ON THE STABILITY OF BOUNDARY COMPONENTS

KOTARO OIKAWA

I. PRESENTATION OF THE PROBLEM

1. Definitions.

1. A boundary component of a plane region DC (|z]| < =) is a
component of the boundary 0D of D, i.e., a connected subset of 8D
which is not a proper subset of any connected subset of 9D.

There is an alternate definition. Let {Q,};., be a sequence of
subregions of D such that

(i) 2,092,D «--,

(ii) the relative boundary 92, N D consists of one closed analytic
curve in D,

(i) Ng.2,=¢. Two sequences {2,} and {2,} are said to be
equivalent if, for any =, there exists m such that 2,, c 2, and 2!, C Q,.
A boundary component of D is an equivalence class of {2,}.

These two definitions are equivalent in the following sense:

(i) Given a sequence {2,}, the set ;.. 2, is a component of 8D
and, for two sequences, these sets coincide if and only if the sequences
are equivalent.

(ii) Given a component I" of 8D, there exists a sequence such that
I' =N [_2”,

For a boundary component I", the sequence {2,} such that '=3., 2,
is called a defining sequence of I.

Let w = f(2) be a topological mapping of D onto a plane region D’.
Then we can immediately see from the second definition that f gives a
one-to-one correspondence between the boundary components of D and
D’. We shall speak of the image of a boundary component I' under f
in this sense and denote it by f(I').

2. Let D° denote the complement of D with respect to the extended
plane |z| =< . For a boundary component I”, there exists a uniquely
determined component of D° whose boundary coincides with I". We call
it the component of D¢ corresponding to I" and denote it by I'*.

If D does not contain the point 2 = c, the boundary component I"
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such that co e I"* is called the outer boundary of D.

3. We call a region D a circular (or radial) slit disk if 0 e D,
Dc (2] < R <), the outer boundary is |2|= R, and every other
boundary component is either a point or an arc on |z| = const. (or a
line segment on arg z = const.).

2. The stability problem of boundary components.

4. Let D be a plane region and let I be a boundary component.
Sario [16, 17] gave the following classification:

(a) If f(I") is a point for every univalent function w = f(z) on D,
then I" is said to be weak.

(b) If £(I') is a continuum, i.e., a connected closed set containing
more than one point, for every f, then I' is said to be strong.

(¢) If I' is neither weak nor strong, it is said to be wunstable.

Weak boundary components were first investigated by Grotzsch in
connection with the so-called ‘‘Kreisnormierungsproblem’ (Grotzsch
[7]; see also Denneberg [5] and Strebel [21]). He called them vollkom-
men punktformig. Regions of class Og3=0g, introduced by Ahlfors and
Beurling [2] coincide with those possessing merely weak boundary com-
ponents. Sario [16] has generalized the concept weak boundary com-
ponents for open Riemann surfaces. It has been discussed also by Savage
[19] and Jurchescu [10].

We are now lead to the following natural problems:

PrROBLEM A. Given a boundary component consisting of a single
point, determine whether it is weak or unstable.

ProBLEM B. Given a boundary component consisting of a continuuwm,
determine whether it is strong or unstable.
We shall attempt to obtain concrete tests with practical applicability.

3. Related extremal problems.

5. Let D be a region containing the point z = 0. Let B be the
family consisting of all functions w = ¢(2) which are regular and
univalent in D — {0}, and have the expansion 1/z + ¢z + --- near z = 0.

Consider, with Grotzsch [6], the diameter of the image (") of the
boundary component I”. It is quite easy to see that I" is weak if and
only if sup,eq diam ¢(I') =0, and I' is strong if inf,cq diam ¢(77) > 0.

6. Let ¥, be the family consisting of functions w = f(z) such that
(i) regular and univalent in D,

(i) f(0) =0 and f(0) =1,
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(iii) f(I") is the outer boundary of f(D).
Rengel [14] introduced the following functionals on $,:

M(f) =g§§)l w|= sup [f) ],

m(f) = min [w |,
weNT)

and considered the quantities

R(I') = R(I"; D) =fseg§p m(f)

and

(') = ~(["; D) = inf M(f) .
TEF

From the definition we have immediately the basic
THEOREM 1. [I' is strong if R([") <oo. I' is weak if and only if

() =oo.
These criteria are equivalent to those in No. 5, since

R(I") = 2/inf diam ¢(I") ,
9EQ

r(I") = 4/sup diam o(I") .
veB

In fact, for an arbitrary function f(z) = %,, the functions

__1 "9
P4(2) = 1) + >

and

=) + — .1
PO = 20) + s s

belong to LB, and
m(f) < 2/diam @ (")
M(f) = 4/diam @,(I") .

On the other hand, for ¢(z) e, let F(w) be the function which maps
(p(I')*)° conformally onto the exterior of a disk with the center at the
origin. Assume further that F(w)=w + ¢+ ¢'/w + -+ near w=oco.
Then f,(z) = 1/F o ¢(z) e &, and

2/diam p(I") = M(f,) = m(f,) = 4/diam (") .
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The proof of the above equalities is hereby complete.

7. Whether or not R(I") < is necessary for strength is still an
open problem. We shall discuss this problem in No. 24.

We shall see in No. 17 that 1/»(I") equals the ‘‘capacity’’ of the
boundary component I" introduced by Sario [16] (it is not necessarily
equal to the logarithmic capacity of the closed set I'), and, therefore,
that the latter half of Theorem 1 is equivalent to Sario’s result ([17],
Theorem 6). Jurchescu [10] showed that the ‘‘capacity’’ coincides with
the ‘‘perimeter”’ introduced by Ahlfors and Beurling [2].

It will be shown in No. 22 that R(I") coincides with the quantity
which Strebel [22] called ‘‘extremal Durchmesser’’. Finally, Theorem 4
in No. 21 shows that the first half of the above theorem coincides with
Sario’s result ([17], Theorem 4).

II. PRELIMINARIES

In this chapter, we collect a number of known results which will
be needed later.

4. Extremal length.

8. A curve 7 considered here is either a closed rectifiable curve or
a curve of the form 2z =12() (0 <t<1) every subarc of which is
rectifiable. If lim,.,2(¢) or lim,,, 2(f) exists, it is called an end point.

Let D be a reginon and let {y} be a family of curves ¥y ¢ D. Let
{0} be the collection of functions p which are = 0 and lower semi-con-
tinuous in D. With the understanding that 0/0 = o/ = 0, take

2
(infs pds)
Mo} = sup —1———.
° H 0 dxdy
D
It is called the extremal length of {y} (Ahlfors and Beurling [2], Ahlfors
and Sario [3]).

9. The following properties (I)-(V) are well known; for the proofs
the reader is referred to, e.g., Hersch [8]':

(I) 2{v} is independent of the choice of D.

(II) {7} is conformally invariant.

(III) 2{r'"} =< 1{v} if every v contains a 7.

(IV) For {v} and {v.}, assume the existence of disjoint regions D,
and D, such that v, c D, (v =1, 2). If, for any v of the third family

1 His definition is different from ours, but his proofs remain valid.
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{7}, there exist v, and v, such that v, U 7, C v, then
My 2w = {7} .

