MIXED MODULES OVER VALUATION RINGS

JOSEPH ROTMAN

1. Introduction. A p-primary abelian group is a module over the
p-adic integers; thus Ulm’s theorem can be viewed as a classification of
reduced countably generated torsion modules over the p-adic integers,
or, more generally, over a complete discrete valuation ring. It is with
this point of view that Kaplansky and Mackey [4] generalized Ulm’s
theorem to cover mixed modules of rank 1. In this paper their result
is generalized in various ways, sometimes to modules of finite rank,
sometimes to modules over possibly incomplete rings. The structure
theorems obtained are applied to solve square-root, cancellation, and
direct summand problems.

The main idea is to squeeze as much information as possible from
the proof of Ulm’s theorem in [4]. In order to understand our pro-
cedure, we sketeh that proof. Order, once for all, generating sets of
the modules T and T': ¢, ¢, +--; ¢, ¢, --- The plan is to build an iso-
morphism stepwise up these lists. The crucial point is then, given a
height-preserving isomorphism f:S — S’, S finitely generated, to extend
f to a height-preserving isomorphism of {t;, S} and a suitable submodule
of T’ containing S’. In order to construct this extension it is necessary
to normalize ¢, in two ways:

(i) assume pt; eS;

(ii) assume that ¢, has maximal height in the coset t, +S. If T
is torsion, both of these normalizations are always possible. Now the
possibility of extra generality arises precisely at these two points. If
T is mixed and (ii) is satisfied, then the proof will go through if 7'/S
is torsion; this is what Kaplansky and Mackey did in their paper. In
this paper, we define a class of modules in which (ii) can always be
satisfied, and it is this class of modules which we shall consider.

2. Definitions. A discrete valuation ring (DVR) is a principal ideal
domain R with a unique prime ideal (p). MNy-.(p*) = (0). Hence if re R
is non-zero, there is a maximal #, depending on 7, such that € (p").
Define |7| = e7"; define |0] = 0. | | is a norm which satisfies the strong
triangle inequality: | + 7’| < max ||, |7'|. This norm induces a metric
on R. R is a complete DVR if it is complete in this metric. If R is
incomplete, we may form its completion R*, and R* is a complete DVR.

The p-adic integers is a complete DVR; it is also compact as a metric
space.

Let @ be the quotient field of R. We define the rank of a module
M (often called the ‘torsion-free rank’) to be the dimension of the @
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vector space @ ® M. Thus if M is torsion, rank M = 0. The rank can
also be defined as the cardinality of a maximal independent subset of
M. Note that every element in an independent subset has infinite order.

The word module will mean unitary module over a DVR. All abelian
group-theoretic notions can be found in [2; 3; 5].

3. KM modules. In this section we shall define a certain family
of modules and determine some members of this family.

DEFINITION. A semi-KM module is a reduced countably generated
module of finite rank.

DEFINITION. A module M has the coset property if the coset z+S
has an element of maximal height whenever S is a finitely generated
submodule of M.

DEFINITION. A KM module is a semi-KM module with the coset
property.

The coset property is the crucial part of the definition of a KM
module; for later use, we now give a characterization of this property.

DEFINITION. Let S be a submodule of M; if xe M, let x* denote
the image of x in M/S under the natural homomorphism. S is copure
if any «*e M/S has a pre-image x such that h(x*) = h(x). (h(x) denotes
the height of the element x).

LEmMMA 3.1. S is copure in M if and only if every coset of S has
an element of maximal height.

Proof. Induction on i(x) that i(x) = h(x*) if x has maximal height
in x + S.

COROLLARY 3.2. M has the coset property if and only if every
Jfinitely generated submodule is copure.

LEMMA 3.3. If R is complete, a reduced module M with no ele-
ments of infinite height has the coset property.

Proof. LetS= {y, -+, ¥;}. It must be shown that x + S contains
an element of maximal height. We may assume that x ¢ S, otherwise
0 has maximal height in  +S. Under this assumption we show by
induction on s that y + S contains only finitely many distinct heights.

Let s =1. If i(x + a,y) = «, is strictly increasing, then k(b y)=a,,
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where b, = a,,, — a,. Hence h(b,.,y) > h(b,y). Let (p™™) be the smal-
lest ideal containing b,. Then m(n + 1) > m(n), i.e., m(n) — o, and so
b, — 0. Hence {a,} is a Cauchy sequence and a,— @, since R is com-
plete. Now  +ay =2 + a,y + (@ — a,)y. If k(e — a,)y) > a, for all
n, then x 4 ay has infinite height and is thus 0, contradicting x ¢ S.
Therefore we may assume that h((¢ — a,)y) = h((ea — a,,)y) for all m>n.
But then @ — a, and a — a,, are associates, contradicting a — a,, — 0.
Hence {a,} cannot be strictly increasing, i.e., there can only be a finite
number of heights in the coset.

