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Prefatory remarks. The principal results of this paper are existence
theorems for solutions of two classes of vector differential systems; in
each case the existence theorem is established by variational methods.
In particular, the second system considered is a generalization of a scalar
system, including as a special case the so-called Fermi-Thomas equation,
studied by Sansone [8; pp. 445-450]. In spite of similarities occurring
in the discussion of the two systems considered, the two problems are
sufficiently distinct to warrant separate treatment. Accordingly, we shall
divide the remaining sections of this paper into two parts, in which the
numbering of sections and of displayed material will be independent the
bibliography, however, will apply to both parts.

Matrix notation will be used throughout and all matrices will have
real elements; in particular, a vector u = {u3)9 (j = 1, 2, , n), will be
regarded as an n x 1 matrix. If M is a matrix, M* will denote the
transpose of M, while for a vector u = (u3)9 (j = 1, 2, , n), we define
I u I = (u\ + + ul)1'2. For F(u) a scalar function of the vector u, the
symbol Fu(u) will denote the vector function (FUj(u)) if G(u) is a vector
function {Gt{n))9 (i = 1, 2, , m), of the vector u, then GJu) will denote
the m x n matrix || ΘGJdUj ||, (i = 1, , m j = 1, , n). If M and N
are matrices, the notation M > N is used to signify that M and N are
real symmetric matrices of the same dimensions and M — N is non-
negative. As usual, the symbol C(n) represents the class of finite dimen-
sional matrix functions which are continuous and have continuous deri-
vatives of the first n orders on some given set.

PART I

l Introduction* This part of the paper will be concerned with
vector differential systems of the form

Π ι\ V" = /fat V,V9) , a <x <b ,

y(a) = ylf y(b) = y2 ,
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where f(x, y, z) is an ^-dimensional real vector function of the real scalar
x and the real ^-dimensional vectors y and z. It will be shown that the
system (1.1) has a solution, under the hypotheses H19 H2, Hs, Hδ, of §3
and Hf of § 4. For reasons of convenience, we shall work primarily with
the system

π 2) y" = f(χ>y>yr), a <x <b,
y(a) = 0 = y(b) ,

and show in §4 how a system (1.1) may be reduced to such a system.
The existence proof will use variational methods applied to the

functional

(1.3) I(y, z) = \\\ y'-z\*+\z' -f(x, y, z) f)dx ,

with (y, z) in the class K of function pairs defined below. In § 2 there
are listed some lemmas to be used later. In § 3 an existence theorem
for a solution of (1.2) is established by showing, in effect, that I{y, z)
has a minimum for (y, z) in K, and that this minimum is zero. The
relation between systems of the forms (1.1) and (1.2) is considered in
§ 4, while § 5 contains a comment on a modification of hypotheses.
Finally, § 6 is devoted to an example of a class of problems to which the
existence theorem proved here is applicable.

In what follows, A2 will denote the class of vector functions y(x)
which are absolutely continuous and for which | y'{x) |2 is integrable on
a < x < 6, while K is the class of vector function pairs (y, z) with y(x)
and z(x) in A2 and with y(a) = 0 = y(b).

2. Some useful lemmas. For future reference we collect here certain
auxiliary results.

LEMMA 2.1. Suppose that the matrix fz(x, y, z) exists and is con-
tinuous for a < x < b, all y, and all z. If for each p > 0 the elements
of fz are bounded for a < x < 6, \y\ < p and z arbitrary, then there
are values Kλ = Kx(p) and K2 = K2(p) such that

I f{x, y,z)\<Kλ\z\+ K2, for a <x <b, \y\ < p, z arbitrary.

LEMMA 2.2. If {wm(x)}, (m = 1, 2, •••)> is a sequence of vector

functions of class A2 such that the two sequences \\ \wm\2dx\ and
(Γ& ) I J α )

j \ | ^ml 2 ^r tt^β bounded, then the wm(x) are uniformly bounded on
a < x < 6, and there exists a w(x) in A2 and a subsequence {wm (x)}
such that wm(x) —> w(x) uniformly and w'mj(x) —* w\x) weakly in the
class of integrable square functions on a < x <b.
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This lemma is a ready consequence of well-known results for the
Hubert space of real-valued measurable functions whose squares are
Lebesgue integrable on a < x < 6, see, for example, [7; §§32, 99],

LEMMA 2.3. If y(x) is in A2 and y(a) = 0, then

\b\y'\*dx> π* S\v\*dx.

This is a well-known condition on the smallest proper value of the
differential system y" + λ# = 0, y(a) = 0 — y'(b). For an independent
proof see [2; p. 184]; the present inequality follows from (7.7.1) of [2]
by a simple change of variable.

We will also need some results related to non-oscillation of the scalar
differential equation

(2.1) {ψι(x)u\x))r - ψ2(x)u(x) = 0 , a < x < b ,

where ψx is of class C and ψ2 continuous on a < x < b. The equation
(2.1) is termed non-oscillatory on a < x < b if for two arbitrary points
xu x2 satisfying a < x1 < x2 < 6, any solution u(x) of (2.1) vanishing at
xx and at x2 vanishes identically on a < x < b. It is well-known that if
ψx(x) > 0 on a < x < b, then (2.1) is non-oscillatory on a < x < b if and
only if

(2.2) J(u) ΞΞ [\ψ1(;x)uf\x) + ψ2(x)u\x))dx > 0
Jα

holds for all non-identically vanishing u{x) belonging to A2 and satisfying
u(a) = 0 ~u{b). For a proof of this statement see, for example, [5;
Theorem 2.1], where a more general result is proved. Moreover, if (2.1)
is non-oscillatory on a < x < δ, the infimum of J(u) for u(x) in A2 and

u2dx =• 1 is greater than zero, as can be
a

seen from an indirect argument. Indeed, if the infimum were equal to
zero, then there would be a sequence of functions u3 in A2 with Uj(a) =
0 = Uj(b), \ u)dx = 1, j = 1, 2, , and with J{uό) —> 0. One readily

J α (Cb \

verifies that the sequence \ 1 u'fdxί would be bounded, so that, by Lemma
2.2, there would be a u(x) in A2 and a subsequence of {%}, denoted
again by {Uj}, such that u3(x) —* u(x) uniformly on a < x < 6, and u](x)
-*u\x) weakly on this interval. The identity

J(Uj) = J(u) + (Vi(^)[2^W - ur) + (u'j - u'2)]dx + ί&ir2(x)(u2j - u2)dx
Jα J

would then imply that 0 = lim Jίuλ > Jin), contrary to (2.2), since

S 6

u2dx = 1. With these comments one readily estab-
α

lishes the following result.
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LEMMA 2.4. If (2.1) is non-oscillatory on a < x < b, and ψ^x) > 0
on this interval, then there exists an e > 0 such that if h(x) is any
function continuous and satisfying \ h(x) | < ε on a < x < b, then the
equation (ψ^u')' — (ψ2(x) + h(x))u = 0 is non-oscillatory on a < x <b.

