ON THE COMMUTATIVITY OF A CORRESPONDENCE AND A PERMUTATION

Milo W. Weaver

Foreword. A permutation is a one-to-one mapping of a finite set onto itself. The necessary and sufficient conditions for two permutations S_{1} and S_{2} to satisfy

$$
\begin{equation*}
s_{1} s_{2} \cong s_{2} s_{1} \tag{0.1}
\end{equation*}
$$

are known ${ }^{1}$: S_{1} and S_{2} satisfy (0.1) if and only if S_{2} is a product $P Q$ of a permutation P which is a product of powers of cycles of S_{1} and a permutation Q which permutes cycles of S_{1} with equal numbers of symbols. For example if $S_{1} \cong(1234)(5678), \quad P \cong(13)(24)$, and $Q \cong$ $(15)(26)(37)(48)$, then $P Q$ commutes with S_{1}. A correspondence is a mapping of a finite set into itself. Hence a permutation is a special case of a correspondence. It is our major object in this paper to find the necessary and sufficient conditions for a permutation to commute with a correspondence. These conditions are stated in Theorem 3.15 below.

As the literature ${ }^{2}$ has very little on "correspondences," all the fundamental definitions needed in this paper and pertaining to correspondences are given.

It is assumed that the reader knows a little about groups of permutations.

1. Fundamental definitions. ${ }^{3}$ A correspondence relates each symbol of a finite set \mathfrak{R} to exactly one symbol of \mathfrak{R}. A permutation is a correspondence such that each image symbol is the image of exactly one

[^0]spondence D is abbreviated $n D=m$.
The notation for a correspondence D :
\[

\left($$
\begin{array}{ccc}
a_{1} a_{2} & & a_{r} \tag{1.1}\\
& \cdots & \\
b_{1} b_{2} & & b_{r}
\end{array}
$$\right)
\]

is interpreted: "the a 's are distinct symbols of \mathfrak{R} and $a_{i} D=b_{i}$, $i=1,2, \cdots, r$." If $n \in \mathfrak{R}$ and $n D=n$ and $x D=n$ has no solution $x, x \neq n, x \in \mathfrak{R}, n$ may be omitted from both lines of (1.1). The singlelined notation for a cycle C :

$$
\begin{equation*}
\left(d_{1} d_{2} \cdots d_{s}\right) \tag{1.2}
\end{equation*}
$$

means that the d 's are distinct symbols of $\mathfrak{R}, d_{i} C=d_{i+1}, i=1,2, \cdots$, $s-1$, but $d_{s} C=d_{1}$; and that $n C=n$ if $n \in \mathfrak{R}$ and n is not one of the d 's. If $s=1$, (1.2) becomes $\left(d_{1}\right)$ and means that this cycle is the identity permutation, E, defined by $n E=n$, for each n of \mathfrak{R}. The example ($\binom{123}{23}$ suggests that some correspondence cannot be described either by (1.2) or by a "product" of cycles. We describe the particular correspondence D^{\prime} by the notation

$$
\begin{equation*}
\left(d_{1} d_{2} \cdots d_{s}\right\} \tag{1.3}
\end{equation*}
$$

and interpret this exactly as we did (1.2), except here $s>1$ and $d_{s} D^{\prime}=d_{s}$. A correspondence of the type (1.3) is called a 1-1-excycle, or just a 1-excycle.

The correspondences D_{1} and D_{2} are said to be equivalent if $n D_{1}=$ $n D_{2}$, for each $n \in \mathfrak{R}$. We describe this by $D_{1} \cong D_{2}$.