For the general case, suppose i(x + aly, + -+ + aly,) = a, is strictly
increasing. Suppose further that each coordinate sequence {a?} is
Cauchy, and so a? — a; for each ¢. Then

eyt ey, =@+ ay o+ )
+ (@ — aP)yy + + v+ (@ — ady,

The height of the first term on the right is «, while the height of the
remaining terms gets arbitrarily large. Hence « + ay, + +++ + a.¥y, has
infinite height and so must be 0, contradicting « ¢ S. Hence {«,} can-
not be strictly increasing, i.e., there are only a finite number of heights.

Therefore we may assume {a?} contains no Cauchy subsequence,
and so we may assume further that it consists of incongruent units.
Now

ha?*'(x + Zaty,) — al(x + Zaj*'y;)) = a, = k((ai*" — al)x + 2biy,) ,
where
bi = ai"ay — ajap*

and k > 2. Since a!*' — a? is a unit, and since multiplication by a unit
does not alter heights, we may assume it is 1. But there are only
s — 1 ¥’s occurring, and so the inductive hypothesis applies. Hence
there can only be a finite number of heights, and so {a,} cannot be
strictly increasing. Thus x + S contains only finitely many distinct
heights.

LEMMA 3.4. If R is compact and M is a reduced module of rank
2, then M has the coset property.

Proof. Let S be a finitely generated submodule with = ¢ S. By
the method of [4], it suffices to consider the case when S is generated
by two elements of infinite order, ¥y and z. Moreover, we may assume
Mx + ay + b.2) = a,, where {a,} is strictly increasing. Since R is
compact, we may assume that a,—a and b,—b. =+ ay -+ bz =
(x + ay + b,2) + ((@ — a,)y + (b — b,)2). Now the height of the first
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term on the right is «a,. If the other term has height > a, for all =,
then h(x + ay + b2) > a,, for all » and x + ay + bz is the desired ele-
ment. Hence we may suppose that h((e — a,)y + (b — b,)2) = B < a,.
This equation must hold for all m >n. If a sequence {c¢,} converges
to ¢, there is a subsequence {c,,} such that ¢ — Cn, and Cn,,, — Cn, are
associates, In our case, there are units u, and », such that (¢ — a,)y =
Un(Ape, — ap)y and (b — b,)2 = v,(b,s, — b,)2. (We have assumed, for
notation, that {a,} and {b.} are the subsequences). Hence

(a - an)y + (b - bn)z = un(x + ApY + bn+1z)
— Un(T + @Y + b,2) + (Vn — Up)(bpsr — bo)2 .

Hence A((v,—%,)(bp+1—b,)2) = B for large n. Therefore, (v,—u,)(b,+1—b,)
are associates, and non-zero since B < a, < . Hence there must be a
maximal power of p dividing any of them, contradicting the fact that
bn+1 - bn — 0.

LEMMA 3.5. If R is complete and M 1is reduced of rank 1, then
M has the coset property.

Proof. Kaplansky and Mackey [4].

To this point, all modules with the coset property have been modules
over a complete DVR. We shall now exhibit modules over a possibly
incomplete ring which have the coset property. For this purpose we
consider tensor products. All tensor products will be taken over the
ring R.

LEMMA 3.6. Let R be a DVR with completion R*. Any R-module
M can be imbedded as a pure R-submodule in R* Q M; moreover, the
torsion submodule T of M coincides with R* R T, which is the torsion
submodule of R*Q M.

Proof. R* is a torsion-free R-module, and R is a pure submodule
[3]. Further, if 6 4 R € R*/R, there is an » e R such that § — r = p¥',
&8’e R*. Therefore 6 + R = pd + R and so p(R*/R) = R*/R. Hence
R*|R is torsion-free and divisible.

Exactness of the sequence 0—R— R*— R*/R— 0 induces
exactness of Tor (R*R,M) - RQM—->R*RQM— (R*R)yQ M— 0.
R® M = M and, since R*/R is torsion-free, Tor (R*/R, M) = 0. Thus
r— 1 x is an imbedding of M into R*Q M. But the sequence also
implies that (R*Q M)/M ~ (R*/R)Q M. Since R*/R is torsion-free
and divisible, we have (R*/R)Q M torsion-free. Hence M is pure in
R* Q@ M and contains the torsion submodule of R*® M. We already
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know that # — 1 & x is a monomorphism; this last remark shows it is
an epimorphism when restricted to T. Thus T = R* @ T, which is the
torsion submodule of R* @ M.