3 Existence theorem for a solution of (1 2) In the future sections
we will make reference to the following hypotheses on the real-valued
vector function f(x, y, z):

•Hi fin* V> z ) i s c o n t i n u o u s f o r (x, y , z) i n Ω : a < x < b, \y\ < °°,
\z\ < oo.

H2. The matrices fv and f2 exist and are continuous for (x, y, z)
in Ω.

iϋΓ3. For any p > 0, there exists a K = Kp such that \ dfjdzj | < K
for \y\<ρ, a<x<b, \z\ < oo, (ί, j = l, . . . , n).

iϊ4. For arbitrary p > 0 there exist scalar functions ψλ(x) =
ψ^x p) e C, ψ2(x) = ψ2(^ p) e C with ψ2(x) > 0 on a < x <b, and a
constant N= N(p) such that:

(a) the scalar differential equation (ψ2(%)wΎ — ψ1(x)w — 0 is non-
oscillatory on a < x <b;

(b) the integral inequality

*f(x, y, z)dx > j & [(ψ2 - 1)| y' |2 + ^ | y \>]dx - N
J a

holds for all y(x), z{x) in A2 satisfying y(a) = 0 = y(b) and

[\y'-z\2dx<p .

Hδ. For arbitrary y{x), z(x) in A2, the vector differential system

~ fy(x> y(χϊ> z(χ))w = ° » a <x <b(3.1) w ~ f*(x' y(x>' z

w(a) — 0 = w{b)

has only the solution w(x) = 0, a < x < b.
We now prove the following theorem.

THEOREM 3.1. Under the hypotheses Hλ-Hb there exists a solution
of the system (1.2).

Let {ym(x)f zm(x)}, m = 1, 2, , be a sequence of function pairs of
class K such that I(ym, zm) —• I09 where Io denotes the infimum of I(y, z)
on K. Since {I(ym, zm)} is a convergent sequence, there exists a constant
MQ such that I(ym, zm) < Mo, m = 1, 2, . It will be shown first that
the inequality

(3.2) Γ( | y'm(x) |2 + 2y*(x)f(x, ym(x), zm{x)))dx <M, m = 1, 2, . . .
J
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holds for

(3.3) M = 2MJk , where k = Min (1, ττ2/[4(δ - of}) .

Let vjx) = \fm(s)ds + zm(a)9 where /TO(a?) = f(x, ym(x)f zjx)). Then
Jα

um(x) = «w(ίc) — vm(a?) is in A2, and um(a) — 0, so that by Lemma 2.3,

5 b Γb —2 Γb

α Jα 4(6 — α ) 2 Jα

This inequality yields

(3.4) Mo > k\\\ y>m-Zmf +
Ja

where k is as in (3.3). Since

- vm
\y'n-vn \2dx

y'*vmdx = y*vn

b fb Γb

- 1 yZv'md% = - 1 y%fmdx ,
α Jα Jα

relation (3.2), with M given by (3.3), results from (3.4) and the obvious
inequality

dx > ί&(| y'm |2 - 2yt'vm)dx .
J

write

Jα

Since the sequence \\ \y'm — zm\2dx\ is bounded, we may use H4 to

, ym, zjdx | y'm |2 + ψt\ ym \2]dx - N,

where ψ2(x), ψi(%), and iVhave the properties stated in iί4. This relation
with (3.2) yields

Since {^2{x)nf)r — ψ^u = 0 is non-oscillatory on a < x < 6, Lemma 2.4
implies that there is an r with 0 < r < 1 such that (ψ2^')' ~ (Xlτ)ψιu = 0
is non-oscillatory on α < cc < 6. As 2/m(α) = 0 = ym(b), we then have

and

where r0 = (1 — r) Minβ^^2(a?). Thus, the sequence \\ \yf

m\2dxl is
V Ja )
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bounded, and since each ym(x) vanishes at a and b, the vector functions
ym(x) are uniformly bounded on a < x < b. Moreover,

<2^\y'm\'dx + 2Ϋ\zm -
ja J

<2[\y'm\2dx
Ja

so that the sequence jl |2m |2d#[ is bounded. Finally, with fm(x) con-

tinuing to denote f(x, ym{x), zm(x)), we have

[\z'm\*dx=\b\(z'm-fm)+fm\*dx
Ja Ja

As the vector functions ym(x), (m = 1, 2, •)> are bounded uniformly on
a < x < b, in view of hypothesis Hz and the result of Lemma 2.1, this
latter inequality implies Γ | z'm \2dx < K' + K"\\zm \2dx + 2M0, for suita-

Jo Ja

ble constants K', K". Hence, the two sequence {ym(x)}> {zm(x)} satisfy
the hypotheses of Lemma 2.2, and we conclude that there exist sub-
sequences, which will be denoted simply by {ym{x)} and {zm(x)}, and a
pair of functions y(x), z(x) in A2, such that ym(x) —> y(x) and zm(x) —> z{x)
uniformly on a < x < 6, while y'Jx) -* y\x) and z'm(x) —»z'(x) weakly on
the same interval.

With fjx) as above and f(x) = f(x, y(x), z(x)) we have

I(Vmf *m) = I(V, «) + Il.m + km t

where

Ja

and

Since ym(x)->y(x), zjx)-*z(x) uniformly, we also have fjx)-*f(x)
uniformly on a < x < b. This, and the fact that y'm -> y', z'm -> zr weakly
on the same interval, implies that I3tia —• 0 as m —> oo. As Ilt1Λ > 0, it
follows that
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Io = Km I(ym9 zm) > I(y, z) .

On the other hand, the definition of /0 requires IQ < I(y, z), so that
IQ — I(y> z) that is, (y, z) renders I(y, z) a minimum in the class of
function pairs K.

It follows that for arbitrary τJ(χ)J ξ(χ) in A2 with η(a) = 0 = η(b),
and θ a real parameter, the functional I(y + θη, z + θξ) has a minimum
at θ = 0, and therefore {djdθ)I{y + θη, z + θζ) = 0 for 0 = 0; that is,

(3.5) (*[(»*' - **)(>/ - f) + (**' - /*)(£' - fvη - fzζ)]dx = 0 ,
Jos

where the arguments of /, fyt fz are x, y(x), z(x).
In view of iϊ5, (see [4; pp. 213-214]), for an arbitrary continuous

function g{x), a < x < b, there exists a solution (y](x), ξ(x)) of the dif-
ferential system

V' - ξ = 0 ,

f - Λ(»»»(«)»2:(^)))? - L(v> v(χ)> z(χ))ζ = 0(®)» α < a? < b >

V(a) - 0 - η(b) .