(V) Let {v,} and {v,} be the same as above. If {v;} U {v,} < {7},
then

1 1 1
o TNy S

(VI) (Hersch [8]"). For three families with {v} = {v.} U {v},

1 1 1
R VCANEN AN

(VIII) Let {7} be the subfamily of {7} consisting of v having both
end points and such that 2(¢) (0 < ¢t < 1) is rectifiable. Then M {v} = M {v,}.

In fact, since the extremal length of {v,} = {7} — {7} is infinite,
(VI) shows that M {v} < A\{v}, and M {7} < M7} by (III).

(VIII) For a curve 7v:z=2() (0<t<1), let ¥+ be the curve
z=2() (0<t<1). If 20)=lim, ,2(t) exists and is real, put 9 =
v U ¥ U {200)}. Let {7} be a family of curves which are contained in
the upper half-plane and have the end points z(0) on the real axis. Let
{7} be a family which contains all 4, and ¥y. Furthermore it is assumed
that, for any v, there exist v, and %} in {y,} such that 7, U v} C v.
Then

My =20 {7} .
In fact, to define A {v}, we may restrict {p} to the subfamily con-

sisting of functions symmetric about the real axis. Since 2 infyug ods =
Yo

infyg o ds for such p, we conclude that M{v} = 2\ {v,}.
Y

(IX) Let A be the annulus 1< |z]| < q or a region obtained by
deleting a finite number of circular slits from this annulus. Let {v} be
the family of all closed rectifiable curves in A separating |z| = 1 from
| z| = q. Then M {y} = 2r/log q. This is true even if each v is restricted
to a concentric circle in A.

The proof is found, e.g., in Hersch [8].

10. Let D be a region, and let E, and FE, be compact sets such
that EEND+¢ (v=0, 1). Let {y} be the family consisting of v:
z=2() (0 <t<1) such that y © D, Neof2(t); 0 <t <e} C E, and
Neso{2(8); 1 — e <t <1} c E,. Then )\ {v} is called the extremal distance
Sp(E,, E,) between E, and E, with respect to D.

By (VII), 6,(E,, E)) coincides with the extremal length of the family
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of rectifiable curves in D whose end points are on E, and E, respectively.
Under a certain restriction of the configuration, it is also equal to that
of a subfamily consisting of analytic curves (Wolontis [25]).

From this consideration, we get

(X) If no point of E, is accessible from D by a rectifiable curve,
then 8,(E, FE,) = .

(XI) (Pfluger [12]"). If cap E, =0, then 8,(&, E) = . For
D=(z|=1), E,=(z2|=¢<1), and E, C (2] =1), §,(E, E)=
if and only if cap E, = 0.

Combining (VI), (X), and (XI), we get

(X’) If no point on E,, except for a set of capacity zero, is acces-
sible from D by a rectifiable curve, then 8,(E,, E)) = .

(XII) Let D, E,, and E| be contained in the closed upper half-plane.
Let D be the region which is the union of D, the reflection of D across
the real axis, and the part of 0D on the real axis. Let Eo and E’l have
analogous meanings. If 85(E’0, E‘l) is expressed in terms of the extremal
length of a family consisting of analytic curves?, then

Sy(k, B = %SD(EO, E).

Proof. Let 8y(E,, E) = M7} where v is an analytic curve and let
Sp(Ey, E,) =X{v'}. Using the notation in (VII), we see immediately
that {v'} and {¥'} are contained in {v}. Since M {¥'} = A {¥'}, we find,
on applying (V), that M {v} < M {v'}/2.

In order to prove the inequality in the opposite direction, we first
remark that, to define M {7}, we may restrict o to a function symmetric
about the real axis. For a curve v:z =2(t) (0 <t < 1), let v* be

3 {z(t) if S2(t) =0
RY0) if S2(t) <0.

Evidently g pds = S pds for a symmetric p.
Y v

Since it is assumed that v is an analytic curve, v* intersects the
real axis at only a finite number of points 2z, 2z, ++-, 2. Let 4, be the
punctured disk 0 < [z —2, | <7 (v=1, 2, ..., k), where r is taken so
small that the 4, are mutually disjoint. The extremal length of the
family of curves in 4, separating z, from |z — 2, | = r is, by (IX), equal
to infinite. Therefore, for arbitrary ¢ > 0 and p, there exists a closed

curve v, C 4, encircling 2, and such that g ods < ¢lk. On replacing a
Ty
part of v* N 4. by a part of v,(v=1, 2, -.., k), we obtain from v* a

2 This restriction is satisfied in our subsequent applications. 1t is perhaps superfluous.
However, the author has not succeeded in furnishing the proof without it.
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curve 7' belonging to the family {y'} and such thatj ods —e < S ods.
Y Y
Since v and ¢ are arbitrary, we get infy,S ods £ infyS ods for every
v Y

symmetric 0. Since SS o*dxdy = 2 H ©0* dxdy, we conclude that M {v'} =<
D D

2x{7}.

(XIII) Let A be the annulus 1 < |z]| < ¢ or a region obtained by
deleting a finite number of radial slits from this annulus. Let E, =
(lz] =1) and E, = (/2| = q). Then &K, E, = (log q)/2r, and it is also
equal to the extremal length of the family of all radials from E, to E|
in A.

For the proof, the reader is referred to, e.g., Strebel [20].

5. Teichmuller’s extremal region.

11. Let D be a doubly connected region and let {7} be the family
of all closed rectifiable curves in D separating the boundary components.
The quantity 27/\{v} is called the modulus of D and is denoted by mod D.
As is well known, D can be mapped conformally onto an annulus
1< |z]| < q where log ¢ = mod D.

For P > 0, the doubly connected region

Dy = {[—1, 0] U [P, =]}*

where the brackets express a closed interval on the real axis, is called
Teichmiiller’s extremal region. It has the following extremal property
(Teichmiiller [23]): Let D be a doubly connected region such that one
component of D¢ contains the point z =0 as well as a point on |z| =1
and the other contains the point z = « as well as a point on |z| = P.
Then mod D < mod D, and the equality holds if and only if D is a
region obtained by rotating D, about the origin.

12. It was proved by Teichmiiller [23] that ¥(P) = exp (mod D) is
a continuous function of P such that

(1) lim X&) _ 16
Pow P
It is easy to see that
1 w?
2 log¥|{—)= —— .
(2) o8 (P> log 7 (P)

On combining (1) and (2), we have

(3) log #(P) ~ for P— 0.

log —
ogP
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13. The following result will be used later:

LEMMA 1. Let

A=(01<|z|<q),

I'=(zl=1),
and
Ey={2; [z|=gq, |argz| < 6} .
Then
S, By~ Llog L for 6—0 .
T 0

Proof. 3,I", E) is equal to the extremal length X{y} where {v}
is the family of all analytic curves in A connecting I" with E, (cf.
Wolontis [25]). By (VIII) and (XIII), it is equal to 8,(&j, Ey')/4 where

R=~1g<|z|< N (>0,

Ey={2; |z|=1/q, 0 s argz = 0},
and

EY ={z; |z|=q, 0 =argz< 0} .

Map @ onto the upper half-plane in such a way that 1/¢ and ¢ correspond
to 0 and 1, respectively. Let —a and 1+ B (a, B > 0) be the images
of e/qg and qe”’, respectively. It is not difficult to see that

2

a~Cc—
q for 6 -0

B~ c'qt”?

where ¢ and ¢’ are constants independent of . The region obtained by
deleting the intervals [—o, —a], [0, 1], and [1+ B3, ] from the
extended plane is conformally equivalent to Teichmiiller’s extremal region
with

p—__aB g 6 —0).
1+a+8
Therefore, on applying (VIII) again, we get 8,(/", E,) = x/(4log ¥ (P))
and, by (3),
1 1

o, E9)~Zl7-;log—15~?log% for 6 — 0 .
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6. Koebe’s distortion theorem.