LEmMA 3.7. If R is a DVR with completion R*, and if M is an
R-module of rank 1 with no elements of infinite height, then R* Q M
has no elements of infinite height.

Proof. Suppose z = X8, ® m; € R* K M has infinite height. By the
preceding lemma, z has infinite order. ILet xe M have infinite order.
Since rank M =1, there is an n such that for all 4, p™m, = r,x, r; € R.
p"z = 28;r; Qx. As any element in R*, ¥8,r, can be expressed as vp*,
where v is a unit. But then k(z) < h(p"2) = h(y @ ptx) = h(1 Q px) =
h(p*x) which is finite. This contradiction completes the proof.

LEMMA 3.8. If M is an R-module of rank 1 with no elements of
wmnfinite height, then M has the coset property.

Proof. Let S be a finitely generated submodule of M, and let
¢ S. Then R*® S is a finitely generated R*-submodule of R* ® M.

We now show 1®x ¢ R*®S. Consider the following commutative
diagram with exact rows:

[24

o— S — M — M|S —0

J l ls

00— R*®S— R*Q M-t R*® (M|S) — 0

where the downward maps are y —1&® y. Then
Al R x) = Bi(x) = ja(r) = j(@ + S) .
But
7 (R*Q M)/(B*®S) — R* ® (M]S)
defined by
Y(r*Q®@m + R*® S) = B(r* @ m)
is an isomorphism. In particular,
M1z + R*QS)=LB1R2) =j+S).

Since = ¢ S,z + S+ 0. Since 7 is a monomorphism, by Lemma 3.6,
Jx + 8S)+#0. Therefore 1Qx+ R*®RS+0, ie.,, 1Rz ¢ R*RS.
Hence 1® x + R*® S contains only finitely many distinet heights, by
Lemma 3.3. Therefore the pure subset * +S of 1®x+ R*® S car
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contain only finitely many distinct heights, and so it has an element of
maximal height.
We now sum up the results of this section in the following theorem.

THEOREM 3.9. A semi-KM module is a KM module if any of the
following conditions hold:

(i) R is complete and M has mo elements of infinite height;

(i) R is compact and rank M = 2;

(ili) R is complete and rank M =1;

(iv) rank M =1 and M has no elements of infinite height.

It is an open question whether these are all the semi-KM modules
with the coset property. Later we shall give an example of a module
of rank 2 with no elements of infinite height over an incomplete ring
which does not have the coset property.

4. The Structure theorem. The main result of this section is the
classification of all KM modules.

DEFINITION. A strand is a function from the cartesian product
of s copies of R into the ordinals and the symbol o, where R is a DVR
and s is finite.

DEFINITION Two strands f and ¢g: R x .-+ x R—ordinals and o
are equivalent, denoted f = g, in case there is an s by s non-singular
matrix A over R and non-negative integers m and = such that
g™ ™1y, o0 0, 1)) = f(P(1y, <o+, rs)A) for all »,e R. The argument of
f is obtained by regarding (7, +++,7;) as a 1 by s matrix.

It is easy to verify that f= ¢ is an equivalence relation. If M is
a reduced module of finite rank s, then any ordered independent set of
elements ,, --+, ¢, determines a strand f by f(r, -, 7)) = W(Zrx,).
f is the strand determined by the x’s. It is straightforward to see that
two strands determined by different ordered maximal independent sub-
sets of M are equivalent in the above sense. Thus M determines an
equivalence class of strands, which we denote S(M). Clearly S(M) is
an invariant of M.

LEMMA 4.1. Let M and M' be KM modules. Let S and S’ be
finitely generated submodules of M and M’ respectively, let f be a
height-preserving isomorphism of S onto S’, and let xe M with pxeS.
Then f can be extended to a height-preserving 1isomorphism between
{x, S} and a suitable submodule of M' which contains S'.

Proof. Exactly as in [4].
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LEMMA 4.2, Let M and M' be KM modules with S(M) = S(M’).
Then there are maximal independent subsets in M and in M' which
determine the same strand.

Proof. Let y, +++,y, be independent in M with strand f; let
yi, -+, y: be independent in M’ with strand g. Since S(M) = S(M’),
f=g. Hence there are non-negative integers m and » and a non-
singular matrix (a;;) over K such that

g(pmm("'n ety ’rs)) = f(pn('rlr tty rs)(atj)) ’

i.e.,

h(p™*"Zry;) = D" 23r0,5y)) .

Set x, = p*Ja;,y; and set x] = p™*"yi.

THEOREM 4.3. Let M and M' be KM modules. M and M' are
isomorphic if and only if they have the same Ulm invariants and
S(M) = S(M’).