[z*f — /*(%> V> z)]g{x)dx = 0 for arbitrary g(x) continuous on

a

a < x <b, and consequently z'(x) — f(x, y(x), z(x)) = 0 a.e. on the same
interval. Relation (3.5), with η{x) chosen identically zero on a < x < 6,

ζ*{yf — z)dx = 0 for arbitrary f in ̂ 42, and hence y\x) = «(a?)
a.e. on α < x < b. From the relations z(x) = «(α) + \ /(s, ̂ /(s), ^(s))cίs,

z(s)ds, it then follows that y(x) and «(α?) are of class C, and
a

that yf(a?) = (̂a?), z\x) = /(α?, ^/(x), «(a?)) for α < α? < 6, so that j/(a?) is of
class C" and satisfies (1.2).

4. Existence of a solution of (l. l) For the system

^ ^ y" = /(», #,#')> α < a? < b ,
i/(α) = Vi 9 vΦ) = 2/2 >

let JP(«J, y, ̂ ) ΞΞ / ($, 2/ + λ(a?), z + λ'(a?)) — λ"(a?), where X(x) is any vector
function of class C" on a < x < b satisfying λ(α) = yl9 λ(δ) = y2. Then
(1.1) is equivalent, with u = y — λ, to

,. jx u" = F(a?, te, w') , α < a? < b ,

tt(α) = 0 = w(6) .

This leads us to formulate the following hypothesis.
H?. There exists X(x) of class C" on a < x < b with λ(α) = ylf

χ(b) = y2, and such that for arbitrary p > 0 there exist scalar functions
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ψλ{x) = ψ^x; p), continuous on a < x < 6, ψ2(x) = ψJfa] p) of class O on
a < x < b with ψ2(x) > 0, and a constant N = N(p) such that:

(a) the scalar differential system (ψ2(x)^fY — ψλ(x)w = 0 is won-
oscillatory on a < x < b

(b) ίfee integral inequality

*f(χ, y + x,z + \')dx > [ [(ψ2 - 1)| 2/' I2 + Ψ Ί | » | 2 ] ώ χ - N
Jα

/or all y(x)y z(x) in A2 satisfying y(a) = 0 = y(b) and

[b\yr -z\2dx <ρ .
Ja

THEOREM 4.1. Under hypotheses Hlf H2J H3, iϊf, H5, the system (1.1)
has a solution.

Let F(x, y, z) = f(x, y + X(x), z + X'(x)) — X"(x), where X(x) is the
function described in Hf. Clearly, F(x, y, z) satisfies Hlf H2, H3. Since
/ satisfies Hf, we have

*f(x, y + X,z + X')dx > \\(ψ2 - 1)| y' | 2 + ^ | y \>]dx - N
Ja

f o r a r b i t r a r y y ( x ) , z(x) s a t i s f y i n g y(a) = 0 = y(b) a n d I \yf — z\2dx < p .
Ja

Hence, for such y(x), z(x) we have

2[by*F(x, y, z)dx > [[(ψ, ~ l)\yf (2 + ψ^y^dx -N- 2Ϋy*X"(x)dx
Ja Ja Ja

for any ε > 0. But by Lemma 2.4, ε can be chosen so small that
(ψ2w')r — (ψi — έ)w = 0 is still non-oscillatory on a < x < b. Thus,
F(x, y, z) satisfies iJ4. Finally, one easily verifies that if f(x, y, z) satis-
fies Hδ then F(x, y, z) satisfies Hδ. Thus, whenever f(x, y, z) satisfies
the hypotheses of Theorem 4.1, the corresponding function F{x, y, z) of
(4.1) satisfies the hypotheses of Theorem 3.1, so that the result of
Theorem 4.1 is a direct corollary of Theorem 3.1.

5 A comment on altered hypotheses* We note here that hypothesis
H± is implied by the more restrictive but simpler hypotheses H[ and H".

H\. There exists a constant C such that

\ y*(f{x, y, z2) - f(x, y, z1)) I < CI y 11 z2 - zx \ , for (x, y, z1), (x, y, z2) in Ω.

H". There exist scalar functions ψ^x), continuous on a < x <b,
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and ψ2(x) > 0 of class Cf on a < x < b, and a constant N such that:
(a) the scalar differential system (ψ2(x)w'Y — ψi(x)w = 0 is non-

oscillatory on a < x <b;
(b) the integral inequality

2\by*f(χ, y, y')dχ > Γ [(ψ2 - 1)1 y' I2 + ψJ y \2]dx - N
Ja Ja

holds for all y(x) in A2 satisfying y{a) — 0 = y(b).
To see that HA is implied by H[ and H" (assuming, of course, H19

H2), for y(x), z(x) in A2 and ε > 0 we write,

(x, y, yf)dx + 2^y*[f{x, y, z) ~ f(χ, y, yf)]dx
Ja

, y, y')dx - 2cΓ| y 11 y' - z \dx
Ja

, y, y')dx - CeVlyfdx - {Clε)[\y'-z\2dx
J a Ja

> [ [(f 2 - 1)1 V' I3 + (tx - Ce)| y \ψx - [(Cp)ls + N]
Ja

Cb

for all y(x), z(x) in A2 with y(a) = 0 = i/(6) and I \y' — z \2dx < /?. Since
Jα

ε can be chosen so small that (ψ2w')f — {ψλ — εC)w = 0 is still non-oscil-
latory on a < x < b, we see that H{ and H" imply ίf4.

It is to be noted that if the elements of fβ(x, y, z) are bounded for
(x, y, z) in Ω, then f(x, y, z) satisfies both H3 and H'4.

6. An example* Let f(x, y, z) = g(x, y)(l + zψ\ where z is a scalar
and g(x, y) is a scalar function of the scalars x and y satisfying the
conditions :

(a) g(x, y) and gy(xt y) are continuous for a < x < 6, —«> < ^ / < o o ;

(6.1) (b) gy(x, y)>0 for a<x<b, - c o < y < co

(c) ίAβre βxtsίs α constant A > 0 sw& £&α£ i/ | /̂1 ;> A
, a <x <b .

One may verify that f(x, y, z) satisfies hypotheses Hlf H2, Hz, Hf,
and JBΓ5.

PART II

l Introduction* Sansone [8; pp. 445-450] has proved the existence
and uniqueness of a solution of the scalar differential system

y" = <f(x)φ(x, y) , 0 < x < oo ,

(1.1) V(0) = y0, tf(+oo) = 0 ,

y e O on 0 < α ? < c o ,
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under assumptions which are related to hypotheses H^-HQ (see §§ 2, 7)
of this paper. The product ψ(x)φ(x, y) appears in (1.1) to facilitate
stating the hypotheses in such a way as to include the Fermi-Thomas
system (see [8; p. 445]),

(1.2) y -% y ,
y(0) = 1 , lim y(x) = 0 .

X—>oo

In this paper we consider solutions of a vector differential system, for
which we prove an existence and uniqueness theorem which includes the
results of Sansone.

