ON NORMAL NUMBERS

Wolfgang Schmidt

1. Introduction. A real number $\xi, 0 \leqq \xi<1$, is said to the normal in the scale of r (or to base r), if in $\xi=0 \cdot a_{1} a_{2} \cdots$ expanded in the scale of $r^{(1)}$ every combination of digits occurs with the proper frequency. If $b_{1} b_{2} \cdots b_{k}$ is any combination of digits, and Z_{N} the number of indices i in $1 \leqq i \leqq N$ having

$$
b_{1}=a_{i}, \cdots, b_{k}=a_{i+k-1}
$$

then the condition is that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} Z_{N} N^{-1}=r^{-k} \tag{1}
\end{equation*}
$$

A number ξ is called simply normal in the scale of r if (1) holds for $k=1$. A number is said to be absolutely normal if it is normal to every base r. It is well-known (see, for example, [6], Theorem 8.11) that almost every number ξ is absolutely normal.

We write $r \sim s$, if there exist integers n, m with $r^{n}=s^{m}$. Otherwise, we put $r \nsim s$.

In this paper we solve the following problem. Under what conditions on r, s is every number ξ which is normal to base r also normal to base s ? The answer is given by

Theorem 1. A Assume $r \sim s$. Then any number normal to base r is normal to base s.
B If $r \nsim s$, then the set of numbers ξ which are normal to base r but not even simply normal to base shas the power of the continuum.

The A-part of the Theorem is rather trivial, but I shall sketch a proof of it, since I could not find one in the literature.

Next, let I be an interval of length $|I|$ contained in the unit-interval $U=[0,1]$. We write $M_{N}(\xi, r, I)$ for the number of indices i in $1 \leqq i \leqq N$ such that the fractional part $\left\{r^{i} \xi\right\}$ of $r^{i} \xi$ lies I. A sequence $\xi, r \xi, r^{2} \xi, \ldots$ has uniform distribution modulo 1 if

$$
R_{N}(\xi, r, I)=M_{N}(\xi, r, I)-N|I|=o(N)
$$

for any I. It was proved by Wall [8] (the most accessible proof in $|\sigma|$, Theorem 8.15) that ξ is normal to base r if and only if $\xi, r \xi, r^{2} \xi, \ldots$ has uniform distribution modulo 1 .

Write $T_{s, t}$, where $1<t<s$, for the following mapping in U : If $\xi=0 \cdot a_{1} a_{2} \cdots$ in the scale of t, then $T_{s . t} \xi=0 \cdot a_{1} a_{2} \cdots$ in the scale of s.

[^0]Theorem 2. Assume $r \nsim s$. Then there exists a constant $\alpha_{1}=$ $\alpha_{1}(r, s, t)>0$ such that for almost every ξ there exists a $N_{0}(\xi)$ with

$$
\begin{equation*}
R_{N}\left(T_{s, t} \xi, r, I\right) \leqq N^{1-\alpha_{1}} \tag{2}
\end{equation*}
$$

for every $N \geqq N_{0}(\xi)$ and any I.
Thus $T_{s, t} \xi$ is normal to base r for almost all ξ. Since $T_{s, t} \xi$ is not simply normal to base s part B of Theorem 1 follows. It does not follow immediately for $s=2$, but instead of $T_{2, t}$, which does not exist, we may take $T_{4, t}$.

We can interpret our results as follows. Write $C_{s, t}$ for the image set $T_{s, t} U$ of the unit-interval U under the mapping $T_{s, t} . C_{s, t}$ is essentially a Cantor set. In $C_{s, t}$ we define a measure $\mu_{s, t}$ by

$$
\begin{equation*}
\int_{\sigma_{s, t}} f(\xi) d \mu_{s, t}=\int_{0}^{1} f\left(T_{s, t} \xi\right) d \xi \tag{3}
\end{equation*}
$$

where $f(\xi)$ is any real-valued function such that the integral on the right hand side of (3) exists. Then it follows from Theorem 2 that with respect to $\mu_{s, t}$ almost every ξ in $C_{s, t}$ is normal in the scale of r.

Throughout this paper, lower case italics stand for integers. $\alpha_{1}=$ $\alpha_{1}(r, s, t), \alpha_{2}, \alpha_{3}, \cdots$ will be positive constants depending on some or all the variables r, s, t.

1. The case $r \sim s$. First, it follows almost from the definition that any number normal to base s^{n} is normal to base s.