Proof. By Lemma 4.2, there are maximal independent subsets
Xyy oo, @ in M, 2}, e+« 2, in M’ such that w(Zrx;) = h(Zr}) for all
r,€ R. Let S be the submodule of M generated by the «’s and let S’
be the submodule of M’ generated by the z”s. Define f:S— S’ by
f(z;) = x{. Since S and S’ are free on generators z;, respectively zi, f
is a well-defined isomorphism. Moreover, our choice of generators makes
f height-preserving. This isomorphism is now extended stepwise to an
isomorphism of M and M’ by Lemma 4.1. To ensure catching all of
M and M’, we take fixed countable sets of generators for each and
alternate between adjoining an element of M and an element of M'.
Since the elements of M and M’ have finite order modulo S and S’ re-
spectively, we can suppose that at each step we are adjoining an ele-
ment 2 such that px lies in the preceding submodule. This is precisely
the situation of Lemma 4.1.

COROLLARY 4.4. Let M and M’ be isomorphic KM modules. Then
any height-preserving tsomorphism between finitely generated submodules
Sand S’ of M and M' respectively (rank S = rank M) can be extended
to an isomorphism of M with M’'.

As first applications of the structure theorem, we now solve a
square-root problem and a cancellation problem.

THEOREM 4.5. Let M and M’ be KM modules of rank 1 with
MPM=M HM. Then M= M'.
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Proof. It is a corollary of Ulm’s theorem that the above is true
when M and M’ are torsion. Hence the torsion submodules of M and
M' are isomorphic. Let xe€ M have infinite order. Then there is an
element (a, b)e M' @ M’ such that h(rz) = h(ra, rb) for all re€ R. Since
rank M’ =1, there are non-negative integers m and n such that p™a =
p"ub = y, where % is a unit in B. We assume m > n. Thus, for large
k, we have h(p*z) = h((p* ™y, p*"u~'y))=h(p*-™y). Hence S(M)=S(M’).
Therefore, M ~ M’ by the structure theorem.

I have been unable to prove the analogous result in the case of
higher rank, and I conjecture it is false.

THEOREM 4.6. Let M and M' be KM modules, and let T be a re-
duced countably gemerated torsion module such that UL T) is finite for
all a, where U/(T) 1is the ath Ulm invariant of T. Then TH M=
TP M' implies M~ M’.

Proof.
SM)y=S(THM)=S(TH M) =S(M").

By Ulm’s Theorem, we may cancel T to obtain that the torsion sub-
modules of M and M’ are isomorphic. By the structure theorem,
M= M.

S(M) is a rather cumbersome invariant. We make the following
definition in order to rephrase Theorem 4.4.

DEFINITION. Two modules M and M’ are almost isomorphic if there
exist torsion modules 7" and 7' such that TP M~T'PH M'.

THEOREM 4.7. Two KM modules M and M' are isomorphic if and
only if they are almost isomorphic and they have the same Ulm in-
variants.

Proof. The necessity is obvious. For sufficiency, note that if M
and M’ are almost isomorphic, then S(M) = S(M'). Since M and M’
have the same Ulm invariants, M ~ M’ by 4.3.

5. Modules over incomplete rings. At present we have a structure
theorem for KM modules, and the only KM modules over incomplete
rings that we know are those of rank 1 with no elements of infinite
height. In Lemmas 3.6, 3.7, and 3.8, however, we saw that we could
obtain information about a module M by examining R* & M, which we
henceforth denote M*. We now investigate this situation more closely.
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LEMMA 5.1. The rank of M as an R-module = the rank of M* as
an R*-module.

Proof. Rank M > rank M*, for if x,---, 2, is a maximal inde-
pendent subset of M, then 1® x, -+, 1 & x, is a maximal independent
subset of M*. For the other inequality, let S be a free submodule of
M with rank S = rank M. Since R* is torsion-free, exactness of
0—S— M implies exactness of 0 —S*— M*. Since tensor product
commutes with direct sums, rank M < rank M*

LEMMA 5.2. Let W be an R*-module of finite rank s, with torsion
submodule T. Let M and M' be R-modules of rank s contained in W
satisfying:

(i) TcMn M’

(ii) there is an independent subset wx,, -+, %, tn M N M’

(ili) 2f f 1s the strand determined by the x’s inm M, and if g 1is
the strand they determine inm M’, then f = g. Under these conditions,
M=M.

Proof. Let x € M. Since rank W =s, p*x = Yc,x;, k > 0, and
c,;e R*. But each c;e R, lest Y¢ux,, 2, .-+, 2, are s -4 1 independent
(over R) element in M, contradicting rank M = s. Hence p*xe M N M.
In M, M(Xcw;) > k. By (iii), i(Zcx;) > k in M’ Thus there is a ye M’
such that p*y = Yc,x;,. Hence p*(x — y) =0, and so ¢ —yeT. Thus
x =19+ (x —y)eM'. The other inclusion is proved similarly.