The proof given in [8] may be considered in two parts. In the first
part the author proves, in effect, that under his hypotheses the system

y" = ψ(χ)φ(χ, y) , 0 < x < oo ,

(1.3) 7/(0) = y0 , y(x) bounded on 0 < x < oo,

y e C" on 0 < # < o o ,

has a unique solution. Essential to Sansone's proof of this result is the
fact that his hypotheses guarantee a local uniqueness property for solu-
tions of

(1.4) y" = ψ(x)φ(x, y)

that is, under his hypotheses, (1.4) has for 0 < x0 < oo exactly one
solution satisfying y(x0) = yOf y'(x0) = y[. The hypotheses of the present
paper, however, are not strong enough to imply such local uniqueness,
as will be shown by an example in §2. In the second phase of his
proof, Sansone appeals to hypotheses which are designed to guarantee
that the bounded solutions of (1.3) actually satisfy (1.1). In this paper
we make a similar step, but again our hypothesis is weaker than the
corresponding ones in [8], as will be made clear in §7.

Sections 2-5 of this paper present an existence and uniqueness
theorem for a solution of the vector generalization of Sansone's system
mentioned above. This proof is primarily by variational methods, and
the solutions are shown to be characterized by an extremal property.
In § 6 there is given a different characterization of these solutions, while
§7 contains several theorems relating to the asymptotic behavior of
solutions. Finally, §8 is devoted to properties of solutions of (2.1) as
functions of initial values.

2. Formulation of the problem. Let g{x, y) be a real-valued scalar
function of the scalar x and the ^-dimensional vector y = (y3). We will
denote by gy(x, y) the vector (gυ (x, y)), and consider the problem of
solving the vector differential system
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^21) v"(χ) = Sv(%> v(χ)) > ° < χ < ° ° »
2/(0) = y0 , #(#) bounded on 0 < a? < co ,

where j/(ί») e C on 0 < # < oo and y(x) e C" on 0 < a? < oo. We will
suppose that g(#, 1/) has the form g(x, y) = ψ(ίc)G(x, 3/), where Λ/Γ(O?) and
G(x, y) are real-valued functions which satisfy the following hypotheses:

Hλ. G(x, y) is continuous in (xfy) on Ω: 0 < x < oo, | y \ < oo,
and G(x, 0) = 0 /or 0 < x < co.

£Γ2. Gy(^, ̂ /) ea?ίsίs and is continuous in (x, y) on Ω.
Hz. y*Gy(x, y) > 0 for (x, y) on Ω.
H4. 7]*[Gv(x, y + η)- Gy(x, y)] > 0 for (x, y), (x, rj) on Ω.
Hδ. ψ(x) is continuous and positive for x > 0 and integrable on

any finite closed interval 0 < x < A.
It is to be noted that g(x, y) may satisfy Hx-Hh without the equa-

tion yn = gy(x, y) having the local uniqueness property mentioned in § 1.
Indeed, if we take

, y) = \W ' ^ ° '
( 0 , y < 0 ,

so that

( 0 , y<0,

it is easily verified that g(x, y) satisfies H^-H^ with ψ(x) Ξ 1. However,
the function yx(x) ~(x~ xQ)\ x0 > 0, satisfies the equation y"(x) — gy(x, y{x)),
as does the function y2(x) = 0. Since we have yλ{xQ) — y2(x0), vΊi^o) — Vίi^o),
it follows that the local uniqueness property does not obtain here.

A few consequences of the above hypotheses are worthy of com-
ment. First, observe that H2 and Hz imply Gy(x, 0) Ξ= 0 for 0 < x < co.
Also, since G(x, 0) Ξ= 0 by H19 and

G(x, y) = [\JLG(X, sy)ds] - [y*Gy(x, sy)ds - \8-\*u*Gv(x, sy))ds ,
JoLds J Jo Jo

we have by Hz that G{x> y) > 0 on Ω. Moreover, if y(x) is continuous
on 0 < x < A, A > 0, and 2/"(#) exists and satisfies y"(x) —gy(x, y(x))
for 0 < a? < A, then # e C on 0 < x < A. To see this we write

yf(x) = yf(A) — \ y"{t)dt = y'{A) — 1 ψ(t)Gy(t, y(t))dt , 0 < x < A .
Jz Jx

Hence, limx^oy
f(x) exists. This, with the fact that y(x) is continuous

for 0 < x < A, implies yf(0) exists and that limx^oy
f(x) = y'(0).

Next we note that if G(x, y) satisfies Hλ and H2, then H4 is equiva-
lent to the statement that G(x, y) is convex in y; that is,
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G(x, y2) - G (x, yx) - (y2 - y1)*Gy(xf yλ) > 0

for arbitrary (x, y^)> (x, y2) in Ω. Finally, we note that the condition
G(x, 0) ΞΞΞ 0 of Hλ is no essential restriction, since if G(x, y) satisfies
H±-Hb with the exception of this condition, then the function Gx(x, y) =
G(x, y) — G(x, 0) satisfies Hx-Hb and presents the same differential system
(2.1).

3* Some properties of solutions* In addition to the system (2.1),
we will consider also the system

(3 β l) y"(x) = gυ(x, y(x)), 0 < a < x < b ,

y(a) = Va 9 vΦ) = y*,

where y is of class C" on a < x < b, with the obvious modification in
case a = 0. For these systems we prove the following theorem.

THEOREM 3.1. Under hypotheses H^H^ the systems (2.1) and (3.1)
have at most one solution.

We will give the proof for (2.1); the proof for (3.1) is similar. If
yλ{x) and y2(x) are two solutions of (2.1), let η(x) = yλ{x) — y2{x). By H4

and Hδ we have for 0 < x < oo,

0 < η*[gy(x, y2 + V)- 9y(x> tfi)l = V*[9v(*f Vi) ~ Ovfa %)] = ΨΨ »

and hence,

[X ψ{t)ψ{t)dt > 0 , 0 < x < oo .
Jo

Consequently, upon integration by parts, we get

η*{x)η\x)> [X\η'\2dt> 0 .
Jo

Since (| η |2)' = 2η*rf and (| rf ψ = 2| ^ |2 + 2 ^ ' , it then follows that

| 2 ) ' > 0 , and ( | ^ ) | T > 0 , 0 < x < oo .

Consequently, either rj(x) = 0, 0 < x < oo, or else | η(x) \ —> oo as # —> oo
Since the latter is impossible, (2.1) has at most one solution.

The following result will be of use later.

