CONCERNING CERTAIN LOCALLY PERIPHERALLY SEPARABLE SPACES

L. B. Treybig

In 1954, F. Burton Jones raised the question [2] "Is every connected, locally peripherally separable [3], metric space separable?" In this paper it will be shown that there exists a connected, semi-locally-connected, space Σ satisfying R. L. Moore's axioms 0 and C^{1}, in which every region has a separable boundary, every pair of points is a subset of some separable continuum ${ }^{2}$, and the set of all points at which Σ is not locally separable is separable. It will also be shown that every compactly connected, locally peripherally separable, metric space is completely separable.

Part 1

Let S^{\prime} denote the set of all points of the Euclidean plane E. A square disk in E will be said to be horizontal if it has two horizonta sides. A point set in E will be called an H-disk only if that set is a horizontal square disk. By the width of a square disk will be meant the length of one of its sides.

Let K denote a definite H-disk of width d. Let $R_{0}(K)$ denote the H-disk of width $d / 4$ whose center is on the vertical line that contains the center of K, and whose upper side lies at a distance of $d / 16$ below the upper side of K. Let $R_{00}(K)$ and $R_{01}(K)$ denote the H-disks of width $d / 8$ whose upper sides are at a distance of $d / 32$ above the lower side of $R_{0}(K)$ and whose centers are on the vertical lines containing the left and right sides, respectively, of $R_{0}(K)$.

In general, for each positive integer n let $U_{n}(K)$ denote a collection of 2^{n} mutually exclusive congruent H-disks such that
(1) $\quad R_{01}(K)$ and $R_{00}(K)$ are the elements of $U_{1}(K)$,
(2) if n is a positive integer and y is an element of $U_{n}(K)$, and x and z are H-disks of width $d / 4(2)^{n+1}$ whose centers lie on the same vertical lines as the left and right sides of y, respectively, and whose upper sides lie at a distance of $d / 32(2)^{n}$ above the lower side of y, then x and z are elements of $U_{n+1}(K)$.

If n is a positive integer and $R_{x_{1} x_{2} \cdots x_{n}}(K)$ is an elements of $U_{n}(K)$, then let the elements x and y of $U_{n+1}(K)$ whose centers lie on the same

[^0]vertical lines as the left and right sides of $R_{x_{1} x_{2} \ldots x_{n}}(K)$, respectively, be denoted by $R_{x_{1} x_{2} \cdots x_{n} 0}(K)$ and $R_{x_{1} x_{2} \cdots x_{n^{1}}}(K)$, respectively. Let $C(K)$ be a collection to which x belongs if and only if x is $R_{0}(K)$ or in one of the collections $U_{1}(K), U_{2}(K), \cdots$.

Let $L(K)$ denote the H-disk of width $d / 8$ whose center is on the same vertical line as the center of K, and whose lower side is at a distance of $3 d / 16$ above the lower side of K. Let $P_{l}(K)$ and $P_{r}(K)$ denote the left and right-hand end points, respectively, of the lower side of $L(K)$. Let $M(K)$ denote the point set such that a point P belongs to it if and only if P is a point of the interval $P_{l}(K) P_{r}(K)$ such that there is no nonnegative integer p and positive integer q such that $P P_{l}(K) / P_{l}(K) P_{r}(K)=p_{i} 2^{q}$. Let $I(K)$ denote the collection to which x belongs if and only if x is a vertical interval containing a point of $M(K)$, and with both end points on the boundary of $L(K)$. Let an interval i of $I(K)$ be denoted by $i_{x}(I(K))$ if and only if it is true that if P is the lowest point of i, then $P_{l}(K) P / P_{l}(K) P_{r}(K)=x$.

Let R denote some definite H-disk. Let $R_{0}(R)$ be denoted by Q_{0}; let $R_{00}(R)$ and $R_{01}(R)$ be denoted by Q_{00} and Q_{01}, respectively. Let $R_{000}(R), R_{001}(R), R_{010}(R)$, and $R_{011}(R)$ be denoted by $Q_{000}, Q_{001}, Q_{010}$, and Q_{011}, respectively, and so forth. Let $C(R)$ be denoted by C_{1} and let $I(R)$ be denoted by I_{0}.