LEMMA 5.3. Let M and M’ be reduced R-modules; let x,, +-+, z, be
a maximal independent subset in M, xi, -+, x, a maximal independent
subset of M' such that h(Erx;) = h(Zre)) for all r,eR. If ¢,;e R¥,
then h(Xc, @ x;) = M e, Q i) 1f either is finite; also, if onme of these
heights 1s imfinite, so is the other.

Proof. We shall be done if we can prove h(Sc; @ ;) > k implies
W(Ze; ® x}) > k, for any finite k. Choose 7, € R such that ¢, — r, € p*R*.
Then ¢, @, = X(¢c; — 7)) Rz, + Zr; @, Hence h(Zr, Q=) >k. By
Lemma 3.6, h(Zr; QK x) = h(Zrx;) = M(Erx) = (2r; @ ;). Hence
MEr, @) > k. But e, @ = 3, —r) Q@i + 3r, Q2. Thus
e, @ x}) > k.

DEFINITION. Let M be a module with no elements of infinite
height. M is taut if length M = length M™*; otherwise M is slack.

Note that length ([3, page 26]) may be defined for not necessarily
reduced modules. Thus M is taut if and only if the reduced part of
M* has no elements of infinite height. It is an open question whether
slack modules exist; it is easy, however, to give an example in which
M has no elements of infinite height while M* has a proper divisible
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submodule. Let M be an indecomposable torsion-free R-module of rank
2 of the type exhibited in [3, page 46]. M is reduced (and so has no
elements of infinite height, being torsion-free), but M* ~ R* P Q*, Q*
being the quotient field of R*.

LEMMA 5.4. Any direct sum of taut modules vs taut.

LEMMA 5.5. Any module of rank 1 with mo elements of infinite
height is taut.

Proof. Lemma 3.7.

DEFINITION. A module is completely decomposable if it is the direct
sum of modules of rank 1.

COROLLARY 5.6. Any completely decomposable module with mo ele-
ments of infinite height is taut.

LEMMA 5.7. Any reduced torsion-free module is taut.
Proof. There is a unique solution to the equation py = x.

THEOREM 5.8. Let M and M’ be taut semi-KM modules. Then M
and M’ are isomorphic if and only if they have the same Ulm in-
variants and S(M) = S(M’").

Proof. Since M and M’ have isomorphic torsion submodules, so do
M* and M'*, by 8.6. By 4.2 there are maximal independent subsets
Ty oo, % in M, 2}, ++-, 2] in M’ such that h(Zrx;) = (7)) for all
r, € R. Since both M and M’ are taut, the reduced parts of M* and
M’* have no elements of infinite height. By 5.8, {1 ® x,} and {1 & i}
determine the same strand. In particular, the divisible parts of M*
and M’* have the same rank and hence are isomorphic, since they are
torsion-free. By 4.3, M* =~ M'*. By Corollary 4.4, there is an isomor-
phism f: M* — M'* such that f(1® ;) =1 «; for all 7. But now
M’ and f(M) satisfy the conditions of 5.2. Hence M' = f(M). Thus
M and M’ are isomorphic.

Theorem 5.8 suggests that taut modules have the coset property.
We now exhibit a counter-example.

EXAMPLE 5.9. There exist taut modules which do not have the
coset property.

Proof. Let M be an indecomposable torsion-free R-module of rank
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2, where R is (necessarily) incomplete. M is taut, by 5.7. Let S be a
pure submodule of rank 1. Since M is reduced, S must be cyclic.
Further, M/S=~ Q. Thus S cannot be copure. Hence M does not have
the coset property, by 3.2.

6. Completely decomposable modules. We begin this section with
the study of the simplest completely decomposable modules: those of
rank 1. We have already seen that if we assume no elements of in-
finite height, modules of rank 1 are taut. Using results of the last
section, we can now prove a cancellation law.

THEOREM 6.1. Let M and M’ be semi-KM modules of rank 1 with
no elements of infinite height. Then M=~ M’ if and only if M* ~ M'*.

Proof. By 3.6. M* =~ M'* implies that the torsion submodules of
M and M’ are isomorphic. If x has infinite order in M, z’ has infinite
order in M', then the strands determined by 1@z and 1®a’ are
equivalent. But equivalence for modules of rank 1 is via two non-
negative integers and a one-by-one matrix over R*, i.e., an element
of R*. But any element of R* has the form wup® where u is a unit.
Since multiplication by a unit does not alter heights, we may assume
that the one-by-one matrix lies in R. But then we are calculating
equivalence over R. The purity of the imbedding of M into M* yields
S(M)=S(M'). Hence M~ M'.