LEMMA 3.1. If g(x, y) satisfies Hx-H^ and y(x) is a solution of
I y' \2dx < oo, then y(x) is

0

bounded on 0 < x < oo.
If y(x) satisfies y" = gv(x, y\ then, since (| y \2)" = 2| »f |2 + 2y*y" =

2| /̂f |2 + 2y*gy(x, y) > 0, we know that either there is an xx such that
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? / | Ξ 0 for x > x19 or else there is an x2 such that | y \ ψ 0 for x > x2.
In the latter case we have

\y\\y\' - v*y' > % > %*,

and

i y H y i " - i v \ \ y * y " ) + {\y f \ y f I2 - 0 / V ) 2 ) > 0 , x > χ2,

since y*y" = y*gy(x, y) > 0. Hence, either 12/1' < 0 for # > a?a, in which
case l i m ^ J y(x) \ < \ y(x2) |, or there is an a > 0 and an #3 > x2 such that
1/ Γ > OL > 0 for x > xz. In this latter case, for x > xz we have

I y 11 y'\ > y*y} = 11/11 y Γ > α| y I, so that 11/' j > α: > 0 and consequently

ί | 2/' |2(2# = oo. Since this is the only case in which y(x) would be un-
. 0 Coo

bounded, we conclude that if y(x) is unbounded then I | yf \2dx = oo.
Jo

4<> A preliininary existence theorem* In what follows I(y; a, b) will
denote the functional

I(y; a, b) = Γ [| y* |2 + 2g(x,ly)]dx , V&) in iΓ(α, 6) ,

where if (α, &) is the class of absolutely continuous vector functions y(x)
with I y'{x) |2 integrable on a < x < b, and satisfying y(aj = ί/α, y(b) = /̂δ.
We prove the following result.

THEOREM 4.1. If g(x, y) satisfies hypotheses Hϊ~H5f then for any

a, b satisfying 0 < a < b, the system (3.1) has a unique solution. More-

over, this solution is a unique minimizing function for I(y;atb) in

the class K(a, b).

By H5 and the fact that g(x, y) > 0, we see that I(y, a, b) > 0 for

y in K(a, 6). Let J(α, b) denote the infimum of I(y; a, b) for y in K{a, 6),

and let {ym{x)} be a sequence of elements of K(a, b) such the I(ym; α, 6) —>

J(α, 6). As #(#, 3/TO(α0) > 0 on a < α? < b, we have

I y'm \2dx = /(ί/TO; α, 6) - 21 flf(a;, yjdx < I(ym; α, 6) ,

a Ja

I y'm fdx < iV for m — 1, 2, .

Moreover, for a < x < δ,

(b - a)\*\y'»
Jα

*dt ,

so that Iyjx)-ya\<[(b-~a)N]^\ and hence |yjx) | < |ya\ + [(6 -
Consequently, we may use Lemma 2.2 of Part I to conclude that there
is a subsequence, which we will denote again by {ym(x)}, and a function
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y(x) in K(a, &), such that ym(x) —> y(x) uniformly on a < x < δ, and
Vm(χ) —* V\χ) weakly on this interval.

From the identity

; a, b) = Γ [| y'm -y'\2 + 2(g(x, yM) - g(x, y))
Jα

+ 2(y'm - y')*y']dx ,

and the fact that ym(x) —> y(x) uniformly on a < x < b while y'm(x) —> y'(x)
weakly on this interval, one obtains the lower semi-continuity relation

ϊ(α, b) = lim I(ym; a, b) > I(y; a, b) .

Since the definition of ΐ(α, b) requires that /(α, b) < I(y; α, 6), we see
that T(a, b) = 7(τ/; α, &); that is, τ/(x) minimizes I(y; α, 6) in the class
K(a, b).

It follows that if f](x) is absolutely continuous with Ύ](a) — 0 = 37(6)
and I η\x) |2 is integrable on a < x < b, and Θ is a real parameter, then
I(y + θη; a,b) has a minimum at # = 0. From this it follows that
(d/dθ)I(y + θη\ a, b) = 0 at (9 = 0; that is,

In particular, this last equality holds for arbitrary η of class C" on
a < x < b with η(a) = 0 = ^(6) = 5y'(α) = ^y'(δ), and for such an η inte-
gration by parts leads to

(4.1) jV*[:*/0*0 - J[<foj/y(*> »(ί))dί]d* = 0 .

By the fundamental lemma of the calculus of variations, there exist
constant vectors ξx and ξ2 such that

y(x) = [Xds [gy(t, y(t)) dt + ξxx + ξ2 , a < x < b .
Jα Jα

Therefore, y"(x) exists and satisfies

y"(x) = gy(x, y(x)) , a < x < b ,

with the understanding that if a = 0, then #"(#) may fail to exist at
x = 0. Since #(α) = 2/α, 3/(6) = ΐ/δ, it follows that y(x) satisfies (3.1).
The uniqueness of this solution follows from Theorem 3.1. Moreover,
since the above argument shows that any function of class K(a, b) that
minimizes I(y; α, b) is a solution of (3.1), it follows that the above deter-
mined y{x) is the unique minimizing function for I(y; α, b) in K(a, b).
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5. An existence theorem for a solution of (2Λ). In what follows,
K will denote the class of absolutely continuous vector functions y(x)
with I yr |2 integrable on 0 < x < oo and satisfying y(0) = yOt I(y 0, oo)< OO ,
where

o
; 0, oo) =

We now prove the following result. .

THEOREM 5.1. Under hypotheses Hλ-H6 the system (2.1) has a unique
solution] moreover, this solution is a unique minimizing function for
I(y; 0, oo) in the class K.

Let {ym(x)}9 m = 1, 2, , be a sequence of functions in K such that

I(yml 0> °°) —* £ where 7 denotes the infimum of I(y; 0, 00) for y in if.

Then the non-negativeness of g{x> y) implies that the sequence \\ \y'm \2dx I
(Jo )

is bounded, and since ym(0) = y0 for every m, as in the proof of Theorem
4.1, the ym(x) are uniformly bounded on each finite interval. Hence, by
Lemma 2.2 of Part I, there is a subsequence, say {yjx)} again, and an
absolutely continuous function y(x), such that on each finite interval
Vtai®) —* y(χ) uniformly, and y'm{x) —* y\x) weakly. Now for any A > 0
we have I{ym) 0, 00) > I(ym; 0, A); moreover, as in §4 we have

I(ym; 0, A) - I(y; 0, A) > 2\A[(g(x, ym) - ff(a?, »)) + (y'n - y')*V']dx
Jo

and consequently lim mίm^I(ym; 0, A) > I(y; 0, A). Hence

/ - lim I(ym; 0, 00) > I(y; 0, A) , A > 0 ,

and finally,

/ > /(y; 0, 00) = lim I(y; 0, A) .

In particular, this latter relation implies that y(x) is in if, and in view
of the definition of 7 we have I(y; 0, cx>) > /, so that 10/; 0, CXD) = J.
That is, y(x) minimizes I(y; 0, oo) in the class K.

Now on any finite interval 0 < x < A, the thus determined y(x)
must coincide with the unique vector function which minimizes I(y 0, A)
in the class iΓ(0, A) of curves joining (0, yo) and (A, j/(A)), for otherwise
one could piece together a curve which would give I(y;0, oo) a smaller
value than does t/(α?). By Theorem 4.1 it then follows that y(x) satisfies
y"(x) = gy(x, y(x)) on 0 < x < A, where A is arbitrary, and consequently
y"(x) — gv(x, y{x)) on 0 < x < oo. Since I(y; 0, oo) is finite, Lemma 3.1
implies that y(x) is bounded on 0 < x < co and therefore is a solution
of (2.1). The uniqueness of this solution follows from Theorem 3.1,
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Inasmuch as we have actually shown that any y(x) that minimizes
I(y, 0, oo) in K is a solution of (2.1), the uniqueness of y(x) as a mini-
mizing function follows from its uniqueness as a solution of (2.1).