The product $D_{3} \cong D_{1} D_{2}$ is defined by $n D_{3}=\left(n D_{1}\right) D_{2}=n D_{1} D_{2}$ for each $n \in \mathfrak{N}$. We illustrate: if $P \cong\binom{123456789}{233263698}$ and $S \cong\binom{14572689}{57416298)}$ then

$$
\begin{align*}
P S & \cong S P
\end{aligned} \begin{aligned}
&\cong(3)(123\}(42\}(563\}(76\})(89) \cdot(1547)(89)(26) \\
& \cong(3)(163\}(46\}(523\}(72\} \tag{1.4}
\end{align*}
$$

Positive integral exponents will be interpreted exactly as in permutation theory. If it is convenient, $m \in \mathfrak{R}$, and A is a correspondence, $m A^{0}$ may be used to denote m. Only non-negative exponents will be used for correspondences which are not permutations.

In (1.3) above, the set of d 's are elements of a set called $\mathfrak{J}\left(D^{\prime}\right) ; d_{1}$ is the only element of a set called $\mathscr{E}\left(D^{\prime}\right)$; and d_{s} is the only element of a set called $\mathscr{\Re}\left(D^{\prime}\right)$. These sets get their notations, respectively, from the words: involved, end, and core, spelled $k-o-r-e$. We now define these sets, formally.

If D is a correspondence, the set, $\mathfrak{J}(D)$ is defined by $i \in \mathfrak{J}(D)$ if and only if $i \in N$ and either $i D \neq i$ or $x D=i$ has a solution $x, x \in \mathfrak{R}$,
$x \neq i$. If $i \in \Im(D)$, we notice that $i D^{r} \in \Im(D)$ also, for each positive integer r.

The set $\mathscr{E}(D)$ is defined by $j \in \mathscr{E}(D)$ if and only if $x D=j, j \in \mathfrak{R}$, has no solution $x, x \in \mathfrak{N}$. Clearly, $j D \neq j$ and $\mathscr{E}(D) \subseteq \mathfrak{F}(D)$.

The set $\Omega(D)$ is defined by $k \in \Omega(D)$ if and only if $k \in \Im(D)$ and $k D^{s}=k$ for some non-negative integer s. We note that D acts either as a cycle or as a product of cycles on $\mathscr{N}(D)$. If $k \in \Omega(D), k D^{r} \in \Omega(D)$ also, for each positive integer r. The d 's of (1.3) exemplify the fact that it is not necessarily true that $\mathscr{N}(D) \cup \mathscr{E}(D)=\mathfrak{F}(D)$.

Let D be a correspondence and $k \in \Omega(D)$. If each symbol of $\Omega(D)$ is one of the symbols $k, k D, k D^{2}, \cdots$, then D is called an excycle. Apparently, if $i \in \mathfrak{J}(D)$, there exists a non-negative integer r such that $i D^{r} \in \Omega(D)$. If D is an excycle and $\mathscr{E}(D)$ and $\Omega(D)$ contain exactly r and s symbols, respectively, then D is called an r-s-excycle. This explains the term, 1-1-excycle. A 0 -s-excycle is a cycle with s symbols. The product $P S$ of (1.4) is a 4-1-excycle.

Theorem 1.5 (known). Each correspondence is either an excycle or a product of excycles with disjoint $\mathfrak{\Im}$-sets.

The proof is not given here as it is very similar to that for the well-known theorem: Each permutation, not a cycle, is a product of cycles with disjoint \mathfrak{J}-sets. The excycles (cycles) of Theorem 1.5 are called excycles (cycles) of the given correspondence. The excycles of P of (1.4) are (3) (123\} (42\} (563\} (76\} and (89).

If $j \in \mathscr{E}(D)$, clearly, for some u and v, the operation of D on a subset of $\Im(D)$ is described by $D_{j} \cong\left(j D^{v} j D^{v+1} \cdots j D^{u}\right)\left(j j D \cdots j D^{v}\right\}$. We call D_{j} a 1- $(u-v+1)$-subexcycle of D determined by j and the first factor of D_{j} a subcycle of $D . \quad D_{j}$ may also be called simply a 1 -subexcycle.
2. Some properties of a correspondence and a permutation which commute. We next make three simple remarks about commutativity of correspondences. The usual proofs of the corresponding remarks about permutations are valid here.