If rank M =1, then S(M) has a representative f: R — ordinals
and «, where f(r) = h(rx) for some element x of infinite order. But
we know that if » and »' are associates in R, then f(r) = f('). Hence
f is completely determined by its values at »*, k=0,1,2, ... Thus
S(M) can be looked upon as an equivalence class of sequences of ordi-
nals. Indeed, these ordinal sequences are the extra invariant Kaplansky
and Mackey discovered in their paper.

DEFINITION. A sequence of ordinals {a,} has a gap at «, if
Uy > 1+ a,.

LemMmA (Kaplansky). If {«,} ts the Ulm sequence of x ([3, page
57)), and if {a,} has a gap at «,, then the a,th Ulm invariant of
M=+ 0.

Proof. Since A(p*z) = a, and A(p"*'2) = atp+, > 1 + @, there is a
ye M such that h(p"y) > «, and p"*y = p"*'xz. Set t = p"*'y — p x.
Then ¢t has order p and height «,. Thus the a,th Ulm invariant of M
is non-zero.

Suppose we are given a monotone increasing sequence of non-negative
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integers and a torsion module 7. Is there a module of rank 1 pos-
sessing these as invariants? Kaplansky’s lemma provides a link be-
tween these two objects, and the following theorem shows it is the only
restriction.

THEOREM 6.2. Let T be a countaly generated torsion module with
no elements of infinite height; let {a,} be a strictly increasing sequence
of mon-negative integers such that {a,} has a gap at «, implies U, (T)
is non-zero. Then there exists a KM module M of rank 1 whose tors-
ion submodule is isomorphic to T and such that S(M) is the equiva-
lence class of {a,}.

Proof. In this proof we often denote p* by expk. If {a,} has
only a finite number of gaps, equivalence allows us to assume that
a, =n for all n. Then M =T @ R is the desired module. Therefore
we may assume {a,} has an infinite number of gaps. Let {«,} be the
subsequence of gaps. The conditions on T imply 7T is the direct sum
of cyclic modules. Further the compatibility condition tells us that T
has a cyclic summand C; of order (exp (a,, +1)); let a; be a generator
of C;. There is a B such that T~ B@ 3C;,. We first construct a
certain submodule M’ of /IC,. ]

Define » = {w,a;} where u, = exp(a,, —n;). « has infinite order;
for p"x = 0& p™wa; =0 for all 1 & exp(m + a,, — n)a, =0 for
all 1&<Sm + a,, —n, >a, + 1 for all i&m >n, +1 for all 4.
This is impossible since n, — . We claim that if p*u,a, #= 0, then
p*u; € (expay). In other words, if k -+ Qp, — N; < Ay, + 1, then
k+ a,, —n, > a,. Equivalently, if =, >k, then A, — O = Ny — k.
But a,, — @, = (@, — @y-y) + +++ + (Xsy — @) =n; — k. Thus for
each k we may define an element x, with the property that (exp a,)x, =
pre: set x, = {ufa;}, where uf =0 if &k > n, + 1, while uf = exp (—a,+
k + a,, — n;) otherwise.

Set M’ = the submodule of IIC; generated by the x,’s. Note that
Mp*x) =« in M'. It can be no greater, since the height of an ele-
ment of IIC, is the smallest power of » which occurs in one of its co-
ordinates. Hence h(p*x) = a, in IIC;, and so can be no larger in the
submodule M.

We still must determine the torsion submodule 7' of M’. Given
any two x,’s, multiplication of each by a suitable power of p makes
their coordinates equal from some point on. Hence any element of
finite order in M’ cannot have an infinite number of non-zero coordinates.
But it may be verified that for all ¢,

a; = exp (@, — X, — Nysy + W2y, — Ty,

it

Hence T' = 3YC,. Thus M = M’ B is the module we seek, where B
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is the module we originally found satisfying ' B~ T.

We now prove the existence of minimal modules possessing an ele-
ment of a given Ulm sequence.

COROLLARY. Let {a,} be a strictly increasing sequence of mnon-
negative integers, and let {ani} be its subsequence of gaps. Let T be
the direct sum of cyclic modules C; of order (exp (&, + 1)). Then there
exists a KM module 1 with torsion submodule T and which contains
an element x such that h(px) = a,. Further, M is a direct summand
of any KM module M’ of rank 1 which contains an elements whose
Ulm sequence is {a,}.