Let C_{2} denote the collection to which x belongs if and only if x is an element of $C(y)$, for some element y of C_{1} distinct from Q_{0}. Let $R_{0}\left(Q_{00}\right)$ be denoted by $Q_{00,0}$; let $R_{01}\left(Q_{00}\right)$ be denote by $Q_{00,01}$. In general, let $R_{x}\left(Q_{y}\right)$ be denoted by $Q_{y, x}$. Also, if Q_{x} is in C_{1} and $x \neq 0$, let $I\left(Q_{x}\right)$ be denoted by I_{x}.

In general, let C_{n+1} denote the collection to which x belongs if and only if x is an element of $C(y)$, for some elements y of C_{n}, which, in case x_{n} is 0 , is distinct from $Q_{x_{1}, x_{2}, \ldots, x_{n}}$. Let the element $R_{x_{n+1}}\left[R_{x_{n}}\left[R_{x_{n-1}}\left[\cdots\left[R_{x_{1}}(R)\right] \cdots\right]\right]\right]$ of C_{n+1} be denoted by $Q_{x_{1}, x_{2}, \ldots, x_{n+1}}$. Also if w is the element $Q_{x_{1}, x_{2}, \ldots, x_{n}}$ of C_{n} and $x_{n} \neq 0$, then let $I(w)$ be denoted by $I_{x_{1}, x_{2}, \ldots, x_{n}}$. For each n let I_{n} be the collection to which x belongs if and only if there is an element $Q_{x_{1}, x_{2}, \ldots, x_{n}}$ of C_{n} such that $x_{n} \neq 0$ and x is in $I\left(Q_{x_{1}, x_{2}, \cdots, x_{n}}\right)$.

Let W denote the point set to which a point P belongs if and only if P belongs to $C_{n}^{* 3}$ for each positive integer n. For each positive integer n let B_{n} denote the collection of all the boundaries of the elements of C_{n}. The boundary of $Q_{x_{1}, x_{2}, \ldots, x_{n}}$ will be denoted by $J_{x_{1}, x_{2} \cdots, x_{n}}$.

Let S denote $\left[I_{0}^{*}+I_{1}^{*}+\cdots\right]+\left[B_{1}^{*}+B_{2}^{*}+\cdots\right]+W$.
Let C^{\prime} be a collection to which w belongs if and only if w is R or $I(w)$ is a subset of S and there is a positive integer n such that w is in C_{n}.

[^1]For each positive integer n let H_{n} denote a collection to which x belongs if and only if x is the common part of S and the interior of some square of $\left[B_{n}+B_{n+1}+\cdots\right]$. For each element $Q_{x_{1}, x_{2} \cdots, x_{n}}$ of C_{n}, let the set of all points of S in the interior of $J_{x_{1}, x_{2}, \cdots, x_{n}}$ be denoted by $r_{x_{1}, x_{2}, \cdots, x_{n}}$.

For each positive integer n let K_{n} denote a collection to which x belongs if and only if, either (1) x is a segment of an arc lying on some square J of $\left(B_{1}+B_{2}+\cdots\right)$, having length less than $1 / 4^{n}$ times the perimeter of J, and intersecting no square of the collection $\left(B_{1}+B_{2}+\cdots\right)$ except J, or (2) x is the sum of two straight line segments p and q intersecting at their midpoints and lying on different squares J_{p} and J_{q} of ($B_{1}+B_{z}+\cdots$), such that p and q each have length less than $1 / 4^{n}$ times the perimeters of J_{p} and J_{q}, respectively, and such that neither p nor q intersects three squares of $\left(B_{1}+B_{2}+\cdots\right)$.

Suppose x is a positive number such that $i_{x}\left[I_{j_{1}, j_{2}, \cdots, j_{n}}\right]$ is an interval of $I_{j_{1}, s_{2}, \ldots, j_{n}}$. For each positive integer n there exists a unique pair (k_{n}, x_{n}) such that k_{n} is a non-negative integer, x_{n} is a positive number less than one, and $x=\left(k_{n}+x_{n}\right) / 2^{n}$. By $i_{n}\left[i_{x}\left(I_{j_{1}, j_{2}, \ldots, j_{n}}\right)\right]$ will be meant the vertical interval $i_{x_{n}}(I(y))$, where y is the H-disk of $U_{n}\left[Q_{j_{1}, s_{2}, \ldots, s_{n}}\right]$ with only k_{n} disks of $U_{n}\left(Q_{j_{1}, j_{2}, \ldots, s_{n}}\right)$ to the left of it.