Next, assume ξ is normal to base r, we shall show it is normal in the scale of r^{m}. If $\xi=0 \cdot a_{1} a_{2} \cdots$ in the scale of $r, b_{1} \cdots b_{m k}$ is any combination of $m k$ digits and $Z_{N}^{(1)}$ is the number of indices i in $1 \leqq i \leqq N$ with $i \equiv 1(\bmod m)$ satisfying

$$
b_{1}=a_{i}, \cdots, b_{m k}=a_{i+m k-1},
$$

then it was shown in [7] and in [3] that

$$
\lim _{N \rightarrow \infty} Z_{N}^{(1)} N^{-1}=r^{-m k} m^{-1}
$$

and hence

$$
\lim _{N \rightarrow \infty} Z_{m N}^{(1)} N^{-1}=\left(r^{m}\right)^{-k}
$$

Thus ξ is normal to base r^{m}.
Combining the above remarks we obtain the A-part of Theorem 1.
2. The measure $\mu_{s, t}$. We define numbers of order h to be the number $0 \cdot a_{1} \cdots a_{n}$ with $0 \leqq a_{i}<t$ in the scale of s. There are t^{h} numbers of order h, we denote them in ascending order by $\theta_{1}^{(h)}, \cdots, \theta_{t^{h}}^{(h)}$.

Lemma 1. Let $f(\xi)$ be a step-function, having a finite number of steps. Then

$$
\int_{c_{s, t}} f(\xi) d \mu_{s, t}=\int_{0}^{1} f\left(T_{s, t} \xi\right) d \xi=\lim _{h \rightarrow \infty} t^{-h} \sum_{k=1}^{t^{h}} f\left(\theta_{k}^{(h)}\right)
$$

The integrals and the limit exist and are finite.
Proof. It will be sufficient to prove the lemma for $f(\xi)=\{\xi, \gamma\}$, where $0 \leqq \gamma \leqq 1$ and

$$
\{\xi, \gamma\}= \begin{cases}1, & \text { if }\{\xi\}<\gamma \\ 0 & \text { otherwise }\end{cases}
$$

$\xi_{k}^{(h)}=\int_{0}^{1}\left\{T_{s, t} \xi, \theta_{k}^{(h)}\right\} d \xi$ is the least upper bound of numbers ξ having $T_{s, t} \xi \leqq \theta_{k}^{(h)}$. Thus if $\theta_{k}^{(h)}=0 \cdot a_{1} \cdots a_{h}$ in the scale of s, then $\xi_{k}^{(h)}=$ $0 \cdot a_{1} \cdots a_{h}$ in the scale of t and therefore $\xi_{k}^{(h)}=(k-1) t^{-h}$.

Hence if $\theta_{k}^{(h)} \leqq \gamma \leqq \theta_{k+1}^{(h)}$, or if $\theta_{k}^{(h)} \leqq \gamma$ with $k=t^{h}$, then

$$
\int_{0}^{1}\left\{T_{s, t} \xi, \gamma\right\} d \xi=k t^{-h}-\varepsilon,
$$

where $0 \leqq \varepsilon \leqq t^{-h}$. We can rewrite this in the form

$$
\int_{0}^{1}\left\{T_{s, t} \xi, \gamma\right\} d \xi=t^{-h} \sum_{k=1}^{t^{h}}\left\{\theta_{k}^{(h)}, \gamma\right\}-\varepsilon,
$$

and Lemma 1 follows.
Particularly, for

$$
\begin{gathered}
\mu(\gamma, x)=\int_{0}^{1}\left\{x T_{s, t} \xi, \gamma\right\} d \xi \\
\mu(\gamma, x, y)=\int_{0}^{1}\left\{x T_{s, t} \xi, \gamma\right\}\left\{y T_{s, t} \xi, \gamma\right\} d \xi
\end{gathered}
$$

we have

$$
\begin{gather*}
\mu(\gamma, x)=\lim _{h \rightarrow \infty} t^{-h} \sum_{k=1}^{t^{h}}\left\{x \theta_{k}^{(h)}, \gamma\right\} \tag{4}\\
\mu(\gamma, x, y)=\lim _{h \rightarrow \infty} t^{-h} \sum_{k=1}^{t^{h}}\left\{x \theta_{k}^{(h)}, \gamma\right\}\left\{y \theta_{k}^{(h)}, \gamma\right\} \tag{5}
\end{gather*}
$$

3. Exponential sums. Write $e(\xi)$ for $e^{2 \pi i \xi}$. There exist ([5], pp. 9192, 99) for any $\gamma, 0 \leqq \gamma \leqq 1$, and any $\eta>0$ functions $f_{1}(\xi), f_{2}(\xi)$ periodic in ξ with period 1 , such that $f_{1}(\xi) \leqq\{\xi, \gamma\} \leqq f_{2}(\xi)$, having Fourier expansions

$$
f_{1}(\xi)=\gamma-\eta+\sum_{u}^{\prime} A_{u}^{(1)} e(u \xi)
$$

$$
f_{2}(\xi)=\gamma+\eta+\sum_{u}^{\prime} A_{u}^{(2)} e(u \xi),
$$

where the summation is over all $u \neq 0$ and $A_{u}^{(i)}$ is majorized by

$$
\begin{equation*}
\left|A_{u}\right| \leqq \frac{1}{u^{2} \eta} \tag{6}
\end{equation*}
$$