Proof. We need only prove the last statement, since the existence
of M with the prescribed invariants follows immediately from Theorem
6.2. Let 7"’ be the torsion submodule of M’. By Kaplansky’s lemma,
the «, th Ulm invariant of T’ is non-zero. Hence there are cardinals
U, such that U,(T') = U, + U,(T). Let V be the torsion module with
Ulm invariants given by U,. By Ulm’s theorem, 7'~ V@ T. The
KM module V& M has torsion submodule V@ T and S(VH M) =
S(M'"). Hence V& M and M’ are isomorphic, by the structure theorem.

Thus there is an uncountable number of non-isomorphic KM modules
of rank 1 with no elements of infinite height. In particular we have
exhibited modules of rank 1 which do not split.

DEFINITION. %, +++, %, is a decomposition set for M if it is a
maximal independent subset of M and A(Zr;x;) = min h(r,x;) for all
r;e R. A subdecomposition set is a not necessarily maximal independent
subset satisfying the above condition on heights.

DEFINITION. A decomposition set has k gaps at level n if k of its
elements have Ulm sequences which have a gap at =«.

LEMMA 6.3. Let X =ux,, «--, x, be decompostion set with k gaps at
level n. Then the the nth Ulm invariant of M > k.

Proof. 1If w,, ---, x, is a decompostion set for M, so is 7, -, r.x,
where 7, = 0 for all 7. Hence we may assume that h(x,) = n and
Mpx;) >n + 1 for ¢ = k. Thus there are elements ¥, 7 < k, such that
h(py;) =n + 1 and py;, = pr;. Set ¢, = py, — x,. We now have k ele-
ments of order p and of height n. It remains to prove that they are
independent over R/(p). Suppose >F., 7t =0, where r, is either 0 or
a unit in R. By the definition of the ¢,, 37,(py; — #;) = 0 which implies
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that pY¥ry, = Yr,x;.  Since X is a decomposition set, h(Zrx;) =
min A(r;x;) = n or . But k(pXr,y;) >n + 1. Hence Xrax, = 0. The
independence of the x’s implies that each 7, = 0; hence the ¢, are in-
dependent over R/(p).

THEOREM 6.4. Let M be a taut semi-KM module. M 1is completely
decomposable if and only tf M contains a decomposition set.

Proof. If M is completely decomposable, the assertion is trivial.
Suppose M contains a decomposition set x,, --.,%,. Define functions
U,: non-negative integers — cardinals < ¥, 1 =1,2, --., s as follows:
. Ui(n) = nth Ulm invariant of M; if the Ulm sequence of x; has a
gap at n, then U,(n) #+ 0. By Lemma 6.3, the Ulm invariants of M
are sufficiently large to allow this construction. Let 7, be the torsion
module with Ulm invariants given by U,. By Theorem 6.2, there exists
a KM module of rank 1, M;, having torsion submodule 7, and with
S(M,) the equivalence class of the Ulm sequence of x;,. Consider 3M,.
Since Ulm invariants are additive, the first condition in the definition
of the U, coupled with Ulm’s theorem yields the fact that the torsion
submodules of M and of XYM, are isomorphic. Further, S(M) = S(ZM,).
By Corollary 5.6, M, is a taut semi-KM module. By Theorem 5.8,
M= 23M,.

LEMMA 6.5. Let M and M' be taut semi-KM modules of rank 1
such that S(M) = S(M'). Then M and M' are almost isomorphic.

Proof. Let T and T' be the torsion submodules of M and M’ re-
spectively. Then M@ T’ and M'P T are isomorphic, by 5.8.

We now prove a technical lemma which will allow us to obtain our
first direct summand theorem.

LEMMA 6.6. Let M be a reduced module of finite rank s. Let
X, e, X, be a decomposition set such that each x, has the same Ulm
sequence. Suppose also that x, = wya, + «++ + w0, and, for all
1, |wy| < |wy]. Under these conditions, y, = w, &, — w,%;, T > 2, 18 @
subdecomposition set and each y, is in A, the submodule generated by
gy * ooy Q.

Proof. Rank M = s while rank A <s — 1. Hence not all the w,
are 0 lest we have s independent elements =z, ---, 2, lying in A. Thus
w,, is non-zero.

First we show the y,’s are independent. Suppose X7y, = 0. Then
0 = (2rw,)x, — Er,w,x, which implies »,w,, = 0 for all 7 > 2, since the
2’s are independent. Since w, # 0, we must have 7, = 0 for all ¢ >2;
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hence the y’s are independent.

Next we show that the y’s satisfy the required condition on their
heights.

h2ry;) = M Erw, e, — Jryw,x;) = min W(2rw,®,), Mrw,;) .
But
| 27w, | < max |rw;,| = max [r;||w,| < max |r,||w,| = max |rwy] .