Suppose, for some y in C^{\prime}, P is the highest point of the interval $i_{x}(I(y))$. By $R_{n}(P)$ will be meant the sum of all the sects z such that either
(1) for some positive integer d greater than or eqal to n, z is the subset of $i_{a}\left[i_{x}(I(y))\right]$ with length $1 / 2^{n}$ times the length of $i_{a}\left[i_{x}(I(y))\right]$ that contains the lowest point of $i_{a}\left[i_{x}(I(y))\right]$, or
(2) z is the subset of $i_{x}[I(y)]$ with length $1 / 2^{n}$ times the length of $i_{x}(I(y))$ that contains the highest point of $i_{x}(I(y))$.

For each positive integer n let L_{n} denote a collection such that x belongs to it if and only if there exists a positive integer d greater than or equal to n, an element y of C^{\prime}, and an interval of the collection $I(y)$ such that if P denotes the highest point of that interval, then $x=R_{a}(P)$.

For each positive integer n let N_{n} denote a collection to which x belongs if and only if either
(1) for some element y of C^{\prime} there exists an interval i of the collection $I(y)$ such that x is a segment of i of length less than $1 / 2^{n}$ times the length of i, or
(2) for some element y of C^{\prime} there exists an element i of $I(y$, such that x is a sect lying in i, containing the lowest point of i and of length less than $1 / 2^{n}$ times the length of i.

For each positive integer n let G_{n} denote a collection to which n belongs if and only if it lies in $H_{n}+K_{n}+L_{n}+N_{n} . S$ is the set of
all points of Σ. A subset r of S is a region in Σ if and only if r belongs to G_{1}^{4}.
R. L. Moore's axioms 0 and C are as follows:

Axiom 0. Every region is a point set.
Axiom C. There exists a sequence G_{1}, G_{2}, \cdots such that
(1) for each positive integer n, G_{n} is a collection such that each element of G_{n} is of region and G_{n} covers S,
(2) for each n, G_{n+1} is a subcollection of G_{n},
(3) if A is a point, B is a point and R is a region containing A, then there exists a positive integer n such that if x is a region of G_{n} containing A and y is a region of G_{n} intersecting x, then
(a) y is a subset of R and
(b) if B is not A, y does not contain B,
(4) if M_{1}, M_{2}, \cdots is a sequence of closed point sets such that for each n there exists a region g_{n} of G_{n} such that M_{n} is a subset of \bar{g}_{n} and for each $n M_{n}$ contains M_{n+1}, then there is a point common to all the point sets of this sequence.

It is obvious that in the space Σ each region has a countable, and therefore separable, boundary, and that the sequence G_{1}, G_{2}, \ldots defined for the space Σ satisfies conditions (1) and (2) of axiom C. It will be shown that it also satisfies conditions (3) and (4) of this axiom.

Suppose that P is a point of W, that $r=r_{x_{1}, x_{2}, \ldots, x_{n}}$ is a region of H_{n} containing P, and that Q is a point of r distinct from P. If q is a region containing a point of W, then q must belong to H_{1}. Since each element of C_{n+1} which contains P has a side of length less than or equal $1 / 4$ times the length of a side of $Q_{x_{1}, x_{2}, \ldots, x_{n}}$, and each element of C_{n+2} which contains P has a side of length less than or equal $1 / 4^{2}$ times the length of side of $Q_{x_{1}, x_{2}, \cdots, x_{n}}$, and so forth; it is obvious that there is a $d>n$ such that if q is a region of H_{a} which contains P, then \bar{q} does not intersect Q and is a subset of r. Suppose that x and y are two intersecting regions of G_{n+1} such that x contains $P . \quad x$ belongs to H_{n+1} and is therefore a subset of r. Every region of G_{n+1} which intersects x is a subset of r, so clearly, y is a subset of r.

Now suppose that P is a point of $J_{x_{1}, x_{2}, \ldots, x_{n}}$ of B_{n} and r is a region containing P, and Q is a point of r distinct from P. There exists a circle J in E with center at P such that every point of S in the interior of J belongs to r, but Q is not in the interior of J. There exists a positive integer d such that $1 / 4^{a}$ times the perimeter of any square of $\left(B_{1}+B_{2}+\cdots\right)$ to which P belongs is less than the radius of J, and such that no region of H_{a} contains P. If R^{1} is a region of G_{a+1} containing P, then \bar{R}^{1} does not contain Q and is a subset of r. If $n>d+2$

[^2]and x and y are two intersecting regions of G_{n} such that x contains P, then $x+y$ is a subset of r.