6. A further characterization of solutions of (2 1)

THEOREM 6.1. Suppose that hypotheses Rx-Hh are satisfied, and
yoo(x) is the unique solution of (2.1) guaranteed by Theorem 5.1. //,
for a given vector, ξ, y = yN{x, ξ), 0 < x < N, is the solution of

(6.1α) y" = gy(x, y(x)) ,

(6.16) 0(0) - y0 , y(N) - ξ , 2SΓ = 1,2, .--,

^(tf, ξ) —» ί/oo(̂ ) αncZ ^(cc, f) —• 2/L(#) uniformly on each subinterval
0 <x<A.

We will suppose in what follows that the definition of yN(x, ξ) has
been extended so that yN{x, ξ)—ξ for x>N. The inequality (| yN(x9 ξ) |2)">0
and the end conditions (6.1b) then imply that

(6.2) \ y N ( x , ξ ) \ < M ξ i x ( \ y 0 \ , \ ξ \ ) , 0<x<™, J S Γ = 1 , 2 , . . . .

Moreover, the identity

(6.3) y'N(x, ξ) - j\yM, t)~Vo

0 < x < A , iV> 4̂ ,

shows that the sequence {| y'N(x, ξ) |} is uniformly bounded on 0 < x < A.
Consequently, the sequence {yN(x, ξ)} is uniformly bounded and equi-
continuous on any finite interval, so that we may select a subsequence
{yπ {x, £)} which converges uniformly on any finite interval to a continu-
ous function y(x). From (4.1) it follows that if η(x) is of class C" on
0 < x < oo, and η(0) = 0 = >/(0) = τf(A), η(x) = 0 for x > A, then

8\[θv(t9 V*p, ξ))dt]dx - 0 , N> A .

Since yN(x, ξ) —> y(x) uniformly on 0 < x < A, we then have

As before, application of the fundamental lemma of the calculus of vari-
ation yields the result that y"(x) exists and y" = gy(x, y) for 0 < x < A.
Since A is arbitrary, it follows that yn(x) = gy(x, y(x)) on 0 < x < CΌ .
Moreover, y(0) = y0, while the relation (6.2) shows that y(x) is bounded
on 0 < x < oo, so that in view of Theorem 5.1 we have y(x) = y^x).

Now for 0 < x0 < oo, let η be any accumulation point of the bounded
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sequence {yN(xQ, ξ)}, and let a subsequence {yN(xύf ξ)} be chosen such
that yN.(x0,1) —> V- Then, as before, the sequence {yN{(x, ξ)} is uniformly
bounded and equicontinuous on any finite interval, so that we may select
a subsequence which approaches y^(x) on 0 < x < oo. Consequently, the
sequence {YN(xQf ξ)} has only one accumulation point, namely η = y^x^),
from which it follows that yN{x, ξ) —• yjx) for 0 < x < oo.

With ζN{x) — yN(x, ξ) — y^x), as in the proof of Theorem 3.1 we
have that (| ζN{x) | 2)' > 0, 0 < x < N. This implies that for any A > 0
and N > A we have | ζN(x) \ < \ ζN{A) | on 0 < x < A, and thus y^(a?, ξ) ->
2/̂ (0?) uniformly on 0 < a? < ^4.

The fact that #^(#, ξ) —> ?/̂ (ίc) uniformly on 0 < OJ < A now follows
from (6.3), and the corresponding identity obtained by replacing yN(x, ξ)
by yjx).

7Φ Asymptotic behavior of solutions of (2Λ). At this point we
introduce the following hypotheses:

H6. For each c > 0 there is an xc > 0 and a Ψ(x, c) > 0 with x¥(x, c)

integrable on every finite subinterval of xc < x < co, I χψ(χ, c)dx = oo,

and such that for x > xc, \y\> c we have y*gy(x, y) > Ψ(x, c).
H7. If y(x) is in C and \y(x)\> c> 0 for 0 < α ? < o o , then

I(y(x);0, oo) = oo.
We have the following result.

THEOREM 7.1. If in addition to H^H^, either Hβ or H7 is also
satisfied, then any solution of (2.1) approaches zero as x—> oo.

If y(x) is a solution of (2.1), then (\y\2)" = 2 » V + 2\y>\2 > 0.
Since y(x) is bounded on 0 < x < oo, it follows that (\y\2Y < 0, so that
either | y(x) | is bounded away from zero or else y(x) —• 0. If H7 is
satisfied then, in view of the fact that I(y(x); 0, oo) is finite for y(x) a
solution of (2.1), it follows that \y(x)\ cannot be bounded from zero;
that is, y(x) —* 0.

Suppose now that Hβ is satisfied. As was noted in the preceding
paragraph, (| y |2)' is non-decreasing and non-positive, so that lim^^d y | 2)'
exists. This limit is zero, since \y\2 is non-negative, and hence

jy^y' = 0. This fact leads to the following relations,

-2y*{x)y\x) = \(\y\*)"dt = 2^\y*y" + W\2)dt ,

-2y*(x)y'{x) = 2^(y*(t)gy(t, y{t)) + | y'{t) γ)dt ,

-y*(χ)y'(χ) > \"y*(t)gy(t, y(t))dt.
Jx

Integration now yields
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±-\y(χ)I2 - \
Δ Δ

and hence

> I ds \ y*gydt .

Finally, upon integration by parts we obtain

1 Γ°° r oo ΓA

~\y(x) \2>A\ y*gydt - x\ y*gydt + I sy*(s)gy(s, y(s))ds .
2 JΛ Jx Jx

If there is a c > 0 such that | y(x) \ > c on xc < x < oo , then by HQ

it follows that for all x and A satisfying xc < x < A < co

> \AsΨ(s, c)ds - x\~y*gy(t, y(t))dt .
Js Jα

But this implies that I sΨ(s,c)ds < oo, contrary to assumption. Thus,
Jx

there is no c > 0 such that | y(x) \> c on an interval of the form xc <
x < oo, and since | y(x) \ is non-increasing it follows that | y(x) | —> 0 as

In connection with the comments in § 1 of this paper, it is to be
noted that the hypotheses used in [8] to establish the analogue of our
Theorem 7.1 correspond to the assumption that the Ψ(x) of H6 satisfies

Ψ(x)dx = CXD , instead of the weaker requirement made here.
0

For the next two theorems we will make use of the following
hypothesis.

H8. There exists a function φ(x) such that

1 9 y ( % , y i ) - gy(%,y*)I < Φ ( % ) \ y * - y i \ ,
for 0 <X < oo, I yχ I < oo , I y2 | < oo ,

where φ(x) > 0, xφ(x) is integrable on any finite subinterval of 0 <

S oo

xφ(x)dx < oo.
0

We prove the following theorem:

THEOREM 7.2. If g(x, y) satisfies Hlf H2, Hδ, H8, and gy(x, 0) = 0,
and if a is any constant vector, then there is a unique solution y(x)
of y" = gy(x, y) for which y(x) —> a as x —> oo.