The identity E commutes with each correspondence.
If L is a correspondence, then $L^{a} L^{b} \cong L^{b} L^{a}$.
If L and M are correspondences and $\Im(L) \cap \Im(M)=0$, then $L M \cong M L$.
The relation (1.4) illustrates Theorem 2.1 and Theorem 2.4 below.
Theorem 2.1. If S is a permutation on \mathfrak{R} and P is a correspondence, not a substitution on \mathfrak{R} such that $S P \cong P S$, then S maps $\Im(P)$ onto itself and $\mathscr{E}(P)$ onto itself.

Suppose that the hypothesis of the theorem is satisfied and that $n \in \mathfrak{J}(P)$, but that $n S \notin \mathfrak{F}(P)$. Then if $n P=m$, we have

$$
\begin{equation*}
n S=n S P=n P S=m S \tag{2.2}
\end{equation*}
$$

Whence $m=n$. Since $n \in \mathfrak{F}(P)$ and $n P=n$, there exists an $a, a \in \mathfrak{I}(P)$ such that $a P=n \neq a$. And since $n S \nsubseteq \Im(P)$, it follows from the equation

$$
\begin{equation*}
a S P=a P S=n S \tag{2.3}
\end{equation*}
$$

that $a S=n S$ and $a=n$, a contradiction to $a \neq n$. Hence $n S \in \mathfrak{F}(P)$, and since S is a permutation S maps $\mathfrak{J}(P)$ onto itself. Also if we assume $n \in \mathscr{E}(P)$ and $n P=m$ in (2.2), the conclusion $n P=n$ contradicts the hypothesis, $n \in \mathscr{E}(P)$. Whence S maps $\mathscr{E}(P)$ onto itself.

The following is also a theorem, but we shall not prove it as it is not needed in this paper.

Theorem 2.4. If P is a correspondence with $j \in \mathscr{E}(P)$ and P_{f} is a $1-(u-v+1)$-subexcycle of P, determined by j, and if S is a permutation such that $S P \cong P S$ and $j S^{\bullet} P^{m}=j P^{n}$, for $b>0, m \leq u$, $n \leq u$, and either $m<v$ or $n<v$, then $m=n$.
3. Products of cycles which permute $1-(\mathbf{u}-\mathbf{v}+1)$-excycles. We shall first generalize the idea of a permution permuting cyclically a set of cycles of equal numbers of symbols. Let u, v, and t be any integers such that $u \geq v>0$ and $t \geq 1$, and $F_{0}, F_{1}, \cdots, F_{t}$ be $1-(u-v+1)$-excycles whose \mathscr{E}-symobols are, respectively, the distinct symbols, $j_{0}, j_{1}, \cdots, j_{t}$ such that if c is an integer, $0<c<u$, and d is the least nonnegative residue of the positive integer $e, e \leq t$, modulo $t_{c}+1$, with $t_{c}+1$, defined below, then

$$
\begin{equation*}
j_{e} F_{e}^{c}=j_{a} F_{a}^{c} \tag{3.1}
\end{equation*}
$$

Let $C_{0}, C_{1}, \cdots, C_{u}$ be cycles of a permutation S such that

$$
\begin{equation*}
C_{i} \cong\left(j_{0} F_{0}^{i} j_{1} F_{1}^{i} \cdots j_{t_{i}} F_{t_{i}}^{i}\right) \tag{3.2}
\end{equation*}
$$

with $t_{0}=t$ and the order $t_{w}+1$ of C_{w} dividing that $t_{z}+1$ of C_{z} whenever $0 \leq z \leq w \leq u$. Then S is said to permute cyclically the 1-excycles $F_{0}, F_{1}, \cdots F_{t}$.

We give examples here. The permutation (14)(25)(36) permutes cyclically each of the pairs: (23) (12\}, (56) (45\}; (123\}, (456\}; (1237\}, (4567\}. Also (1467)(25) permutes cyclically the set (123\}, (453\}, (623\}, (753\}; and (56) (13) (24) permutes cyclically the set (1234) (51$\}$, $(3412)(63\}$. The reader should study each of these examples and refer to them, frequently, while studying the rest of this paper.