Applying this to (5) we obtain

$$
\mu(\gamma, x, y) \leqq(\gamma+\eta)^{2}+\varlimsup_{h \rightarrow \infty} t^{-h} \sum_{\substack{u, v \\ \neq 0,0}}^{\prime}\left|A_{u}^{(2)}\left\|A_{v}^{(2)}\right\| \sum_{k=1}^{t^{h}} e\left((u x+v y) \theta_{k}^{(h)}\right)\right|
$$

where we put $A_{0}^{(2)}=\gamma+\eta$ and take the sum over all pairs u, v of numbers not both being zero. Since

$$
\left|t^{-h} \sum_{k=1}^{t^{h}} e\left((u x+v y) \theta_{k}^{(h)}\right)\right| \leqq 1,
$$

and since the double sum over u, v is uniformly convergent in h, we may change the order of limit and summation and obtain

$$
\mu(\gamma, x, y) \leqq(\gamma+\eta)^{2}+\sum_{u, v}^{\prime}\left|A_{u}^{(2)} \| A_{v}^{(2)}\right| \varlimsup_{h \rightarrow \infty} t^{-h}\left|\sum_{k=1}^{t^{h}} e\left((u x+v y) \theta_{k}^{(h)}\right)\right| .
$$

The numbers $\theta_{k}^{(h)}$ are the numbers

$$
\frac{a_{1}}{s}+\frac{a_{2}}{s^{2}}+\cdots+\frac{a_{h}}{s^{h}}
$$

where $0 \leqq a_{i}<t$. Hence

$$
\sum_{k=1}^{t^{n}} e\left(w \theta_{k}^{(h)}\right)=\prod_{j=1}^{n}\left(1+e\left(\frac{w}{s^{j}}\right)+e\left(\frac{2 w}{s^{j}}\right)+\cdots+e\left(\frac{(t-1) w}{s^{j}}\right)\right)
$$

If we keep w fixed, and if j is large, then

$$
\left|\left(1+e\left(\frac{w}{s^{j}}\right)+\cdots+e\left(\frac{(t-1) w}{s^{j}}\right)\right) t^{-1}-1\right|<\frac{t|w|}{s^{i}} .
$$

Therefore

$$
\begin{equation*}
I I(s, t ; w)=\prod_{j=1}^{\infty}\left|\left(1+e\left(\frac{w}{s^{j}}\right)+\cdots+e\left(\frac{(t-1) w}{s^{i}}\right)\right) t^{-1}\right| \tag{7}
\end{equation*}
$$

exists and

$$
\begin{equation*}
\mu(\gamma, x, y) \leqq(\gamma+\eta)^{2}+\sum_{u, v}^{\prime}\left|A_{u}^{(2)} \| A_{v}^{(2)}\right| \Pi(s, t ; u x+v y) \tag{8}
\end{equation*}
$$

The next three sections will be devoted to finding bounds for sums like

$$
\sum_{N_{1}<n, m \leqslant N_{2}} \Pi\left(s, t ; u r^{n}+v r^{m}\right) .
$$

4. Two lemmas on digits.

Lemma 2. Write $w=c_{g} \cdots c_{2} c_{1}$ in the scale of s. Assume there are at least z pairs of digits $c_{i+1} c_{i}$ with

$$
\begin{equation*}
1 \leqq c_{i+1} c_{i} \leqq s^{2}-2 \tag{9}
\end{equation*}
$$

(Here $\left.c_{i+1} c_{i}=s c_{i+1}+c_{i}\right)$. Then

$$
\Pi(s, t ; w) \leqq \alpha_{2}^{z}
$$

uhere $\alpha_{2}=\alpha_{2}(s, t), 0<\alpha_{2}<1$.
Proof. There are at least z numbers i having

$$
\frac{1}{s^{2}} \leqq\left\{\frac{w}{s^{i}}\right\} \leqq 1-\frac{1}{s^{2}}
$$

For such an i we have

$$
\left|1+e\left(\frac{w}{s^{i}}\right)+\cdots+e\left(\frac{(t-1) w}{s^{i}}\right)\right| \leqq\left|1+e\left(\frac{1}{s^{2}}\right)\right|+t-2=t \alpha_{2}
$$

and the Lemma is proved.
There exists an $\alpha_{3}(s), 0<\alpha_{3}<1 / 4$, such that

$$
\frac{\left(s^{2}-2\right)^{\alpha_{3}} 2^{1 / 2-\alpha_{3}}}{\left(2 \alpha_{3}\right)^{\alpha_{3}}\left(1-2 \alpha_{3}\right)^{1 / 2-\alpha_{3}}}<2^{3 / 4}
$$

Lemma 3. If k is large, $k>\alpha_{4}(s)$, then the number of combinations of digits $c_{k} c_{k-1} \cdots c_{1}$ in the scale of s with less than $\alpha_{3}(s) k$ indices i satisfying (9) is not greater than $2^{(3 / 4) k}$.