Hence there is an 7 such that |Xr,w,; | < |rw,|. Therefore, h(Zr,w;,x,)>
i(r,wyx;) for that 4. Hence h(Zr;y;) = min M(r;w,x;). On the other
hand, min A(ry,) = min h(r,w,x, — r,wux;) = min h(r,w,x,), h(rw,;).
But for all 4, |7r,w;,| < |rywy|. Therefore, h(r,w;2) > h(r,w,x;). Hence
min A(r,y;) = min h(r;w,2;). Hence h(Zry;) = min k(7).

THEOREM 6.7. Let M be a completely decomposable semi-KM module
with no elements of infinite height. Let M = XM;, all the M, isomor-
phic and of rank 1. If M = A@ B, then B is completely decomposable.
In fact, B is almost isomorphic to a direct sum of coptes of M;.

Proof. We first prove that any two elements in M of infinite order
have equivalent Ulm sequences. Let x; € M, have infinite order. Clear-
ly these #’s form a decomposition set. Further, since all the M, are
isomorphic, we may assume that all the x,’s have identical Ulm sequ-
ences. Let ze M have infinite order. There is an m > 0 such that
p"z = Srx;. Suppose |7, < |r.]. Then h(p™**z) = h(p*2r,x;) = h(p*r.2,)
for any non-negative k.

Choose a,, +++, a,-, independent in A4, a, .+, -*-, @, independent in
B. We are now in the situation of the lemma. Applying the lemma k
times (after each application, we must normalize the y’s obtained so
that they have identical Ulm sequences), we obtain s — k& independent
elements in {a; ., +++, @} CB which is a subdecompostion set of M. By
the purity of B, and since rank B = s — k, these elements constitute a
decomposition set for B. By Theorem 6.4, B is completely decomposable.
Hence B = ¥B,, and our initial remarks imply that S(B,) = S(M;) for
all © and j. By Lemma 6.5, B, and M, are almost isomorphic. Hence
B is almost isomorphic to a direct sum of copies of M,.

I have been unable to discover the truth of Theorem 6.7 in the
event all the M, are not isomorphic to each other.

COROLLARY 6.8. Let M =3 M, (a in some index set), each M,
a semi-KM module of rank 1 with no elements of infinite height. If
all the M, are isomorphic, any direct summand B of M of finite rank
18 almost isomorphic to a direct sum of copies of M,'s.
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Proof. Let x,€ M, have infinite order. Let ¥, ---, ¥, be a maximal
independent subset of B. There is a finite subset #,, ---, %, of the
x,’s such that p™y; lies in the submodule they generate, for all 7. Let
B’ be the submodule of M generated by B and M,, ---, M,,. Since B’
is countably generated and of finite rank, B’ = >\ M', ,» Where S(M’,, j) =
[Ux, j]. (If x € M, Uz is its Ulm sequence and [Ux] is the equivalence
class of Ux). Hence all the S(M ’wj)’s are the same. Since B is a direct
summand of M, it is a direct summand of B’. By 6.7, B is completely
decomposable. Since all elements of infinite order have equivalent Ulm
sequences, B is almost isomorphic to a direct sum of copies of M,.

We are now in a position to consider uniqueness of a decomposition
of a module into the direct sum of modules of rank 1. The unpre-
dictability of the torsion submodules does not allow one to find pairs of
isomorphic summands from two different decompositions. For example,
if C is cyclic of order (p) and M= RPCPH CEP R, different associa-
tions yield different decompositions of M as a direct sum of modules of
rank 1 whose terms are not pairwise isomorphic. However, the two
decompositions do have isomorphic refinements.

THEOREM 6.9. Let M = 32 ,M,, M, a KM module of rank 1, all
the M, isomorphic. Any two decompositions of M into summands of
rank 1 have isomorphic refinements.

Proof. We saw in the proof of Theorem 6.7 that any two elements

in M of infinite order have equivalent Ulm sequences. Hence if M =

r . M;, all the M} of rank 1, then S(M;) = S(M;) for all 7. By the
existence theorem, there are modules N, of rank 1 such that:

(i) NNOT,~M, NPT, ~ M, for some torsion T, T'};

(i) if W, is the torsion submodule of N;, then the Ulm invariants
of W, are 0’s and I's. Now SW, A ST, ~ S W,H ST.. By Ulm’s
Theorem and condition (ii), we may cancel and obtain .7, ~ >, Ti.
Since any two decompositions of a module which is the direct sum of
cyclic modules have isomorphic refinements, 3.7, and >, T') have isomor-
phic refinements. This completes the proof.

As a corollary, we have another proof of the square root problem,
Theorem 4.5.

This paper is part of a dissertation written at the University of
Chicago. I wish to thank Professor I. Kaplansky for his guidance.
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