Now suppose that P is a point of $i_{x}(I(y))$, for y in C^{\prime}, and that r is a region containing P and that Q is a point of r distinct from P.

Case 1. Suppose P is not the highest point of $i_{x}(I(y))$. There exists a segment t containing P, or a sect in case P is the lowest point of $i_{x}(I(y)$), such that t is a subset of r and does not contain Q nor the highest point of $i_{x}(I(y))$. There exists a positive number ε such that every point of $i_{x}(I(y))$ which is at a distance from P of less than ε lies in t. There exists a positive integer d such that
(1) no region of L_{a} intersects t and no region of H_{a} intersects $i_{x}(I(y))$, and
(2) $1 / 2^{d}$ times the length of $i_{x}(I(y))$ is less than ε. Therefore, if k is a region of G_{a+1} containing P, then \bar{k} is a subset of r and does not contain Q. Also, if x and y are two intersecting regions of G_{a+2} such that x contains P, then $x+y$ is a subset of r.

Case 2. Suppose P is the highest point of $i_{x}(I(y))$. Whether Q belongs to $i_{x}(I(y))$ or there is a positive integer p such that Q belongs to $i_{p}\left[i_{x}(I(y))\right]$ or r is in H_{1} and Q does not belong to $\left.i_{x}(I(y))+i_{1}\left[i_{x}(I)\right)\right]+$ $i_{2}\left[i_{x}(I(y))\right]+\cdots$, there is a positive integer d such that
(1) $R_{a}(P)$ does not contain Q and is a subset of r, and
(2) no region of H_{d} contains P. If k is a region of G_{d+1} containing P, then \bar{k} is a subset of r and does not contain Q. Also, if x and y are two intersecting regions of G_{d+3} such that x contains P, then $x+y$ is a subset of r.

Therefore G_{1}, G_{2}, \cdots satisfies the third part of axiom C.
Suppose that M_{1}, M_{2}, \cdots is a sequence of closed point sets such that
(1) for each $n M_{n}$ contains M_{n+1}, and
(2) for each n there is a region g_{n} of G_{n} such that M_{n} is a subset of \bar{g}_{n}.

In case, for each n, g_{n} is in H_{n}, then by definition of W, there is a point common to M_{1}, M_{2}, \ldots because some point of W can be easily shown to be a limit point or point of M_{n} for each n.

In case there is a positive integer j such that g_{j} belongs to K_{j}, then for $n>j, g_{n}$ belongs to K_{n}. But M_{j}, M_{j+1}, \cdots is a sequence of closed and compact point sets such that for $n \geqq j M_{n}$ contains M_{n+1}. So there is a point common to M_{j}, M_{j+1}, \cdots and thus common to M_{1}, M_{2}, \cdots.

In case there is a positive integer j such that g_{j} belongs to N_{j}, then for $n>j, g_{n}$ belongs to N_{n}. So, for the same reason as in the
previous case, there is a point common to M_{1}, M_{2}, \cdots.
The only case not considered is the one where there is a positive integer j_{1} such that, for $n \geqq j_{1}, g_{n}$ belongs to L_{n}. In this case $g_{j_{1}}$ must be $R_{x_{1}}(P)$ for some point P and positive integer x_{1}. There is a positive integer $j_{2}>j_{1}$ such that $g_{j_{2}}=R_{x_{2}}(P)$, where $x_{2}>x_{1}$. There is a positive integer $j_{3}>j_{2}$ such that $g_{j_{3}}=\tilde{R}_{x_{3}}(P)$, for $x_{3}>x_{2}$, and so forth. P is common to the sets $R_{x_{1}}(P), R_{x_{2}}(P), \cdots$. But if P does not belong to each of the sets $M_{j_{1}}, M_{j_{2}}, \cdots$ then there is a positive integer d such that $\bar{R}_{x_{d}}(P)$ contains no point of $M_{x_{j}}$ for any j. But $R_{x_{d}}(P)$ contains $M_{j_{a+1}}$. So P is common to the sets $M_{j_{1}}, M_{j_{2}}, \cdots$ and thus common to M_{1}, M_{2}, \ldots.