Proof. It will be sufficient to show that the number of combinations with less than $\alpha_{3}(s) k$ indices i satisfying both (9) and $i \equiv 1(\bmod 2)$ is not greater than $2^{(3 / 4) k}$. We first assume k is even. There exist

$$
\binom{\frac{k}{2}}{l}\left(s^{2}-2\right)^{2} 2^{k / 2-l}
$$

combinations $c_{k} \cdots c_{1}$ with exactly l indices i having both (9) and $i \equiv 1$ $(\bmod 2)$. Hence the number of combinations with less than $\alpha_{3}(s) k$ indices i satisfying (9) and $i \equiv 1(\bmod 2)$ does not exceed

$$
k\binom{\frac{k}{2}}{\left[\alpha_{3} k\right]}\left(s^{2}-2\right)^{\left[\alpha_{3} k\right] \cdot 2^{(k / 2)-\left[\alpha_{3} k\right]}}
$$

Using Stirling's formula for the binomial coefficient we obtain for large enough k the upper bound

$$
\alpha_{5}(s) k \frac{\left(s^{2}-2\right)^{\alpha_{3} k} 2^{\left((1 / 2)-\alpha_{3}\right) k}}{\left(2 \alpha_{3}\right)^{\alpha_{3} k}\left(1-2 \alpha_{3}\right)^{\left.(1 / 2)-\alpha_{3}\right) k}}<2^{(3 / 4) k} .
$$

Actually, the expression on the left hand side is $<2^{\alpha_{6}{ }^{k}}$, where $\alpha_{6}<3 / 4$. This permits us to extend the result to odd k.

5. The order of r modulo p^{k} as a function of k.

Lemma 4. Assume p is a prime with $p \nmid r$. Then the order o($\left.r, p^{k}\right)$, of r modulo p^{k} satisfies

$$
o\left(r, p^{k}\right) \geqq \alpha_{7}(r, p) p^{k}
$$

Corollary. Let n run through a residue system modulo p^{k}. Then at most $\alpha_{8}(r, p)$ of the numbers r^{n} will fall into the same residue class modulo p^{k}.

Proof. Write

$$
g=g(p)=\left\{\begin{array}{l}
p-1, \quad \text { if } p \text { is odd } \\
2, \text { if } p=2
\end{array}\right.
$$

There exists an $\alpha_{9}=\alpha_{9}(r, p)$ such that

$$
\begin{equation*}
r^{g} \equiv 1+q p^{\alpha_{9}-1}\left(\bmod p^{\alpha_{9}}\right) \tag{10}
\end{equation*}
$$

where $q \not \equiv 0(\bmod p)$. We have necessarily $\alpha_{9}>1$ and even $\alpha_{9}>2$ if $p=2$. If follows from (10) by standard methods (see, for instance, [4], § 5.5) that

$$
r^{g p^{e}} \equiv 1+q p^{\alpha_{9}-1+e}\left(\bmod p^{\alpha_{9}+e}\right)
$$

for any $e \geqq 0$. Thus for $k \geqq \alpha_{9}$ we have

$$
r^{q p^{k-\alpha_{9}}} \equiv 1+q p^{k-1}\left(\bmod p^{k}\right)
$$

and

$$
o\left(r, p^{k}\right) \geqq g p^{k-\alpha_{9}}=\alpha_{7}(r, p) p^{k}
$$

Assume $r \nsim s$. Write

$$
\begin{aligned}
& r=p_{1}^{d_{1}} p_{2}^{d_{2}} \cdots p_{h}^{d_{h}} \\
& s=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{h}^{e_{h}},
\end{aligned}
$$

where we may assume that never both $d_{i}=0, e_{i}=0$. We also may assume that the primes p_{1}, \cdots, p_{h} are ordered in such a way that

$$
\frac{e_{1}}{d_{1}} \geqq \frac{e_{2}}{d_{2}} \geqq \cdots \geqq \frac{e_{h}}{d_{h}},
$$

where we put $\left(e_{i} / d_{i}\right)=+\infty$ if $d_{i}=0$. Since $r \nsucc s$, we have

$$
r_{1}=\frac{r^{e_{1}}}{s^{a_{1}}}>1
$$

From now on, $p=p_{1}(r, s)$ is the prime defined above. We have $p \mid s$ but $p \nmid r_{1}$. For any $x \neq 0, y>1$ we define two new numbers x_{y} and x_{y}^{\prime} by $x=x_{y} x_{y}^{\prime}$, where x_{y} is a power of y and $y \nmid x_{y}^{\prime}$.

