessary, we may suppose that $(U, w), w) \geqq 0, w \in \mathfrak{S}$. Then we can write $U=V^{2}$ where V is s.a. in $\mathfrak{F}(\mathfrak{G})$.

Suppose conversely that $T^{\#}=V^{-2} T^{*} V^{2}, T \in \mathfrak{C}(\mathfrak{y})$ where V is s.a. Then $T T^{\#}=\left(T V^{-1}\right)\left(T V^{-1}\right)^{*} V^{2}$. Thus $T T^{\#}=0$ implies that $T V^{-1}=0$ and that $T=0$.

References

1. R. Arens, Representations of $*$-algebras, Duke Math. J. 14 (1947), 269-282.
2. B. H. Arnold, Rings of operators on vector spaces, Ann. of Math. 45 (1944), 24-49.
3. F. F. Bonsall and A. W. Goldie, Annihilator algebras, Proc. London Math. Soc. 14 (1954), 154-167.
4. P. Civin and B. Yood, Involutions on Banach algebras, Pacific J. Math., 9 (1959), 415436.
5. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ. vol. 37, Providence, 1956.
6. S. Kakutani and G. W. Mackey, Two characterizations of real Hilbert space, Ann. of Math. 45 (1944), 50-58.
7. S. Kakutani and G. W. Mackey, Ring and lattice characterization of complex Hilbert space, Bull. Amer. Math. Soc. 52 (1946), 727-733.
8. I. Kaplansky, Normed algebras, Duke Math. J. 16 (1949), 399-418.
9. -, Topological algebra, Department of Mathematics, University of Chicago, 1952, mimeographed notes.
10. J. L. Kelley and R. L. Vaught, The positive cone in Banach algebras, Trans. Amer. Math. Soc. 74 (1953), 44-55.
11. V. L. Klee, Jr., Convex sets in linear spaces, Duke Math. J. 18 (1951), 443-466.
12. L. H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co., New York, 1953.
13. M. A. Naimark, Involutive Algebren, Sowjetische Arbeiten zur Funktionalysis, Berlin (1954), 89-196.
14. M. A. Naimark, Normed rings, Moscow, 1956. (Russian).
15. J. D. Newburgh, The variation of spectra, Duke. Math. J. 18 (1951), 165-177.
16. C. E. Rickart, The uniqueness of norm problem in Banach algebras, Ann. of Math. 51 (1950), 615-628.
17. —— Representations of certain Banach algebras on Hilbert space, Duke Math. J. 18 (1951), 27-39.
18. B. Yood, Topological properties of homomorphisms between Banach algebras, Amer. J. Math. 76 (1954), 155-167.

Yale University and University of Oregon

[^0]: Received May 4, 1959. This research was supported by the National Science Foundation, research grant NSF G 5865, and by the United States Air Force through the Office of Scientific Research of the Air Research and Development Command under Contract No. SAR/AF - 49 (636) - 153.