14. The following is a slight modification of the original form of
Koebe’s well-known distortion theorem, which will be used frequently:

Let ¢(z) be a function which is univalent and regular in |z| <&
with (0) = 0 and @'(0) = 1. Then there are numbers a(e) and b(e)
which are independent of ¢ and have the properties that

a(e) = | p(2) | = b(e) on |z|=¢<¢
and

lim 26 — 1im 26 _ 1 |

£-0 & g-0 IS

In fact, we may take a(e) = eci/(e + ¢,)* and b(e) = ecif(e — &)

7. Quasi-conformal mappings.

15. In Chapters IV and V, we shall make use of quasi-conformal
mappings to illustrate our results by examples. As in the type problem
of Riemann surfaces, they are utilized to replace a given region by a
simpler one.

A sense-preserving topological mapping w = 7(z) of a region D onto
another is said to be quasi-conformal if there exists a finite number K
such that mod 7(Q) < K mod @ for any quadrilateral @ — D (Ahlfors
[1]). Here, mod @ of a quadrilateral @ means the extremal distance
between two opposite sides of @. The minimum value of K is called
the maximal dilatation of T.

For the proofs of the following properties (I)-(III), the reader is
referred to Ahlfors [1]:

(I') If T is quasi-conformal of maximal dilatation K, then
mod T(A) < K mod A for any doubly connected region A — D.

(II) Let E be a set which is contained in a finite number of ana-
lytic arcs. Let D be a region containing E, and let T be a topological
mapping of D which is quasi-conformal in D — E. Then it is quasi-
conformal in D with the same maximal dilatation.

(IIT) If T is a topological mapping of class C*, then the maximal
dilatation is given by K = sup,e, (| T, | + | T5D/(| T, | — | T5|) where T,
and T; are complex derivatives.

(IV) Let {y} be a family of curves in D. Let T be a quasi-
conformal mapping of class C' with the maximal dilatation K. Then

MT(7)}; = Ex{7} .

The proof is found in Hersch [9]'.
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REMARK. Even if T is not of class C' throughout D, this inequality
holds under, e.g., the following restriction: 7' is of C*' in D except for
a countable number of analytic arcs clustering nowhere in D, i.e., every
point of D has a neighborhood intersecting at most a finite number of
the arcs, and every ¢ is the union of a countable number of analytic
arcs clustering nowhere in D. This generalization will be needed in
No. 35.

III. CIRCULAR AND RaDIAL SrLIT DIsks

8. Circular slit disks.

16. Let D be a plane region containing the point z = 0, and let I”
be a boundary component. The problem of minimizing M(f) in &, for
a region of finite connectivity has been discussed by Rengel [14]. To
consider it for a region of arbitrary connectivity, in particular to show
the uniqueness of the minimizing function, Sario [16] introduced the
functional

Jf) =, log|s|-darg s (feB.) -

Here the line integral means limn.,wg log |f]+darg f for an exhaus-
BD”

tion D, | D; the limiting value exists and is independent of the exhaus-
tion. He proved the existence of a function g, such that

M(g,) = m(g,)

and
2r log M(g,) = J(f) — D(log | f| — log | g, )

for all fe ., where the second term means the Dirichlet integral over
D. Evidently g, is the unique function which minimizes J(f).

From these relations we can derive the following facts (Sario [16]):

(1) There exists a function g,€ Fr such that M(g,)=min g, M(f)=
(). If v(I") < o, the minimizing function is determined uniquely.
It maps D onto a circular slit disk |w| < r(I"), where the area of
slits, i.e., 90D — I')*, vanishes,

(II) Let 0e D, 1 D be an exhaustion and let I", be the component
of 0D, separating D, from I'. Then

r(I") = Hm»([",) .

If v(I') < o, the sequence {g,} of the minimizing functions on D,
converges to g, uniformly on each compact set in D.
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17. By making use of this result, we can express (/") in terms of
extremal length. Let ¢, be a small number such that |z| < ¢, is con-
tained in D. For 0 < ¢ < g, the numbers a(c) and b(¢) were defined in
No. 14. The following theorem has been proved, in essence, by Jurchescu
[10]:

THEOREM 2. Let {y}. be the family of all closed curves in D, =
D — (| z| < &) which separate I' from the point z = 0. Then

and, therefore,

. 2
log 7(I") = lim (1 .
og (1) sli?(ogwxw}g)

The result remains valid if the v are restricted to analytic curves.

Proof. Consider the metric given by o = | gy|/|9,|. Since the area
of the circular slits is zero, SS o*dxdy < 2m log (r(I7)/a(e)). Therefore,
DE

Mrte = (2r)/27 log (r(17)]a(e)) -

To prove the left inequality, take an exhaustion D, | D and consider
the family {v,}. of all closed curves v, in D, — (| 2| < ¢) separating I,
from z = 0. Since D, is of finite connectivity, the proposition (IX),
No. 9, shows that 27/A{7,}. = log (r({",)/b(¢)). When we take the limit

for m — o, we have by virtue of the relation M {v}. < \{7.}: that

2r/\{v}. = log (r(I")/b(e)) .

18. The following criterion for weakness due to Grotzsch [7] will
be useful in the next chapter:

THEOREM 3. In order that I' be weak, it is necessary and sufficient
that, for an arbitrary positive number [, there exist a finite number
of doubly connected regions A,, A, --- A, in D — (|z]| < ¢) satisfying
the following conditions:

(i) The A, are mutually disjoint,

(ii) A, separates I from (|z]| Z¢) (v=1, 2, --+, k) and separates
A._, from A,, (v=2, 3,+--, k—1),

(iii)
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Proof. Sufficiency: By (V), No. 9, and by Theorem 2, [ =<
S mod A, < 27/M{7v}. < log (v(I")/(¢)). Therefore, 7(I') = o and, by

Theorem 1, I" is weak.

Necessity: Take an exhaustion (|z|<e¢)c D, c D,C---C D, C
-+« 1D and consider the extremal function g, on D,. By Koebe’s distor-
tion theorem, No. 14, the image of | 2| = ¢ is contained in a(c)< |w| Zb(¢),
so that the set b(¢) < |w| < »(I"») minus the circular slits is contained
in the image of D, — (|z| £¢). From the annulus b(e) < |w| < r({,),
delete all the concentric circles containing the circular slits. Then we
get a finite number of concentric annuli Aj, Aj, --., A, such that
¥_,mod A}, = log (r(I",)/b(¢)). Since »(I") = lim,..7r(l",) = o, we can
take n so large that the right hand side is greater than the given [.
The inverse images A, A, ---, 4, of A, A, ..., A are what we
desired.

REMARK. We see from this theorem that the weakness of I" depends
merely on the configuration of 6D near I. Furthermore, by (I), No. 15,
the weakness is invariant under quasi-conformal mappings.

9. Radial slit disks for special regions.

19. Unlike the case of the functional M(f), the function maximiz-
ing m(f) does not exist in general; by slightly modifying the example
given by Strebel [20], we get a region on which m(f) < R([") = sup,e3r
m(f) for all fe$,.