Thus, Σ satisfies the fourth part of axiom C.
In order to show that Σ is connected, an indirect argument will be used. Suppose that S is the sum of two mutually separated sets H and K. Since $W+\left(B_{1}^{*}+B_{2}^{*}+\cdots\right)$ is connected, let H^{\prime} be the one of the sets H and K that contains this set and let K^{\prime} be the other. There exists an element y of C^{\prime} such that for some $x i_{x}[I(y)]$ is a subset of K^{\prime}. But there exists a positive integer d_{1} such that for $n \geqq d_{1}$, $i_{n}\left[i_{x}(I(y))\right]$, belongs to K^{\prime}. There exists a positive integer d_{2} such that for $n \geqq d_{2} i_{n}\left[i_{a_{1}}\left(i_{x}(I(y))\right)\right]$ belongs to K^{\prime}. So, obviously, there is a positive integer sequence, d_{1}, d_{2}, \cdots such that if j is a positive integer and $n \geqq d_{j}$, then $i_{n}\left(i_{a_{j-1}}\left(i_{a_{j-2}}\left(\cdots i_{a_{1}}\left(i_{x}(I(y))\right) \cdots\right)\right)\right.$) belongs to K^{\prime}. But from this fact it is easily seen that some point of W is a limit point of K^{\prime}. So Σ is connected.

It has been shown that in any space satisfying axioms 0 and $C(1)$ if M is a separable point set, M is completely separable, and (2) if M is separable, any subset of M is separable.

In order to show that any two points of S lie in a separable continuum, suppose first that P and Q are two points of S. Obviously, $\left(B_{1}^{*}+B_{2}^{*}+\cdots\right)$ is separable and connected, and therefore $W+\left(B_{1}^{*}+\right.$ $B_{2}^{*}+\cdots$) is a separable continuum. In case P and Q both lie in $W+\left(B_{1}^{*}+B_{2}^{*}+\cdots\right)$, this continuum has the desired properties. In case P does not belong to this set, P belongs to $i_{x}[I(y)]$ for some y in C^{\prime}. Let M_{P} be the set to which point R belongs if and only if, either
(1) there is a finite positive integer sequence $x_{1}, x_{2}, \cdots, x_{n}$ such that R belongs to $i_{x_{1}}\left[i_{x_{2}}\left[\cdots i_{x_{n}}\left[i_{x}(I(y))\right] \cdots\right]\right.$, or
(2) there is a positive integer q such that R belongs to $i_{q}\left[i_{x}(I(y))\right]$, or
(3) R belongs to $i_{x}[I(y)] . \quad M_{P}+\left(B_{1}^{*}+B_{2}^{*}+\cdots\right)+W$ is a separable continuum. If Q does not belongs to this set, let M_{Q} be a set related to Q like M_{P} was related to P. The continuum $M_{P}+M_{Q}+\left(B_{1}^{*}+\right.$ $\left.B_{2}^{*}+\cdots\right)+W$ is separable.

The statement that Σ is locally separable at the point P means that there is a region R containing P such that R is separable. Alexandroff [1] has shown that if β is a connected, locally completely separable,
space satisfying axioms 0 and C, then β is completely separable. It is interesting to note that Σ is locally separable, and therefore locally completely separable, at each point except those of a separable set, and yet, Σ is not separable.
Σ is obviously locally separable at all points not belonging to W. Since every region that contains a point of W contains uncountably many mutually exclusive domains, Σ is not locally separable at any point of W. Furthermore $\left(B_{1}^{*}+B_{2}^{*}+\cdots\right)$ is separable, and so $\overline{\left(B_{1}^{*}+B_{2}^{*}+\cdots\right)}$ is separable, and thus, since W is a subset of the latter, W is separable.
Σ is said to be semi-locally-connected [5] at point P if and only if it is true that if R is a region containing P, R contains a region R^{\prime} containing P such that $S-R$ does not intersect infinitely many components of $S-R^{\prime} . \quad \Sigma$ is said to be semi-locally-connected if and only if Σ is semi-locally-connected at each point.

The space Σ is obviously semi-locally-connected because S minus any region has only a finite number of components.

Part 2

Suppose that Σ is a space satisfying the conditions specified on the first page of this paper.

For each positive integer j let G_{j} denote the collection of all open sets which have diameter less that j^{-1}.

Let P denote some definite point, and suppose n is a positive integer such that no countable subcollection of G_{n} covers S. Let R_{n} be some region of G_{n} which contains P, let $H_{1}=\left\{R_{n}\right\}$, and let K_{1} be the boundary of R_{n}.

For each point Q of S let $\Delta(Q)$ be the least integer $j>n$ such that some region $R(Q)$ of G_{n} contains every region of G_{j} that intersects a region of G_{j} that contains Q.