Lemma 5. A. Assume $r \nsim s, v \neq 0$. Let m run through a system $K\left(s^{k}\right)$ of non-negative representatives modulo s^{k}. Then at most

$$
\alpha_{10}(r, s)\left(\frac{s}{2}\right)^{k} v_{p}
$$

of the numbers

$$
v\left(r^{m}\right)_{s}^{\prime}
$$

are in the same residue class modulo s^{r}.
B. Assume $r \nsucc s$, furthermore $p \nmid r$. Suppose $u \neq 0, v \neq 0, n$ are fixed. Then, if m runs through $K\left(s^{k}\right)$, at most

$$
\alpha_{11}(r, s)\left(\frac{s}{2}\right)^{k} v_{p}
$$

of the numbers

$$
u r^{n}+v r^{m}
$$

will fall into the same residue class modulo s^{k}.
Proof. A. Write $m=m_{1} e_{1}+m_{2}, 0 \leqq m_{2}<e_{1}$. Then $r^{m}=r^{m_{1} e_{1}+m_{2}}=$ $s^{m_{1} a_{1}} r_{1}^{m_{1}} r^{m_{2}}$ and $v\left(r^{m}\right)_{s}^{\prime}=v r_{1}^{m_{1}}\left(r^{m_{2}}\right)_{s}^{\prime}$. The equation

$$
r_{1}^{m_{1}} \equiv a\left(\bmod p^{k}\right)
$$

has for fixed a at most $e_{1} \alpha_{8}\left(r_{1}, p\right)$ solutions in $m=m_{1} e_{1}+m_{2}$, if m runs through a system $K\left(p^{k}\right)$ of residues modulo p^{k}. This follows from the corollary of Lemma 4. The equation

$$
a v\left(r^{m_{2}}\right)_{s}^{\prime} \equiv b\left(\bmod p^{k}\right)
$$

has for fixed b, m_{2} at most

$$
\text { g.c.d. }\left(v\left(r^{m_{2}}\right)_{s}^{\prime}, p^{k}\right) \leqq v_{p} r^{m_{2}}
$$

solutions in a. Hence the number of solutions of

$$
v r_{1}^{m_{1}}\left(r^{m_{2}}\right)_{s}^{\prime} \equiv b\left(\bmod p^{k}\right)
$$

in $m=m_{1} e_{1}+m_{2} \in K\left(p^{k}\right)$ does not exceed

$$
e_{1} \alpha_{v} v_{p}\left(1+r+\cdots+r^{e_{1}-1}\right)=\alpha_{10}(r, s) v_{p} .
$$

But this implies that the number of solutions of

$$
v r_{1}^{m_{1}}\left(r^{m_{2}}\right)_{s}^{\prime} \equiv b\left(\bmod s^{k}\right)
$$

in $m=m_{1} e_{1}+m_{2} \in K\left(s^{k}\right)$ is not greater than

$$
\alpha_{10}(r, s) v_{p}\left(\frac{s}{p}\right)^{k} \leqq \alpha_{10}(r, s)\left(\frac{s}{2}\right)^{k} v_{p}
$$

B. The equation

$$
u r^{n}+v r^{m} \equiv b\left(\bmod p^{k}\right)
$$

has according to the corollary of Lemma 4 at most

$$
\alpha_{8}(r, p) v_{p}
$$

solutions in $m \in K\left(p^{k}\right)$. The result follows as before.
The following conjecture seems related to our results: Assume $r \nsim s$. Then for any ε and k almost all the numbers r, r^{2}, \cdots are (ε, k)-normal to the base s in the sense of Besicovitch $|1|$; that is, the number of $n \leqq N$ for which r^{n} is not (ε, k)-normal is o (N) as $N \rightarrow \infty$ for fixed ε and k.

6. Bounds for exponential sums.

Lemma 6. A. Let r, s, v be as in Lemma 5A. Then

$$
\sum_{m \in K\left(s^{k}\right)} I I\left(s, t ; v r^{m}\right) \leqq \alpha_{12} v_{p} s^{\left(1-\alpha_{13}\right) k}
$$

B. Let r, s, u, v, n be as in Lemma 5B. Then

$$
\sum_{m \in K\left(s^{k}\right)} \Pi\left(s, t ; u r^{n}+v r^{m}\right) \leqq \alpha_{14} v_{p} s^{\left(1-\alpha_{15}\right) k}
$$

Proof. A. Write $v\left(r^{m}\right)_{s}^{\prime}=c_{g} \cdots c_{k} \cdots c_{1}$ in the scale of s. Lemma 5 A implies that any digit combination $c_{k} c_{k-1} \cdots c_{1}$ will occur at most $\alpha_{10}(r, s)(s / 2)^{k} v_{p}$ times. According to Lemma 3, there are for large k not more than $2^{(3 / 4) k}$ digit-combinations $c_{k} \cdots c_{1}$ with less than $\alpha_{3} k$ indices i satisfying (9). Thus of all the numbers $v\left(r^{m}\right)_{s}^{\prime}, m \in K\left(s^{k}\right)$, and hence of all the numbers $v r^{m}$ there will be at most

$$
\alpha_{10}(r, s)(s / 2)^{k} v_{p} 2^{(3 / 4) k}=\alpha_{10}(r, s) v_{p}\left(s / 2^{1 / 4}\right)^{k}=\alpha_{10}(r, s) v_{p} s^{\left(1-\alpha_{16}\right) k}
$$

having less than $\alpha_{3} k$ digits c_{i} in their expansion in the scale of s satisfying (9). Thus Lemma 2 yields

$$
\Pi\left(s, t ; v r^{m}\right) \leqq \alpha_{2}^{k \alpha_{3}}
$$

for all but at most

$$
\alpha_{10}(r, s) v_{p} s^{\left(1-\alpha_{16}\right) k}
$$

numbers $m \in K\left(s^{k}\right)$. This gives

$$
\sum_{m \in K\left(s^{k}\right)} \Pi\left(s, t ; v r^{m}\right) \leqq s^{k} \alpha_{2}^{k \alpha_{3}}+\alpha_{10} v_{p} s^{\left(1-\alpha_{16}\right) k} \leqq \alpha_{12} v_{p} s^{\left(1-\alpha_{13}\right) k}
$$