Under a restriction, however, we get a result analogous to that of
No. 15. Let G be a region containing the point 2 = 0 and such that a
component I" of G consists of a closed analytic curve which is isolated,
ie., 0G — ' N I' = ¢. Let A, be the subfamily of F, consisting of all
functions with M(f) = m(f). On this family Sario [17, 18] introduced
the functional

1) = 2xlogm(f) — | log|s]- dargs

and proved the existence of a function f,e U, such that

(4) 2 log m(f,) = I(f) + D(log | f| — log | £, )

for all fe,. Evidently f, is the unique maximizing function of I(f)
in UAj.

We can derive from this relation the following facts (Sario [18]),
which have been obtained by Rengel [14] for a region G of finite con-
nectivity:
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(I) R(I) is finite. f, is the unique function maximizing m(f) in
Ay It maps G onto a radial slit disc | w | < R(I"), where the area of
slits, t.e., f, (0G — I')*, vanishes.

(IT) Let {G,} be a sequence of regions such that 0€G, | G and 0G,
consists of I' and a finite number of closed analytic curves. Then

R(I'; G)=lim R(I",; G,)
and the sequence {f,} of the maximizing functions on G, converges to
fo uniformly on each compact set in G U I'.

20. Let {y}. be the family of rectifiable curves which connect
|z]| =¢ with I"in G — (]z| < ¢). In a method similar to the proof of
Theorem 2 we can obtain the following relations:

<10gM ’
(5) ~2O 7 o) < log L)
log Ry = Vie = lOg a(e)
a(e)
(6) log B(I") = lim (log ¢ + 27\ {7}.) .

Here {v}. can be replaced by the subfamily of analytic curves.

10. Characterizations of R(I").

21. Let D be an arbitrary region containing the point z = 0. Let
{2,}7., be a defining sequence of I" such that 0¢2, (n =1, 2, ---).
Then G, = D — 2, is a region and its boundary component 7", — 0G, N 82,
satisfies the condition of No. 19.

THEOREM 4. {R([",, G,)}y-. is an increasing sequence and R(I") =
lim, .. BR(,; G,).

Proof. {R(I",; G,)} is an increasing sequence by (6).

For an arbitrary ¢ > 0, there exists an f(z) e &, such that m(f) >
R(I")—e¢/2. Then there exists an %, such that the m of this f(z) on G,
(we denote it by m,(f)) has the property that m,(f) > m(f) — /2
whenever n =mn,  Therefore, R([,; G, =m,(f)> R([’)—¢ and
lim, .. R(I"; G,) = R().

Next, let A, be the doubly connected region bounded by I, and I".
Then I” is an isolated boundary component of the region G, =G,UA,UT,.
I’ is not necessarily a closed analytic curve, but from the result of
No. 19 we can see the existence of the function fn(z) in ¥, of G, such
that m(f,) = R(I"; G,). Evidently f;(z) belongs to $, of D. By (6),



276 KOTARO OIKAWA

R(I'y; G,) < R(I'; G,). Consequently, R(I",; G,) < R(I'; G,) = m(f,) <
R(I') and Tim,_.. R("; G,) < R(I).
This reasoning remains valid for the case where R(I") = .

REMARK. Combining Theorem 4 with Theorem 1, we see that
lim, . R(I",; G,) < o implies the strength of I". This fact was proved
by Sario [17].

22. Let {y}. be the family of curves v: 2z =2(¢) (0 <t<1) in
D—(Jz]| =€) such that N {2(t); 0<t<e} c(z]=¢) and Neso
{2(t); 1 —e<t <1} cI'. Let {v,}. be the corresponding family in G,.
Strebel [22] has proved the relation M\ {y}. = lim, . M {7,}.. On combin-
ing this with (5), (6), and Theorem 4, we have

THEOREM 5.
(toe %ﬁ? 2 R(I)
g BL) = EMI S low Ty
og ——~
a(e)

log R(I") = lim (log ¢ + 27\ {v}.) .
g0

Here v can be restricted to the curve which is the union of a countable
number of analytic arcs which cluster mowhere in D (cf. No. 15,
Remark).

REMARK. The exponential of the right hand side of the second
relation was called ‘‘extremal Durchmesser’’ by Strebel [22]. On combin-
ing Theorem 5 with Theorem 1, or directly from (XI), No. 10, we see
that M {v}. < o implies the strength of /. This result was generalized
for open Riemann surfaces by Constantinescu [4].

23. For an exhaustion D, [ D in the ordinary sense, it has not been
proved whether lim,_.. R(I",; D,) exists or not. We obtain merely the
following

THEOREM 6. Let 4 be a region such that 0e 4, A4C D, and bounded
by a finite number of closed analytic curves. Denote by I', the com-
ponent of 04 which separates 4 from I'. Then

R(") =lm R(I';; 4)

4—-D

where the right hand side is a directed limait.

Proof. For ¢ >0, there exists by Theorem 4 an » such that
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R(I') —e< R(I',; G,). By Theorem 5 R([",; G,) < R(I",; 4) for any
4> 17, U {0}. Therefore, R(I") < lim,., R(I";; 4). On the other hand,
for ¢ >0 and a compact set K C D, take an m, such that K C G,,.
There exists, by (II), No. 19, a 4 C G, such that R(I"; 4) € R(I",; G,,) + ¢,
and, therefore, R(/",; 4) < R(I") + . Consequently lim,., R(I";; 4)<R(I").

REMARK. On combining Theorem 6 with Theorem 1 we see that
lim,.p, R(I";; 4) < oo implies the strength of /. Sario [18] has shown
that 1" is strong if Iim,,, R(I",; 4) < .

11. Unsolved problems.

24, As we pointed out in No. 7, the following problem has not
been solved:

(1) Is R(I') < o necessary for the strength of I"?

Since the maximizing function of m(f) in F,, or equivalently the
minimizing function of diam @(I") in B, does not exist in general, the
case is different from that of a weak boundary component. The example
of Strebel [20] stated in No. 19 is for R(I") > o, and it does not answer
this question.

Let {G,};-, be the sequence introduced in No. 21 and let f,(z) be
the extremal function on G,. Since {f,}:. is a normal family, we may
assume that f, converges to a univalent function f(z). One can imagine
that, if R(I") = o, then f(I") would be a point. However, we can only
prove that f(I") consists of the point w = o and possibly of radial
segments emanating from it whose arguments form a set of measure
zero (Strebel [22]). Such line segments appear in our Example 10, Nos.
39, 40. Nevertheless the boundary component of this example is unstable,
because we can map it onto a region such that (/") is a point and
f(@D — I') consists of circles (No. 39).

We have several other unsolved problems as follows:

(2) Is strength a boundary property?

(3) Is lim,, R(I"s; 4) equal to lim,, R(I";; 4)?

(4) Is strength preserved under quasi-conformal mappings?

IV. CRITERIA FOR WEAKNESS AND INSTABILITY

In this chapter we consider Problem A presented in No. 4. Several
sufficient conditions for weakness have been obtained by Savage [19].
Here we shall consider some special regions and attempt to get more
concrete necessary or sufficient conditions,
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12. Boundary on the positive real axis.