We shall use the above terminology for the F 's and C 's, hereafter.
Lemma 3.3. If $C_{x} \cong E$ and $0 \leq x \leq y \leq u$, then $C_{y} \cong E$, also.

This is true, since $t_{y}+1$ divides $t_{x}+1$.
Let r be the largest integer x such that $x \leq u$ and $C_{x} \neq E$. We impose the added restriction on r, that it be the smallest integer x such that $C_{i}, i=0,1, \cdots, x$ gives all the distinct C_{i} 's.

Theorem 3.4. Let P be a correspondence and R be a permutation such that:
(i) $\Im(P) \supseteq \Im(R)$.
(ii) R is a product of the distinct cycles of a set of permutations, each of which permutes cyclically 1-subexcycles of P.
(iii) If F is a 1-subexcycle of P, then $\Im(F) \cap \Im(R)=0$, unless F is one of a set permuted cyclically by R.
Then

$$
\begin{equation*}
R P \cong P R \tag{3.5}
\end{equation*}
$$

If $n \notin \Im(R)$, then neither is $n P$, by (iii); and

$$
\begin{equation*}
n P R=n P=n R P \tag{3.6}
\end{equation*}
$$

If $n \in \mathfrak{J}(P)$. Let $n \in \mathfrak{J}\left(\prod_{i=1}^{r} C_{i}\right)$, where $\prod_{i=1}^{r} C_{i}$ permutes cyclically the 1-subexcycles $F_{l}, l=0,1, \cdots, t$; further let $n \in \mathfrak{F}\left(C_{q}\right)$ and $n=j_{p} F_{p}^{q}$, for $0 \leq q \leq r$, and $j_{p} \in \mathscr{E}(P)$. Then from (3.2), for $0 \leq p \leq t_{q}$,

$$
\begin{align*}
n P R & =n P\left(\prod_{i=1}^{r} C_{i}\right)=j_{p} F_{p}^{q+1} C_{q+1}=j_{p+1} F_{p+1}^{q+1} \tag{3.7}\\
& =j_{p+1} F_{q+1}^{q} F_{p+1}=j_{p} F_{p}^{q}\left(\prod_{i=1}^{r} C_{i}\right) P=n\left(\prod_{i=1}^{r} C_{i}\right) P=n R P
\end{align*}
$$

while if $p=t_{q}$, both the leftmost and rightmost members of (3.7) yield $j_{0} E_{0}^{q+1}$. Hence, by (3.6) and (3.7), we have (3.5).

Theorem 3.8. Let P be a correspondence and S be a permutation such that $S P \cong P S$, with $j \in \mathscr{E}(P)$ and $j P^{s} \in \mathscr{F}(S)$ for some non-negative s; further let $t+1$ be the least positive integer such that $j S^{t+1}=j$ and $F_{l}, l=0,1, \cdots, t$ be the 1-subexcycle of P whose \mathbb{E}-symbol is $j S^{l}$. Then S permutes the set $F_{0}, F_{1}, \cdots, F_{t}$ cyclically.

Let g be the largest value, if there is one, of x such that $j P^{x} \in \mathscr{Y}(S)$, with $0 \leq x \leq u, u+1$ the order of the subexcycle P_{j}, and $u-v+1$ the order of its subcycle. Let $C_{i}, i=0,1, \cdots, g$ be the cycle of S, possibly the identity, such that

$$
\begin{equation*}
C_{i} \cong\left(j P^{i} j P^{i} S j P^{i} S^{2} \cdots j P^{i} S^{t_{i}}\right) \tag{3.9}
\end{equation*}
$$

for some non-negative integer t_{i}. Certainly $t=t_{0}$. The order of C_{i} is
$t_{i}+1$. By Theorem 2.1, $j P^{i} S^{\imath} \in \Im(P)$ and $j S^{l} \in \mathscr{E}(P)$, for $i \leq g$, $0 \leq l \leq t_{i}$. Since S is a permutation, we have cancellation by S^{\imath} and both equations in each of the pairs of equations hold simultaneously:

$$
\begin{array}{cc}
j P^{u_{0}+1} & =j^{v_{0}},
\end{array} \quad j S^{l} P^{u_{0}+1}=j S^{l} P^{v_{0}}, ~ j S^{l} P^{u_{l}+1}=j S^{l} P^{v_{l}} . ~ \$ P^{u_{l}+1}=j P^{v_{l}}, \quad .
$$