Let G(x) = I tφ(t)dt. Imitating Hille [3; p. 238], we consider the
JX

following successive approximations corresponding to a given vector α,

yo(x) = a , 0 < x < oo .

yk(x) = a + \ (t — x)gy(ty yk-1(t))dt , 0 < x < oo .
Jx
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We will show by induction that for 0 < x < oo ,

(a) yk(x) is defined;

PA) (b) | Λ W ^ »«.,(») [ < | α i » < l i

W e h a v e | yx(x) — yQ(x) 1 = 1 (t — x)gv(^ a ) d t . T h e i n t e g r a l h e r e e x i s t s

since on x < t < oo we have 11 — x \ \ gy(t, ά)\ <t\ gy(t, a) \ < tφ(t) \ a |,

which is integrable on x < t < oo. Moreover,

I Vi(x) ~ ylx) I < I a I ̂ tφ(t)dt = I a

so that (7.1) is satisfied for k = 1.
Suppose (7.1) is true for & = 1, 2, , N — 1. Then ^ ( # ) is defined,

since | gy(t, yN-x{t) \ < Φ(t) \ yN^(t) |, where yN-.λ{t) is bounded on 0 < t < oo.
Moreover,

\ (t — x)(gy(t, yN-τit)) — gy(t, yN_2(t)))dt
Jx

Since GN~\t) is bounded, all the integrals above exist. Hence,

- v»-i(χ) I < ^ ί τ i

Now yN{x) - a^{yι- y0) + (i/2 — 2/1) + + ( ^ - ^ - 0 , and the
series Σ*Γ-i 12/*(̂ ) — 2/*-i(̂ ) I converges uniformly on 0 < x < oo by (7.1b).
Hence y(x) = ΠmiVr_>0O?/Λr(x) exists moreover /̂(̂ ) is continuous on 0 < x < oo
and satisfies | y(x) \ < \ a | exp {G(x)}. Therefore | y(x) \ is bounded on
0 < x < oo, and iZ"8 with the uniform convergence of {yN(x)} on 0 < x < oo

(ί — x)gy{ty y(t))dty so that

y"(x) = flfy(a?, 2/(»)) , 0 < $ < co ,

lim y(x) = α .

If Γ(a?) satisfies Y"(x) = gy(α;, Γ(α )) on 0 < a? < oo and Y(x) -> /S

as x —> oo, then the integral I (ί — x)gy(t, Y(t))dt, 0 < x < oo, exists

and 3?(a) Ξ Γ(a ) - β - f°°(ί - aΓ)^(*, Y(t))dt is such that ^;(a;) = 0,

0 < x < oo, and r;(aθ -^0 as x -> oo. Hence, ??(&) = 0 and Γ(x) = /3 +

1 (ί — ^) ĵ/(ί, Y(t))dt. With #(#) as above we then have
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I y(x) — Y(x) I = a — β + I (ί — x)[gy(ι

-Y{t)\dt,

so that by a simple modification of Gronwall's lemma, (see [1; p. 35]),
it follows that

I y(x) - Y(x) I < I a - β | exp {G(x)} .

If β = a then Y(x) == y(x), which proves the uniqueness of solutions of
y" = gy(χ, y) with given limit as x —* oo. Moreover, | y(x) — Y(x) \ <
I α — β I exp {G(0)}, so that we have the following corollary.

COROLLARY 7.1. The solution y(x) described in Theorem 7.2 is a
continuous function of a = 2/(°°).

We now prove the following theorem on the order of growth of
solutions.

THEOREM 7.3. If g(x, y) satisfies Hlf H2, Hδ, H8, and gy(x, 0) = 0, and
if y(x) satisfies y" = gy(x, y) on 0 < x < oo, then ΎJ = limx^l3Oy\x) exists
and is finite, cmeZ /̂(o?) = #[)? + o(l)].

Note the H8 implies | gy{x, y) \ < φ(x) \y\, which is all that is needed
here. If y(x) satisfies y" = gy(x, y), then following Bellman [1; p. 114]
we write

y(x) = y(0) + xy'(0) + \*(χ - t)gy(tf y(t))dt .
JO

Hence, for x > 1,

I y(x) I < x(\ y(0) \ + \ y'(0) |) + x[φ(t) \ y(t) \ dt
Jo

or

1 v(%) 1
X

Therefore, by Gronwall's lemma, (see [1; p. 35]),

< (I v(0) I + I y'(0) I) + \*tφ(t)ίyψ±dt.
Jo t

^ < (12/(0) I + 12/'(0) I) exp [^(t)dt} ,

and hence there is a constant M such that

I y(x) \<Mx , x > 1.

Now for x > 1 we have
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so that 1 I gy(t, y(t)) \ dt exists. Since
Jo

V'(x) = V'(0) + [gy(t, y(t))dt ,
Jo

we have that y\x) -~*y] as x —> oo, where

V =

The final equality in the theorem is a ready consequence of this finite
limit of y\x).

8» Behavior of solutions of (2Λ) with respect to initial values* We
continue to suppose here that Hi~H5 are satisfied, but not necessarily
any other hypotheses. Let yx{x), y%{x) be two bounded solutions of y" =
gy(x, y) on 0 < x < oo, and set η(x) = y1(x) — ya(α0 Then by Hif we have
ψη" > 0, so that (| η \ψ = 217?; |2 + 2^*)y" > 0. Since )y(̂ ) is bounded,
we must have | η(x) \ non-increasing in particular, | η(x) | < | η(0) | on
0 < x < oo. Suppose now we denote by y(x a) the unique bounded
solution of y" = gy(x,y) which satisfies 2/(0;α) = α. Then /̂(α α) is
continuous in x and a jointly, as may be seen from the inequality

a) - y(x, a)\<\y(x;a) -y(x;a)\ + \y(x;a) ~y(x;a)\,

<\a — a\ + \y(x;a) — y(x;a)\ .

Moreover, for any A > 0,

(8.1) y\x a) - j [ » ( 4 «) ~ »(0 a) - ^ds^gy(t, y(t α))dί] ,

so that /̂'(a; α) is also continuous in x and a.
We turn now to the question of differentiability of solutions with

respect to initial values. The derivation of our results will involve the
use of a lemma, the proof of which is based on certain theorems due
to W. T. Reid. In [6], Reid has discussed a class of non-oscillatory
linear matrix differential equations which includes as a special case the
matrix equation

(8.2) U" = P(x)U, a<x < oo

where P(x) is a non-negative definite symmetric matrix with continuous
real-valued elements. As shown in Theorem 6.1 of [6], if U(x) is a
solution of (8.2) which is non-singular on a subinterval b < x < oo, and
the necessarily constant matrix TJ*(x)U'{x) — U*'(x)U{x) is the zero
matrix, then
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M(b; U) = \\m([X U-

exists and is finite. Moreover, such a U(x) is a principal solution of
(8.2) in the sense of Reid [6] if and only if M(b U) == 0. In addition,
a principal solution U(x) is characterized by £7(x) = Uυ>oo(x)C, where C
is a non-singular constant matrix and ?76>OO = lim^^Ut^x), where Ubιt(x),
t > b, is the unique solution of (8.2) satisfying Z76iί(δ) = E, Ubtt(t) = 0.