25. Let {a,}y., and {b,};_, be sequences of positive numbers such

that
1<b,,=a,<0b,

lima, = o .

n—oo

Denote by [a, b] the closed interval on the real axis.

D = ([ zl < Oo) - gl[bn—u a’n]

is a region and /" = {} is its boundary component.
tion is devoted to discussing the following problem :

n=12-.-.),

Then

The present sec-
When 1s I weak

and when is it unstable?

0 If
S-1)==

“n

26. THEOREM 7.
(7)

then I' 1s weak.

(ii) If
(8) lim 22 — 10
n—ee O,
and
(9) S 1 <o
n=1 1

log———
% tojan) — 1

then I' is unstable.

Proof. (i) Consider the annuli 4, =(a, < [2|<b,)(n=1,2, -..).
Since >\ mod 4, = 3 log (b,/a,) = =, Theorem 3 shows that I" is weak.

(ii) Let A4,, A4,, --+, A, be doubly connected regions satisfying the
conditions (i) and (ii) of Theorem 3. For any A,, there exists an n such
that A, passes through the open interval (a,, b,) and a component of
A, contains 0 as well as a,. The region

D™ = {[07 a,] U [bny oo]}c

is conformally equivalent to Teichmiiller’s extremal region with P =
(b,/a,) — 1. By the extremal property of D™, No. 11, the sum of the

3 If [imp—e byjay, > 1, then I' is weak by (i), Theorem 7
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moduli of all such A, does not exceed mod D™ = log Z((b,/a,) — 1).

k oo b
(10) S mod 4, < 3 log qr(_n - 1) .
v=1 n=1 Ay
By (3), No. 12,
b ?
log¥(-2 —1)~
o8 (an ) 1 1

% Gojan) —1

Therefore, the right hand side of (10) converges and, by Theorem 3, I”
is unstable.

ExamPlE 1. a,=2n+1, b, = 2n + 2. Evidently (7) diverges so
that I" s weak.

ExAMPLE 2. a,=nF b, =n*+1 (k> 1). Since (7) converges and
(9) diverges, we cannot decide by Theorem 7 (see also No. 27).

ExAmPLE 3. a,=c¢" b, =¢* + 1. Similarly, we cannot decide (see
also No. 27).

EXAMPLE 4. a,=¢", b,=¢" + 1 (a >1). I is unstable by (ii).

27. We derive another criterion applicable to Examples 2 and 3.
To this end, we first prove

LEMMA 2. For the doubly connected region
A, =1<|z|<q) —[1+h, q
where h > 0 and q s fixed,

77'-2

mod A, ~ for h— 0.

1
2log —
ogh

Proof. By (VIII), No. 9, mod A, = 4w/ {y} where {7} is the family
of rectifiable curves in Q = A4, N (Jz > 0) joining [— ¢q, — 1] with
[1, 1 4+ h]. Map @ conformally onto the upper half-plane in such a
manner that —¢, —1, 1 correspond to —o, —1, 0, respectively. The
image P of 1 + h has the property that

P~ ch? for h — 0

where ¢ is a constant independent of ~. From (VIII), No. 9, we con-
clude that
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’ ?
mod A, = log ¥(P) ~ T 1 (h—0) .
log— 2 log —
ogP og 5

THEOREM 8. Suppose that lim, .. b,/a,=1. If a,../a, is bounded
away from 1, then I' is weak if and only if

& 1
log

1

Proof. If the series converges, I" is unstable by (ii) of Theorem 7.

Conversely, suppose that the series diverges. The doubly connected
region A, = (a, < |2| < @ps1) — [ba, @n.1) is conformally equivalent to
the region A, = (1 < | 2| < @psifa,) — [bu/@y, @yii/a,). By the assumption
1<1+8<a,.,/a, and, therefore, A =(1<|z| <1+ 3)—[b,/a,, 14+05)C A,
go that mod A < mod 4,. By Lemma 2

71-2
mod A ~

1 (n— o).

(baa,) —1

Consequently, the assumption implies that >\ mod 4, = o, and we infer
from Theorem 8 that I" is weak.

2 log

ExampLE 3 (No. 26). a,=c¢e" b, =¢"+ 1. By Theorem 8, I" s
wealk.

ExaMpLE 2 (No. 26). a, =n* b,=n*+1 (k> 1). Since a,.,/a, =
(n + 1)*/n* is not bounded away from 1, the above theorem is not
applicable. However, we can see as follows that I" 4s weak. For
simplicity, we consider the case k = 2; the general case can be treated
in a similar fashion. Consider the region A, = (ax < |z| < ap+1) —
[bs2, am+1), which is conformally equivalent to (1 < |2z| < 4) — [1 4+ 27, 4).
By Lemma 2, mod 4, ~ 7%/(4n log 2) for n— o and Y mod 4, = . It
follows from Theorem 3 that I" is weak.

More generally, this result can be stated as follows:

THEOREM 8'. Suppose that lim, ... b,/a, =1 and that there exists a
subsequence {n;} C {n} such that anm/ani 18 bounded away from 1 and
(12) S 1 - = .

T log————
(bni/ani) -1

Then I" s weak.
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28. When a,.,/a, is not bounded away from 1, we may also apply
the following criterion:

THEOREM 9. Suppose lim, ... b,/a, =1 and lim, .. a,:./a, =1. If
(13) lim log (b,/a.,)
e 10 (G 41/C)

exists, then
(14) i IOg (a’n+i/a/n) = o
n=1

b, \tostay, /e,
_n> -1
(42%

log

implies that I' s weak.

Proof. Consider the doubly connected region A, = (1 < |2]| < ¢q,) —
1+h, q¢) n=1,2,...), where 0 <h,<g¢q,—1 and lim,..q, = 1.
Map the annulus 1 < |z| < ¢, onto 1 < |w| < e by the quasi-conformal
mapping

w = T,(2) = 1!/t nelt (z = re¥) .

Its dilatation equals 1/log q, provided n is so large that g, < e. The
image of A, is A =1 < |w]| <e)—[A+ hy)¢%, ¢). From (I), No.
15, we have

(15) log ¢, - mod A!! < mod 4/, .
Now suppose that lim,_.. (log (1 + &,))/log q, exists. If
lim (1 + A,)"¢% > 1,

n—oo

then mod A} and log {1/[1 + h,)"*s% — 1]} are bounded and bounded
away from zero. Hence the divergence of

(16) S logds
" log
@+ by — 1

implies that >, log ¢, - mod A} = o and, by (14), that >\;., mod A}, =co.
If lim,,. (A + h,)"*% =1 we obtain by Lemma 2

7.[:2

log Al ~ (n— ).

1
@+ Ry — 1

2 log

Therefore, the divergence of (16) again implies that of Xy_, mod A4,.
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In the given region, consider A, = (a, < | 2| < @psy) — [Dny Aper). It
is conformally equivalent to the above A/, for 1 + A, = b,/a, and ¢, =
@p41/0,. Therefore, >i.,mod A, = o and I" is weak.

This criterion is applicable to Example 2.

EXAMPLE 5. a,=mn, b, =n + e In this case (7) converges and
(9) diverges, so that we cannot decide by Theorem 7. Since a,.,/a, is
not bounded away from zero, we cannot apply Theorem 8.* For every
subsequence such that lim, .. Qn,, [@n, > 1, (12) converges, and we cannot
use Theorem 8. (14) also converges and, therefore 9 is inapplicable.
We have not been able to decide whether I is weak or unstable. In
general, for a, =n, b, =n + ¢ (@ > 0), I' is unstable for @ > 1 but
it is unknown if it remains true for 0 < a < 1.