It has been shown that in a space satisfying these axioms if L is a separable point set and G is a collection of open sets covering L, then some countable subcollection of G covers L. Therefore, there is a countable point set T_{1} dense in K_{1} such that the collection H_{2} of all $R(Q)$'s, for Q 's in T_{1}, covers K_{1}. Let K_{2} be the sum of the boundaries of all the sets in $H_{1}+H_{2}$. There is a countable point set T_{2} dense in K_{2} such that the collection H_{3} of all $R(Q)$'s for Q 's in T_{2}, covers K_{2}. Let K_{3} be the sum of the boundaries of the sets in $H_{1}+H_{2}+H_{3}$, and so forth.

There is a point B not in the closure of $H=\left(H_{1}+H_{2}+\cdots\right)^{*}$. Let M be a compact continuum containing P and B.

Case 1. Suppose some point A of $M-M \cdot H$ is a limit point of $K=K_{1}+K_{2}+\cdots$.

Let R_{1}^{\prime} be a region of G_{n} containing A, let Q_{1} be a point of $T=$ $T_{1}+T_{2}+\cdots$ in R_{1}^{\prime}, and let x_{1} be the largest integer i such that R_{1}^{\prime} belongs to G_{i}. Let R_{2}^{\prime} be a region of $C_{x_{1+1}}$ containing A such that \bar{R}_{2}^{\prime} lies in $R_{1}^{\prime}-Q_{1}$. Let Q_{2} be a point of T in R_{2}^{\prime} and let x_{2} be the largest integer i such that R_{2}^{\prime} is in G_{i}. Obtain R_{3}^{\prime}, Q_{3}, and x_{3} similarly, and so forth. $n \leqq x_{1}<x_{2}<x_{3}<\cdots$. For each $i, \Delta\left(Q_{i}\right)>x_{i}$. Otherwise, for some $i, R\left(Q_{i}\right)$ would contain R_{i}^{\prime}, and thus A. However, there is a positive integer $t>n$ such that if x, y, and z are regions of G_{t} such that $x \cdot y$ and $y \cdot z$ exist and x contains A, then R_{n} contains $x+y+z$. For some $s>t, \Delta\left(Q_{s}\right)>t$. But R_{n} contains every region of G_{t} that intersects a region of G_{t} that contains G_{s}. So $\Delta\left(Q_{s}\right) \leqq t$, which is a contradiction.

Case 2. Suppose no point of $M-M \cdot H$ is a limit point of K. For each point Q of $M-M \cdot H$ let g_{Q} be a region containing Q such that g_{Q} contains no point of $K+P$. Some finite subcollection C of the g_{Q} 's covers this set of limit points. Let $D=H-H \cdot \bar{C}^{*}$. Let C_{1} be the component of $M-M \cdot \bar{D}$ which contains B. Some point z of $M \cdot \bar{D}$ is a limit point of C_{1}. But z lies in a region r of H, and therefore C_{1} would intersect the boundary of r, and thus contain a limit point of K. This yields a contradiction.

Since, for each n, some countable subcollection of G_{n} covers S, Σ is completely separable.

References

1. Paul Alexandroff, Uber die Metrization der im Kleinen Kompakten topologischen Raume, Mathematische Annalen, 92 (1924) 294-301.
2. F. B. Jones, On a property related to separability in metric spaces, Journal of the Elisha Mitchell Scientific Society, 70 (1954), 30-33.
3. A theorem concerning locally peripherally separable spaces, Bull. Amer. Math. Soc. 41 (1935), 437-439.
4. R. L. Moore, Foundations of point set theory, Amer. Math. Soc. Colloq. Publ., vol 13 1932.
5. G. T. Whyburn, Semi-locally-connected sets, Amer. J. Math. 61 (1939), 733-749.

The University of Texas

[^0]: Presented to the American Mathematical Society, June 15, 1957; received by the editors September 4, 1958. This paper is part of a dissertation submitted to the Graduate School of the University of Texas in partial fulfillment of the requirements for the Ph. D. degree.

 1 The proof that every space which satisfies axioms 0 and C is metric is due to R . L. Moore.
 ${ }^{2}$ A continuum is a connected, closed set.

[^1]: ${ }^{3} C_{n}^{*}$ Means the sum of all the point sets of the collection C_{n}.

[^2]: ${ }^{4}$ The collection G_{1} of regions is a basis for the space Σ.