B is proved similarly, using Lemma 5B.
Lemma 7. A. Assume $r \nsim s, v \neq 0$. Then

$$
\begin{equation*}
\sum_{N_{1}<n \leqq N_{2}} \Pi\left(s, t ; v r^{m}\right) \leqq \alpha_{17}\left(N_{2}-N_{1}\right)^{1-\alpha_{18}} v_{p} \tag{11}
\end{equation*}
$$

B. Assume $r \nsim s, u \neq 0, v \neq 0$. Then

$$
\begin{equation*}
\sum_{N_{1}<n, m \leqq N_{2}} \Pi\left(s, t ; u r^{n}+v r^{m}\right) \leqq \alpha_{19}\left(N_{2}-N_{1}\right)^{2-\alpha_{20}} \max \left(u_{p}, v_{p}\right) \tag{12}
\end{equation*}
$$

Proof. A. There exists a k having $s^{2 k} \leqq N_{2}-N_{1}<s^{2(k+1)}$, hence there exists a w satisfying $s^{k} w \leqq N_{2}-N_{1}<s^{k}(w+1)$, where $s^{k} \leqq w<s^{k+2}$. Thus if m runs from N_{1} to N_{2}, then m runs through w systems $K\left(s^{k}\right)$ of residue classes modulo s^{k} and at most s^{k} other numbers. Hence by Lemma 6A

$$
\sum_{N_{1}<m \leqq N_{2}} \Pi\left(s, t ; v r^{m}\right) \leqq w \alpha_{12} v_{p} s^{\left(1-\alpha_{13}\right) k}+s^{k} \leqq \alpha_{17}\left(N_{2}-N_{1}\right)^{1-\alpha_{18}} v_{p}
$$

B. If $p \nmid r$, then we proceed as in part A. We first take the sum over m and use Lemma 6B.

If p / r, then our argument is as follows. Consider, for example, the part of the sum with $n \leqq m$. Changing the notation in n, m, we see that this part of the sum (12) equals

$$
\sum_{n=0}^{N_{2}-N_{1}-1} \sum_{m=N_{1}+1}^{N_{2}-n} \Pi\left(s, t ;\left(u r^{n}+v\right) r^{m}\right)
$$

Except for possibly one exceptional n we have $\left(u r^{n}\right)_{p} \neq v_{p}$ and therefore $\left(u r^{n}+v\right)_{p} \leqq v_{p} \leqq \max \left(u_{p}, v_{p}\right)$. If n is not exceptional, then the already proved Lemma 7A can be applied to the inner sum and we obtain the bound

$$
\alpha_{17}\left(N_{2}-N_{1}-n\right)^{1-\alpha_{18}} \max \left(u_{p}, v_{p}\right)
$$

Taking the sum over n we obtain (12).
7. A fundamental lemma. Generalizing $M_{N}(\xi, r, I)$ we write ${ }_{N_{1}} M_{N_{2}}(\xi, r, I)$ for the number of indices i in $N_{1}<i \leqq N_{2}$ such that $\left\{r^{i} \xi\right\}$ lies in I. We put

$$
{ }_{N_{1}} R_{N_{2}}(\xi, r, I)={ }_{N_{1}} M_{N_{2}}(\xi, r, I)-\left(N_{2}-N_{1}\right)|I| .
$$

Fundamental lemma. Assume $r \nsim s$. Then

$$
\int_{0}^{1} N_{1} R_{N_{2}}^{2}\left(T_{s, t} \xi, r, I\right) d \xi \leqq \alpha_{21}\left(N_{2}-N_{1}\right)^{2-\alpha_{22}}
$$

Proof. It is enough to prove this for intervals of the type $I=[0, \gamma)$. Then

$$
N_{N_{1}} M_{N_{2}}(\xi, r, I)=\sum_{N_{1}<n \leqq N_{2}}\left\{r^{n} \xi, \gamma\right\}
$$

and

$$
\begin{align*}
& \int_{0}^{1}{N_{1}}_{1} M_{N_{2}}\left(T_{s, t} \xi, r, I\right) d \xi=\sum_{N_{1}<n \leqq N_{2}} \mu\left(\gamma, r^{n}\right) \tag{13}\\
& \int_{0}^{1} N_{1} M_{N_{2}}^{2}\left(T_{s, t} \xi, r, I\right) d \xi=\sum_{N_{1}<n, m \leqq N_{2}} \mu\left(\gamma, r^{n}, r^{m}\right) \tag{14}
\end{align*}
$$