13. A generalization.

29. Consider the case where the intervals are distributed on the
whole real axis. We treat again the simplest case.

PrOBLEM. Let {a,}x., and {b,}5-, be the sequence of positive numbers
such that

0<b,,<a,<b, n=1,2 )

lima, = o .

n—oo
Consider the region

oo

D = (l Zl < 00) - g[bn—ly an] - U ['—am _bn—l] .

n=1

Under what condition is I" = {00} a weak boundary component of D?

This problem can be reduced to the case which we discussed in the
previous section. More precisely, let I' = {=} be a boundary component
of

D=(z|< )= UMby al;
then we have
THEOREM 10. [ is weak if and only if I' weak.
Proof. If I' is unstable, then, since D c D, I" is unstable by the

definition.

4 The author is indebted to Professor R. Redheffer for the argument that follows in
this example.
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Suppose that I" is unstable. Since weakness is a boundary property
(No. 18), we may assume without loss of generality that b, > 1. By
Theorem 2, M{y} > 0 where {v} is the family of curves in D—(|z|<1)
separating I from |2z] =1. Let {v,} be the family consisting of curves
in the upper half of D — (2] <1) connecting (1, o) — Ui [bus @l
with (—w, —1) — Up..[—as —b.-]. Let {7} be its subfamily con-
sisting of curves whose end points are symmetric with respect to the
origin. Then, by (VIII), No. 9,

Myt =Myt =2 {7}/2>0.

Consider the region 4 = (]¢| < o) — UJg.,[b2-;, a2] and its boundary
component (¢ = ). Let {y*} be the family of curves in 4 —(]¢| < 1)
separating o« from |¢| < 1. By making use of the mapping ¢ = 2, we
can immediately see that )\ {y*} = M {7} and, therefore, (¢ = ) is an
unstable boundary component of 4.

The mapping

¢ = T(z) = rwe? (z = re®)

is quasi-conformal and maps D onto 4, 2 = o onto { = o. Since weakness
is preserved under quasi-conformal mappings (No. 18), I" is unstable.

REMARK. Using the same method, we can also prove Theorem 10
when the intervals are distributed on %k half-lines re** (0 < r < =),
v=0,1,---, k.

14. Criteria for arbitrary regions.

30. Let D be a plane region such that /" = {x} is a boundary
component. If D is contained in another region discussed in preceding
gections and {o} is its unstable boundary component, then, by the
definition of instability, I" is an unstable boundary component of D.

If such a condition is not satisfied, the following criterion may be
applicable. It is a simple generalization of (ii) of Theorem 7, and we
omit the proof.

THEOREM 11. Let D be a region such that 0e€ D and [I' = {} is
a boundary component. I' is unstable if there exists a sequence {C,} 5.,
of components of 8D — I' satisfying the following conditions:

(i) For a doubly connected region A C D separating 0 from oo,
there exists a number n such that A separates C, from C,.,.

(ii) For every m, there exist points a, € C, and b, e C,,, such that
Ian - bn I = dist (Cn’ Cn+1)a
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b

lim=2 =1
n-eo
and
i 1 < oo,
n=1 ] 1

& o) — 1]

31. This criterion is not a necessary condition for instability. This
is apparent from the following

ExAamMpPLE 6. Consider the closed sets
E,={z»+1=Z|2z|=(n+ 1) |argz| =<7 —¢,},
0<eg, <m, n=1, 2, ...

If e(n=1, 2,...) are taken sufficiently small, then I' = {x} is an
unstable boundary component of D= (]z| < o) — Us., E,. It does not
satisfy the assumption of Theorem 11.

Proof. For an arbitrary subsequence {C,};., of {E,};., and every
choice of a, and b,,

21 ] ! 1
E Oula) — 1]

v

1 )
?El log 7 -

Therefore, the assumption of Theorem 11 is not satisfied.
In order to show the instability of I', consider the following cross
cuts of D:

Oy R2=0, 4+ 1P (n+1F+1,
Ba: lz] =M@+ 1), |argz| <7 —¢,,

Bunilzl=(m+ 1P +1, |argz| =@ — €44y,
(/n.:]_, 2,...).

Let 8, be the extremal distance between «, and B, U B, with respect
to the region (v + 1 < |z| < (n + 1)+ 1. It is possible to take ¢, and
€u+1 80 small that §, >n* (n =1, 2, ---). Let {y}, be the family con-
sisting of closed curves in D — (] z| < 1) separating I from |z | < 1 and
passing through «,. Let {7}, C {7}, be the subfamily of curves contained
in(m+17<[z|<(®+1)+1and put {v.}, = {v}. — {7}.. By (VD),
No. 9,
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1 _ 1 1
Mobe T MYt Mrda

Since n* < 8, < M7.}t. and 2x/A{y.}, = log (1 4+ 1/(n + 1)?), we get

1 1 1 1
< —log(l+ ——)+=
Mrt., T 2rm og( + (n + 1)2) + n

if » is sufficiently large, and, therefore, >.,1/A {7}, converges.
To apply Theorem 3, take A,, A4,, ---, A,. Then evidently

i‘,mod A4, < i I {7}. <
n=1

v=1
and we conclude that I” is unstable.

32. Finally, for the sake of completeness, we shall present a well-
known sufficient condition for weakness. For a bounded doubly connected
region A, we have that mod A = log (1 + (nd/4l)). Here d is the distance
between the components of 64 and ! is the infimum of the lengths of
closed curves which separate the components of 84 and whose distance
from 0A is = d/2 (Sario [15], Meschkowsky [11]). Therefore we get
immediately from Theorem 3 the following result (Meschkowsky [11],
Savage [19]):

THEOREM 12. Let D be a plane region containing the point z =0
and such that I' = {} is a boundary component. Suppose there exists
a sequence of doubly connected regions A, C D — (|z]|<e)(n=1,2, )
with the following properties:

(i) The A, are mutually disjoint,

(i) A, separates I’ from |z|<e n=1, 2, -+-) and also separates
A, from A,., (n =2, 3, --+),

(iii)

idn/ln = .
n=1

Then I' is a weak boundary component of D.
On applying this theorem, we obtain

ExaAMPLE 7 (Denneberg [5]). Let D be a region such that /"= {}
is the only accumulating boundary component. If there exist numbers
a >0 and B < o such that the distance between every pair components
of 8D — I is = « and the diameter of every component of 8D — I' is
< B, then I' is weak.

ExaMPLE 8 (Cf. Wagner [24]). Let & be the group of transforma-
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tions 2’ =2z + mw + nw' (m, n =0, +1, + 2, -..) and let K, be a closed
set contained in the interior of the fundamental parallelogram of .
Then I" = {~} is a weak boundary component of the region D =

(Iz] < o) = Ureg T(E).

V. CRITERIA FOR STRENGTH AND INSTABILITY

In this chapter we shall discuss Problem B, No. 4. For simplicity
we mean by a boundary continuum a boundary component of a region
which is a continuum containing more than one point.