Hence, $u_{l}=u_{0}$ and $v_{l}=v_{0}$. We notice that for $0 \leq z \leq w \leq g$, and $h+z=w$, we have

$$
\begin{equation*}
j P^{w}=j P^{z} S^{t_{z}+1} P^{h}=j P^{z+h} S^{t_{z}+1}=j P^{w} S^{t_{z}+1} \tag{3.11}
\end{equation*}
$$

Therefore, since $t_{w}+1$ is the order of C_{w}, it follows from group theory that $t_{v}+1$ divides $t_{z}+1$. Also if $e \equiv d\left(\bmod t_{c}+1\right)$, we have $e=m\left(t_{c}+1\right)+d, m$ a non-negative integer and

$$
\begin{equation*}
j S^{e} F_{e}^{c}=j S^{m\left(t_{c}+1\right)+a} P^{c}=j P^{c} S^{a}=j S^{a} P^{c}=j S^{a} F_{a}^{c} \tag{3.12}
\end{equation*}
$$

which gives (3.1), since here $j_{e}=j S^{e}$ and $j_{a}=j S^{a}$. Hence S permutes the F^{\prime} 's cyclically.

Let S be a permutation and P be a correspondence, which is not a permutation. Clearly, P is expressible in the form

$$
\begin{equation*}
P \cong T_{1} T_{2} \tag{3.13}
\end{equation*}
$$

where either $T_{1} \cong E$ or T_{1} is a product of cycles of P, and T_{2} is product of those excycles of P which are not cycles. And S is expressible in the form

$$
\begin{equation*}
S \cong S_{1} S_{2} \tag{3.14}
\end{equation*}
$$

where S_{1} is either a product of those cycles C of S such that $I(C) \cap$ $I\left(T_{2}\right)=0$ or $S_{1} \cong E$, depending on whether or not such C 's exist, and S_{2} is either a product of those cycles D of S such that $\mathfrak{J}(D) \cap I\left(T_{2}\right) \neq 0$ or $S_{2} \cong E$, depending on whether or not such D 's exist.

Theorem 3.15. If S is a permutation and P is a correspondence, not a permutation, and S_{1}, S_{2}, T_{1}, and T_{2} satisfy (3.13) and (3.14), then $S P \cong P S$ if and only if:
(i) $S_{1} T_{1} \cong T_{1} S_{1} ;$
(ii) Whenever $j \in \mathscr{E}\left(T_{2}\right)$ such that for some non-negative integer $s, j P^{s} \in \mathfrak{J}(S)$, then S_{2} permutes cyclically the set of 1-excycles of T_{2} whose \mathscr{E}-symbols are the distinct symbols obtained by applying all powers of S to j.

Suppose that $P S \cong S P$. By Theorem 3.8, if $j \in \mathscr{E}(P)$ and $j P^{s} \in \mathscr{F}(S)$, a product π defined as in (3.2) of cycles of S permutes cyclically a set
of 1-subexcycles of P, and therefore of T_{2}, having powers of S applied to j as their \mathscr{E}-symbols. By (3.2) $I(\pi)$ is contained in the union of the \mathfrak{J}-sets of the subexcycles which it permutes. Clearly, S_{2} is a product of the distinct cycles of all such π 's, or $S_{2} \cong E$, depending on whether or not such π 's exist, and S_{2} satisfies (ii) of Theorem 3.15. From (3.13) and (3.14)

$$
\begin{equation*}
\mathfrak{F}\left(T_{1}\right) \cap \mathfrak{J}\left(T_{2}\right)=\mathfrak{J}\left(S_{1}\right) \cap \mathfrak{J}\left(T_{2}\right)=0 \tag{3.16}
\end{equation*}
$$