Now we combine (8) and Lemma 7. We obtain, together with (6),

$$
\begin{aligned}
& \quad \sum_{N_{1}<n, m \leqq N_{2}} \mu\left(\gamma, r^{n}, r^{m}\right) \leqq(\gamma+\eta)^{2}\left(N_{2}-N_{1}\right)^{2} \\
& \quad+2(\gamma+\eta) \sum_{v \neq 0} \frac{v_{p}}{\eta v^{2}} \alpha_{17}\left(N_{2}-N_{1}\right)^{2-\alpha_{18}} \\
& \quad+\sum_{u \neq 0} \sum_{v \neq 0} \frac{\max \left(u_{p}, v_{p}\right)}{\eta u^{2} \eta v^{2}} \alpha_{19}\left(N_{2}-N_{1}\right)^{2-\alpha_{20}}
\end{aligned}
$$

Since the sums

$$
\sum_{v \neq 0} \frac{v_{p}}{v^{2}}, \quad \sum_{u \neq 0} \sum_{v \neq 0} \frac{\max \left(u_{p}, v_{p}\right)}{u^{2} v^{2}}
$$

are convergent, and since η was arbitrary, we have

$$
\sum_{N_{1}<n, m \leqq N_{2}} \mu\left(\gamma, r^{n}, r^{m}\right)-\left(N_{2}-N_{1}\right)^{2} \gamma^{2} \leqq \alpha_{23}\left(N_{2}-N_{1}\right)^{2-\alpha_{24}} .
$$

In the same fashion we can prove

$$
\begin{aligned}
& \left|\sum_{N_{1}<n, m \leqq N_{2}} \mu\left(\gamma, r^{n}, r^{m}\right)-\left(N_{2}-N_{1}\right)^{2} \gamma^{2}\right| \leqq \alpha_{23}\left(N_{2}-N_{1}\right)^{1-\alpha_{24}} \\
& \left|\sum_{N_{1}<n \leqq N_{2}} \mu\left(\gamma, r^{n}\right)-\left(N_{2}-N_{1}\right) \gamma\right| \leqq \alpha_{25}\left(N_{2}-N_{1}\right)^{1-\alpha_{26}}
\end{aligned}
$$

These two inequalities, together with (13) and (14), give the Fundamenta: Lemma.
8. Proof of the theorems. Once the Fundamental Lemma is shown, we can prove Theorem 2 by the standard method developed in [2].

By $J_{B}, B>0$, we denote the set of intervals $[\beta, \gamma), 0 \leqq \beta<\gamma<1$ of the type $\beta=a 2^{-b}, \gamma=(a+1) 2^{-b}$, where $0 \leqq b \leqq \alpha_{22} B / 2$. By P_{B} we denote the set of all pairs of integers N_{1}, N_{2} having $0 \leqq N_{1}<N_{2} \leqq 2^{B}$ of the type $N_{1}=a 2^{b}, N_{2}=(a+1) 2^{b}$ for integers a and $b \geqq 0$.

Lemma 8. Assume $r \nrightarrow s$. Then

$$
\sum_{\left(N_{1}, N_{2}\right) \in P_{B}} \sum_{I \in J_{B}} \int_{0}^{1} N_{N_{1}} R_{N_{2}}^{2}\left(T_{s, t} \xi, r, I\right) d \xi \leqq \alpha_{27} 2^{2 B\left(1-\alpha_{28}\right)}
$$

Proof. Because of the Fundamental Lemma the left hand side is not greater than

$$
a_{21} 2^{\alpha_{22} B / 2+1} \Sigma,
$$

where $2^{\alpha_{22} B / 2+1}$ is an upper bound for the number of intervals in J_{B} and

$$
\begin{equation*}
\Sigma=\sum_{\left(N_{1}, N_{2}\right) \in P_{B}}\left(N_{2}-N_{1}\right)^{2-\alpha_{22}} \tag{15}
\end{equation*}
$$

In (15) each value of $N_{2}-N_{1}=2^{b}$ occurs 2^{B-b} times, so that

$$
\Sigma=\sum_{b=0}^{B} 2^{B-b+b\left(2-\alpha_{22}\right)} \leqq \alpha_{29} 2^{2 B\left(1-\alpha_{22} / 2\right)}
$$

Hence Lemma 8 is true with $\alpha_{28}=\alpha_{22} / 4$.
Lemma 9. For large B there exists a set E_{B} of measure not greater than $2^{-\alpha_{30} B}$ such that

$$
\begin{equation*}
R_{N}\left(T_{s, t} \xi, r, I\right) \leqq 2^{B\left(1-\alpha_{31}\right)} \tag{16}
\end{equation*}
$$

for all $I, N \leqq 2^{B}$ and all ξ in $[0,1)$ but not in E_{B}.
Proof. We define E_{B} to be the set consisting of all ξ in $[0,1)$ for which it is not true that

$$
\begin{equation*}
\sum_{\left(N_{1}, N_{2}\right) \in P_{B}} \sum_{I \in J_{B}} N_{1} R_{N_{2}}^{2}\left(T_{s, t} \xi, r, I\right) \leqq 2^{2 B\left(1-\alpha_{28} / 2\right)} \tag{17}
\end{equation*}
$$