15. Strong boundary components.

33. If I' is an isolated boundary continuum of D, i.e., if there
exists an open set U such that "' c U and U N (@D — I') = ¢, then I”
is evidently strong. More generally,

THEOREM 13. A boundary continuum I’ of a region D is strong if
there exists a disk U such that UNIT # ¢ and U N @D —I') = ¢.

This theorem is also almost trivial. To prove it rigorously, we shall
use the following

LEMMA 8. Let 4 be a simply connected region which is a proper
subset of ([&]<1). Map 4 conformally onto the wupper half-plane.
Then the image E of 04 N (|¢] < 1) is a set which does not belong to
the class Np.”

The proof is easy and we omit it. It may appear plausible that E
contains an interval. That this is however not so has been remarked
by Koebe (see Radé [13], p. 2, Bemerkung). We can even see that the
condition of Lemma 3 is necessary and sufficient.

Proof of Theorem 13. Map a component 4 of UN D onto the upper
half-plane by @ and let E be the image of I" N 4. By Lemma 3 E¢ N,
and, therefore, E is of positive measure (Ahlfors and Beurling [2]). If
I’ is unstable, a univalent function f(z) transforms I" to a point. There-
fore, the univalent function fo ¢ on the upper half-plane takes a con-
stant boundary value on FE, contrary to the well-known theorem of F.
and M. Riesz.

REMARK 1. In this case, R(I") < « and we can also use Theorem
1 to conclude that I is strong. To prove the finiteness of R(I"), we
apply Theorem 5. Take a component V of U N D. It is easy to find

5 A compact set E is said to belong to the class Np if E°¢ does not admit a function
with a finite Dirichlet integral.
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a simply connected region 4 such that 4 < D, Vc 4 and (| z| < ¢)C 4.
Since the set E¢ N, is of positive capacity (Ahlfors and Beurling [2]),
Mv}e < o by Lemma 3 and (XI), No. 10.

REMARK 2. Because of this theorem, we may consider from now
on only the case where every point of I” is an accumulation point of
oD —T.

34. We shall now give two other kinds of examples of strong
boundary components which do not satisfy the condition of Theorem 13.

ExAMPLE 7. Let D be a radial slit disc |z| < a in the sense of
No. 3 and let I" = (]z| = a). If the arguments of the slits form a set
of measure p less than 27, then R(/') < « and, consequently, I" is
strong.

In fact, we can easily obtain the estimate

Mote = {log (afe)}/@r — 1) < oo .

35. EXAMPLE 8. Let {c,};-, be a sequence of numbers such that
0<e, =x2, Put r,=1—1/(n + 1) and let

k — 1) < < Tk _
on +c, S argz = on c,,}

(k=1,2 v, 207 m =1, 2, +).

sz={z;12|=m

I’ =(lz] =1) is a boundary continuum of the circular slit disc D =
(2] <1) = Unssi. If lim,..c,2" >0, then R(I") < « and therefore, I’
is strong.

Proof. Clearly it is sufficient to give the proof for ¢,2" =8 > 0.
For simplicity, we choose & = x/4, i.e., ¢, = w/2"**. In order to show
the finiteness of R(I"), we map D quasi-conformally onto the radial slit
disc 4 =(w]|<1) — Unros, where

o‘;"b = {w; Tne'%” g le é rnecn“ , arg w = E_(z_écn__:__l)_}-
(k=1,2+++,2";0n =12 ---).
Consider the doubly connected regions

A, =1{z;—1<Re <1, —3<J2< i}
—{z; —34=Re <4, =0}
and
A, ={w; —1<Rw <1, —3<Jw <3}

—{w; Rw=0, —=Jw=1}.
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It is not difficult to map A, quasi-conformally onto A4, by a function
which is of class C*' in A, and is the identity mapping on the outer
periphery of A,.

In our region D, consider the quadrilaterals

Q= {z; rae”n < | 2| < 1,60, _—ﬂ(k2: D < arg z < %{:—}
(k=1,2,0c, 2", n=1, 2, +¢¢).

They are mutually disjoint and all Q@ — st and QfF — ¢* are conformally
equivalent to 4, and A,, respectively. Therefore, we can contruct the
mapping w = T%2) of Q% — s onto Q% — ¢* which is the identity mapping
on 0Q% and whose maximal dilatation K depends neither on %k nor on n.
Then

Tiz) inQt— st (bk=1,2,+-+,2"; n=1,2¢-)

is a qussi-conformal mapping of D onto 4 such that T(T) = (lw|=1)=1".

Since 4 belongs to the case of Example 7, R(/"; 4) < o, and, by
Theorem 5, M{7'}. < . Here 7' is a rectifiable curve in 4 — (Jw| = ¢)
connecting |w | =¢ with I”. It is furthermore assumed that 7' is a
union of a countable number of analytic arcs clustering nowhere in 4
(cf. Remark, No. 15). On D, we have the corresponding family {v}.
and, by (IV), No. 15, M {7} < KA {¥'}. < oo. Therefore, by Theorem 5,

R(I") < o and I" is strong.

35. We continue to consider Example 8. If ¢, decreases sufficiently
fast, then R(I") = . In fact, let {v.}. be the subfamily of {y}. which
consists of curves passing through the arec {#; z=1r,, |argz| < c,}. By
(VI), No. 9, M7} = M7a}e/2*** and, By Lemma 1, No. 13,

X{Vn}s’v?l;logcl (n— o).

For this reason R(I') = o if, for instance, ¢, = exp (—2™). However,
it is unknown in this case whether " is strong or unstable.

16. Unstable boundary continua.

37. As in No. 21, let {Q,}7., be a defining sequence of I and let
0eG,=D— 2,1 D. Consider the function w = f,(2) maximizing the
functional m(f) in Fr on G, (No. 19). We may assume that {f,(2)}7-,
converges to a univalent function w = f(z).

In the following case, R(I") = o implies that f(I") = {}:
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THEOREM 14. Let D be a region containing z =0 and let I be a
boundary continum. Suppose that
(i) D is symmetric with respect to the lines

l: 7@ (—co < r <), y=1, 2, -+, 2¢

for some integer k =0, and
(ii) every component of 0D — I' intersects at least one 1,.
Then I' is strong if and only if R(I") < oo.

Proof. We may assume that each G, is symmetric with respect to
all the [,. By the uniqueness of f,(z) (No. 19), we can immediately see
that £.(2) and, a fortiori, f(D) are symmetric about these lines. As has
been shown by Strebel [22], f(8D — I') consists of radial segments. By
the assumption f(6D — I') is contained in [J2*,1..

Now assume that f(I") # {}. If A(I")c U¥%,l, U {=}, then f(I")N1,
is a line segment which does not meet f(D — I'), so that R(I")<c by
Remark 1, No. 33. If f(I") ¢ U¥.l, U {} there exists a sector S
bounded by two neighboring 1,’s such that S N f(I") does not intersect
f(@D — I') and we have R(I") < «. Consequently, the strength of I”
implies that R(I") < .

38. We can find many examples of unstable boundary continua
belonging to this category, e.g., as follows:

ExAMPLE 9. Consider the region
D=(zlse) I =UGUsi Uk U,

where

I'={;—1=<R=<1, Jz=0},

1 1
s— a1 <Re<1 _,<‘=0},
Sk {z T i = g

1 1
ol c1- Lo 11 sp=ol,
Si {z o == %+ 1 M 0}
0%:{2;—1§2}{z§1,$z=———‘_k—1—}.