It follows as a special case of Theorem 5.1 of this paper that the
vector system

/Q o\ u" = A(x)u , 0 < cc < co

%(0) = u0 , I w(cc) I bounded on 0 < x < oo ,

where A(x) is a real symmetric non-negative matrix of functions con-
tinuous on 0 < x < CXD, has a unique solution. Moreover, Theorem 6.1
shows that the solution u(x) of (8.3) is the limit, as N—> oo, of a func-
tion Mjy(αO satisfying u'£ = A(aj)%jv, ^ ( 0 ) =te0, μN(N) = 0, Λ r = 1, 2,
In view of the similar characterization of this solution and of the principal
solutions described above, it follows that the column vectors of U{x),
where U(x) is a principal solution of U" = A(x)U, are particular bound-
ed solutions of u" = A(x)u. This fact will be used in the proof of the
following lemma.

LEMMA 8.1. Suppose A(xm, h) is an n x n non-negative definite sym-
metric matrix, continuous jointly in the scalar x and the vector h for
0 < x < oo and h in some open set H. Let Wh(x) be the unique princi-
pal solution of

satisfying

Wh(0) = E.

Then, if h0 is in H we have limh^HWh(x) = WH(x), uniformly for x on
any interval 0 < x < X.

We consider the solutions U = Uh(x) of the system

( 8 > 4 ) U" = A(x;h)U

ϋ(0) = E , U'(0) = E

or, equivalently,

U' = V

(8.5) V' = A(x;h)U

U(0) = E , V(0) = E .
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The latter is of the form (2.4') of [6] with A = 0, B = Ey C = A(x h).
The solution of (8.4) is non-singular on 0 < x < <χ>, since if | is a constant
vector such that u = Z7(a?)| satisfies w(#0) = 0 with #0 > 0, then

0 = [*u*(u" - Au)dx ,
Jo

- u*u' X° - [*°(| u' |2 + u*Au)dx ,
o Jo

= - If I2 - Γ°(iu ' i2 + u*Au)dx ,
Jo

so that | = 0.

Continuing to use the notation of [6; § 3], we compute the value of
the constant matrix {U, U] = U*{x)V{x) - V*{x)U{x) to be C/*(0)F(0) -
F*(0)i7(0) = 0, and we find that T = JB7. By Theorem 3.1 of [6] we
know that any solution Y(x) of Y" = A(a?)Γ with Γ(0) = JS' has the
form

for some constant matrix Ko.

Now by Theorems 5.1 and 6.1 of [6] we have Wh{x) = lim^^Γo^ίa;),
where Y^ =-A(x,h)Ym, Y0N(0) = E, Y0N(N)^0. But in view of the
boundary conditions satisfied by Y0N(x) we have

YQN(x) =

with

Hence,

and finally,

(8.6) Wh(x) = ^(^[jg? -(J* t/-C7*-^)M(0; C/j] .

We now need an estimate of Ul\x)Ut~ι(x) for large x. To this end
put Zh(x) = (1 + x)~ιUh{x), In view of (8.4), one readily verifies that

((1 + xyZiY - (1 + xfA{x h)Zh - 0 , Zh(0) - JS?, Zi(0) - 0 .

From this fact it follows that
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0 = Zt[((l + ϊfZ'h)' - (1 + ΐfAψ, h)Zh]dt
JO

X

= \± "T" v) &n &h
0

and therefore

-\- X) Zjh \X)Δh\X) — \ (1 + t) γΔh Δh + Δh AZ/h\at .

Consequently, (Z*ZJ = Zft*ZJ + Zί'Zh = 2Z£Zί > 0 on 0 < x < co, and
Zί(x)Zh(x) > ZA*(0)Zft(0) - # for a? > 0; that is, [^(αOE/^) > (1 + *02#
and hence Uς\x)U£-\x) < (1 + tf)-2^ on 0 < a? < oo for h in H.

Since as h—>hQ we have Ϊ7ft(ίc) —> ί7Λo(^) uniformly on each finite
interval 0 < x < X, it follows that

This result, with (8.6), proves the lemma.
We can now prove the following theorem:

THEOREM 8.1. If gyy(x, y) = ||flfy<y || exists and is continuous for
(x,y) in Ω: 0 < x < oo, | y \ < oo, and if g(x, y) satisfies Hλ-Hb, then
with y(x; a) as in the beginning of this section, we have that dy(x; a)ldaj
and dy'(x; a)ldaj exist and are continuous in x, a for 0<x< oo,

α | < °o, j = 1, 2, •••, w.
Note that if the hypotheses of this theorem are satisfied, then

9yy(χf v) ^ 0 for (x, y) in Ω. We denote by e(j) the unit vector having all
components zero but the jth, and we let Δa = e())h, Δy = y(x a + Δd) —
y(x a), where h is a real scalar. Then

(Δy)" = flrv(aj, 2/(05; α + Δa)) - gy(x, y(x;a))

so that

In Lemma 8.1 we identity A(aj; /̂ ) as I gyy(x, y(x; a) + ΘΔy)dθ, where
Jo

a is fixed, and we identify h0 as zero. We note that

and aQ 1 < 1 Δy(0) \

T"-πxr-
0 < x < oo. Hence, (l/h)Δy is the unique bounded solution of 2" = A(x; h)z
satisfying ^ (O) = e(j\ As explained above, the unique principal solution
of
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(8.70 Zl'

satisfying

(8.7") Zh(0) - E ,

is the same as the bounded solution of (8.7'), (8.7") guaranteed by
Theorem 6.1 of this paper, of which {llh)Δy is the jth column vector,
for h Φ 0. Lemma 8.1 then implies that \imh-JXIh)Δy(x) exists and is
equal to the yth column vector of ZQ(x); that is, for all a, the vector
function yafx cή ~ (d/da^yix a) exists and satisfies

(8.8) (yΛj(x α ) ) " = g y y ( x , y{% oc))yΛj(x a ) ; 0 < x < co .

Since | yΛ(x; oc)\ <1, we may use Lemma 8.1 with h = a in conjunction
with the inequality

I yΛβ, a) ~ y«Ί{x, a)\<\ yaβ a) ~ y»£% a) \ + | yΛj(x a) - yΛj(x a) \

to show that yΫ (x a) is continuous in x and a. Differentiation of the
right hand member of (8.1) with respect to a} shows the existence of
(d/dajy'ix a) and its continuity with respect to x and a.
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