Lemma 8 assures that the measure of E_{B} does not exceed

$$
\alpha_{27} 2^{-2 B \alpha_{28} / 2}<2^{-\alpha_{30} B}
$$

for large B. We have to show that (16) is a consequence of (17).
We first assume I to be of the type $I=[0, \gamma), \gamma=a 2^{-b}$, where $0 \leqq b \leqq \alpha_{22} B / 2$. Then the interval [$0, \gamma$), is the sum of at most $b<B$ intervals $I, I \in J_{B}$, as may be seen by expressing a in the binary scale.

Expressing N in the binary scale we see that the interval $[0, N)$ can be expressed as a union of at most B intervals [N_{1}, N_{2}), where the pair $N_{1}, N_{2} \in P_{B}$. Hence we can write $R_{N}\left(T_{s, t} \xi, r, I\right)$ as a sum of $N_{1} R_{N_{2}}\left(T_{s, t} \xi, r, I\right)$ over at most B^{2} sets N_{1}, N_{2}, I, where $N_{1}, N_{2} \in P_{B}, I \in J_{B}$:

$$
R_{N}\left(T_{s, t} \xi, r, I\right)=\Sigma_{N_{1}} R_{N_{2}}\left(T_{s, t} \xi, r, I\right)
$$

Hence by (17) and Cauchy's inequality,

$$
R_{N}^{2}\left(T_{s, t} \xi, r, I\right) \leqq B^{2} 2^{2 B\left(1-\alpha_{28} / 2\right)}<2^{2 B\left(1-\alpha_{32}\right)}
$$

for large B.
Next, let $l=[0, \gamma)$ be of the type $a 2^{-b} \leqq \gamma \leqq(a+1) 2^{-b}$, where $\alpha_{22} B / 4<b \leqq \alpha_{22} B / 2$. Then

$$
\begin{aligned}
& \left|R_{N}\left(T_{s, t} \xi, r,[0, \gamma)\right)\right|=\left|M_{N}\left(T_{s, t} \xi, r,[0, \gamma)\right)-\gamma N\right| \\
\leqq & \left|R_{N}\left(T_{s, t} \xi, r,\left[0,(a+1) 2^{-b}\right)\right)\right|+\left|R_{N}\left(T_{s, t} \xi, r,\left[0, a 2^{-b}\right)\right)\right|+2^{-b} N \\
\leqq & 2 \cdot 2^{B\left(1-\alpha_{32}\right)}+2^{\left(1-\alpha_{22} / 4\right) B}<2^{B\left(1-\alpha_{33}\right)} .
\end{aligned}
$$

The Lemma now follows from

$$
\left|R_{N}(,,[\beta, \gamma))\right| \leqq\left|R_{N}(,,[0, \beta))\right|+\left|R_{N}(,,[0, \gamma))\right|
$$

Proof of Theorem 2. Since $\Sigma 2^{-\alpha_{30} B}$ is convergent, there exists for almost all ξ a $B_{0}=B_{0}(\xi)$ such that $\xi \notin E_{B}$ for $B \geqq B_{0}$. If $N \geqq 2^{B_{0}}$, then we can find a $B \geqq B_{0}$ satisfying $2^{B-1}<N \leqq 2^{B}$ and Lemma 9 yields

$$
R_{N}\left(T_{s, t} \xi, r, I\right)<2^{B\left(1-\alpha_{31}\right)}<2 N^{1-\alpha_{31}}<N^{1-\alpha_{1}}
$$

for large enough N.

References

1. A. S. Besicovitch, The asymptotic distribution of numerals in the decimal representation of squares of natural numbers, Math. Zeit. 39 (1934), 146-156.
2. J. W. S. Cassels, Some metrical theorems in Diophantine approximation III, Proc. Camb. Phil. Soc. 46 (1951), 219-225.
3. - On a paper of Niven and Zuckerman, Pacific J. Math, 2 (1952), 555-557.
4. H. Hasse, Vorlesungen über Zahlentheorie, Springer Grundlehren LIX (1950).
5. J. F. Koksma, Diophantische Approximationen, Ergebnisse der Math. u. ihrer Grenzgebiete 4, 4 (1936).
6. I. Niven, Irrational numbers, The Carus Math. Monographs 11 (1956).
7. I. Niven and H. S. Zuckerman, On the definition of normal numbers, Pacific J. Math. 1 (1951), 103-110.
8. D. D. Wall, Normal numbers, Ph. D. thesis (1949), University of California, Berkeley.

[^0]: Received June 2, 1959.
 ${ }^{1}$ In case of ambiguity we take the representation with an infinity of a_{i} less then $r-1$. But this does not affect the property of ξ to be normal or not.