Since every point on /7, except +1, is inaccessible, R(/") = o by (X’),
No. 10. From this and from Theorem 14, we infer that I" is an unstable
boundary continuum of D.

39. Meschkowsky [11] has proved that a region satisfying certain
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metric conditions can be mapped conformally onto a region bounded by
circles or points in such a way that the image of a preassigned boundary
continuum is a point. This case is also an example of an unstable
boundary continuum.

40. The following example belongs to this category but does not
necessarily satisfy Meschkowsky’s conditions. Moreover, the function
f(z) = lim,_.. f,(2) of No. 387 does not transform /I’ to a point.

ExAMPLE 10. Let I={z; —1 <Rz <1, J2 =0} and let
I'={2; Rz =0, —1<Je <1} .
Choose a sequence {c,; k= +1, + 2, ...} such that

Cop = —Cgy € >C > o+ | 0,

and let
sk 2= re’ Alellsrsl),
Sp? 2 = retortmd ANE'=Sr=s1),
s§: 2z = retr ANl =sr=sl),
sp ™ 2z = rettem® q/k'=srsl),

where k= +1, +2,.-.. Then I"=1U I' is an unstable boundary
continuum of the region

D=(z| <o) —I—U(UsiUstUs™) .
k=—o0
k0

In fact, D can be mapped onto a region such that f(/") is a point
and every component of f(8D — I") is a circle. For the proof, map the
region

(Iz]) = <) ~ka(8% U si” U sp U si™)

kF0

conformally onto a region bounded by 8n circles; we may require that
the mapping function w = f(z) has the expansion z + b,/z + --- near
2=o (n=1, 2,-..). The existence and the uniquess of such a map-
ping are well known. A suitable subsequence of {f(z)};., converges
to a univalent function w = f(2). We can easily prove that every
component of f(@D — I') is a circle (see, e.g., Meschkowsky [11]). In
what follows we shall show that f(I") = {0}.

First we remark that R(I") = o, because every point on I°, except
0, +1, + 14, is inaccessible (cf. (X'), No. 10). Second, D and, therefore,
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f(D) are symmetric with respect to the following four lines: [, = (real
axis), l,, = Mz = J2), L., = (imaginary axis), and [_,;, = (Rz = — J?).
The component f(I")* of f(D)° corresponding to f(I") is a compact
connected set which contains the point w = 0 and is symmetric about
these four lines.
The component f(s§)* of D° (8 =0, +7/2, m; k= +1, £2,..+) i8
a digk, which we denote by

A Jw—af| = o .

The radius p, does not depend on B because of the symmetry. Fur-
thermore,
17 ’Eim 0x = 0;

in fact, all the 4% cluster to f(I")*, so that the sum 8z >\;., 0¢ of their
areas converges.

Consider a quadrilateral
— . 1 1 T _ }
Qs & k!<lzl< TNk ¢, < arg z < 5 O]
which connects s with s72 (k = 1, 2, +--). The extremal distance between
st and s¥2 with respect to D does not exceed

_ (7[2) — 2¢,
mod Q, lo—————g A .

Let L, be the infimum of lengths of curves in f(D) connecting 4% with
4%, 'Then

L (7/2) — 2¢,
< % -0 k— o
(18) nU log k ( )

where (U expresses the area of a bounded open set U containing f(/7)*.
For this reason and by virtue of (17) and (18), we have
iirn |al — a™?| ghlim Ly + 20,) =0.

It follows, by symmetry, that {al};., and {a™Z};., cluster to [, in the
first quadrant. From this and again from the symmetry, we see that
the set H of all accumulation points of af (3 =0, £x/2, 7; k= +1,
+2,...) is contained in I, U l_,,. Evidently it is symmetric about [,
and l.,, and H C f(I")*.

Next we shall show that H = {0}. Suppose that H contains a point
w, = pet™* (p > 0). Then there must exist a point ge**e H (0 < q < p).
For otherwise H would consist of four points: H= {pe’; 0= +x/4, +3x[4}.
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Then all but a finite number of components of f(@D — I") in the first
quadrant would be contained in |w — pe'™*| < p/4. Since w, and 0 are
contained in f(I")* and f(I")* is a continuum, f(I") would have a ‘‘free’’
subset as in Theorem 13. But the reasoning of Remark 1, No. 33,
gshows that this property of f(I") contradicts the fact that R(/") = o
and, therefore, qe'”*e H exists. Take a subsequence {k;,} c {k} such
that
lim a‘,’cj = lim a™? , = qet™!* .

oo Joroo

Then

Lk,+2pk,zp;q >0

for sufficiently great j, contrary to (17) and (18). Consequently, w, does
not exist and H = {0}.

Finally, if f(I")* 2 H, then f(I") would again have a ‘‘free’’ subset,
contrary to the fact that R(I") = «. We conclude that fF(I")* = {0}.

41. Transform the region D by ¢ = 1/z and, for simplicity, denote
the image again by D. For the sequence G, | D of No. 37, we take

G,=(z]<n!4+¢u) N D
hw

3

C C

—U{z; 1= Cp = 2], 25 T Curs < grgp
h=1 2 2

hr c+c+1}
< L__”_’
- 2+ 2

n=1, 2, ..., and consider the extremal function f,(z). We shall show:
If ¢, = —c_; decreases sufficiently fast (e.g., ¢, = e *'), then
lim,,_... f,(z) = z uniformly on every compact set in D.
In order to prove this, we estimate the Dirichlet integral of
log | f.(2)/z | over 4= (2| < 1/2):

Dlog | fu(?) | — log | 2]) = D; (log | fu(?) | — log | 2 )
=, oglsi|-darss, —log|z| - dars s,
—log|f.]|-dargz+log|z|-dargz)
={,, Goglfi|-dargs, —2log|f, |- dargs
+ log|z]| - dargz)
= 2r log R({",; G,) — 2log R([",; G,.)L darg z

n

+S log | 2| darg z < 2r{log n! — log R(I",; G,)} .
r,

n
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To estimate the last term, we shall use the relation log R(I",,; G,) =
lim._, (log ¢ + 27\ {7}{™), where the sequence is increasing (No. 22). Here
{v}® is the family of curves in G, — (/2| < ¢) connecting I, with
|z| =e. We take the closed disks

A |z — e < e, ,
4 lz—mnle™?| < nle,,

h=0,1,2 8; n=1,2,.-.. Let {7}™ C {7} be the family of curves
connecting |z | =¢ with U,, 4% U 47 and put {y}™ = {7} - {v,}@.
By (VI), No. 9,

1 1
< = +
A

ES LT =M V=12,
g 1 2

or

2
Mk zn — 2
A

It is evident that

! !
1 logn°+c"gngilog&.

27 — 8¢, 13 2r €

Therefore,

log R(I",; G,) = loge + 2m\{y}{™ = logn! — 2—12 ,

1

whence

D (log | £,(2) | — log | 2 ) < 4w .
1
If ¢, is taken sufficiently small, then lim,.. A}, = 0. For instance, if
¢, =e™, we have M~ (8.n!)/t (n— ) by Lemma 1, No. 13, and
A, — 0. In such a case, lim,..D, (log|f.(3)| —log|z]) =0 and we
conclude that lim, .. f.(2) = #z uniformly on each compact set in D.
Consequently R(I") = « for our region, but lim,_. f,(2) does not
transform 7" to a point.
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