Since $\mathfrak{J}\left(S_{2}\right) \subseteq \Im\left(T_{2}\right)$, we have

$$
\begin{equation*}
\mathfrak{I}\left(T_{1}\right) \cap \mathfrak{I}\left(S_{2}\right)=0 \tag{3.17}
\end{equation*}
$$

Hence $\mathfrak{F}\left(T_{1}\right) \cup \Im\left(S_{1}\right) \cap \Im\left(T_{2}\right) \cup \Im\left(S_{2}\right)=0$, and $S_{1} T_{1}$ and $T_{1} S_{1}$ operate on $\mathfrak{J}\left(S_{1}\right) \cup \mathfrak{J}\left(T_{1}\right)$ exactly as $S T$ and $T S$ do; and for $n \notin \mathfrak{J}\left(T_{1}\right) \cup \mathfrak{J}\left(S_{1}\right)$, $n S_{1} T_{1}=n T_{1} S_{1}=n$. Whence $S_{1} T_{1} \cong T_{1} S_{1}$, and (i) is satisfied. Now assume that (i) and (ii) of Theorem 3.15 are satisfied by S and P. From Theorem 3.4, we have $S_{2} T_{2} \cong T_{2} S_{2}$. By (i), $S_{1} T_{1} \cong T_{1} S_{1}$. From (3.16) and (3.17), $S_{1} T_{2} \cong T_{2} S_{1}, T_{1} T_{2} \cong T_{2} T_{1}$, and $S_{2} T_{1} \cong T_{1} S_{2}$. Hence

$$
\begin{equation*}
S P \cong S_{1} S_{2} T_{1} T_{2} \cong S_{1} T_{1} S_{2} T_{2} \cong T_{1} S_{1} T_{2} S_{2} \cong T_{1} T_{2} S_{1} S_{2} \cong P S \tag{3.18}
\end{equation*}
$$

This completes the proof of Theorem 3.15 which was the major objective of this paper.

The necessary and sufficient conditions for (i) to hold were stated in the foreword. In each of the examples below (3.2), if S is taken to be the permutation and P to be the correspondence whose 1 -subexcycles are permuted by S, then S and P obey (i) and (ii) of Theorem 3.15. A more complicated example of such a P and S is: $P \cong(4)(123\}$ (23\} (8) (578\} (67\}, $S \cong(15)(26)(37)(48)$. On the other hand if $S \cong(146)(25)$ and $P \cong(123\}(453\}(65\}$, then $S P \neq P S$, since the order of (25) fails to divide that of (146) and S_{2} fails to permute cyclically the 1 -1-subexcycles (123\}, (453\}, and (653\} of P.

[^0]: Received April 27, 1959. The work on this paper was done under National Science Foundation Grant 8238. The writer wishes to express his appreciation to his 1958 University of Texas class, and particularly to Robert R. Bunten, for suggestions concerning terminology and explanations. He also wishes to thank the referee for a valuable suggestion relating to the definition at the beginning of Section 3.
 ${ }^{1}$ Burnside, Theory of Groups of Finite Order, Cambridge University Press, 1897, pp. 215, 216.
 ${ }^{2}$ Two papers on correspondences are: R. R. Stoll, "Representations of Finite Simple Semigroups," Duke Math J., vol. 11, no. 2 (1944), 251-265; Milo Weaver, "On the Imbedding of a Finite Commutative Semigroup of Idempotents in a Uniquely Factorable Semigroup, "Proc. Nat. Acad. Sci., vol. 42, no. 10 (1956), 772-775.
 ${ }^{3}$ Most of the definitions in this section and Theorem 1.5 were given: H. S. Vandiver and M. W. Weaver, "A Development of Associative Algebra and an Algebraic Theory of Numbers, III," Math. Mag., vol. 29 (1956), 135-149.

