UNIONS OF CELL PAIRS IN E^{3}

P. H. Doyle

In [4] it is shown that there are pairs of cells of all dimensions possible in euclidean 3 -space, E^{3}, which are tame separately, but which have a wild set as their union. Such pairs can be constructed when the individual cells intersect in a single point. The present paper gives conditions that unions of some such pairs be tame sets as well as a number of other results.

Lemma 1. Let D_{1} be a disk which is polyhedral and which lies on the boundary, ∂T, of a tetrahedron T in E^{3}. If D_{2} is a disk in E^{3} which has a polygonal boundary and is locally polyhedral mod ∂D_{2} while $D_{2} \cap T=D_{2} \cap D_{1}=\partial D_{2} \cap \partial D_{1}=J$, an arc, then $D_{1} \cup D_{2}$ is a tame disk.

Proof. Let P_{1} and P_{2} be polyhedral disks in $\partial T, P_{1} \cap P_{2}=\square$ and $\left(P_{1} \cup P_{2}\right) \cap D_{1}=\square$. Then $\left.\overline{\partial T \backslash\left(P_{1} \cup P_{2}\right.}\right)$ is a polyhedral annulus, A_{1}. If Q is a polyhedral disk in $D_{2} \backslash \partial D_{2}$, then $\overline{D_{2} \backslash Q}$ is an annulus A_{2} which is locally polyhedral $\bmod \partial D_{2}$. By applying Lemma 5.1 of [8] to A_{1} and A_{2} one obtains a space homeomorphism h carrying E^{3} onto E^{3} while $h\left(D_{1} \cup D_{2}\right)$ is a polyhedral set. This completes the proof of Lemma 1.

Lemma 2. Let D_{1} be the disk of Lemma 1 while D_{2} is a tame disk in E^{3} such that $D_{2} \cap T=D_{2} \cap D_{1}=\partial D_{2} \cap \partial D_{1}=J$, an arc. Then $\partial T \cup \partial D_{2}$ is tame.

Proof. By Theorem 2 of [3] $\partial D_{1} \cup \partial D_{2}$ is locally tame and hence tame by [1] or [8]. Let a be a point of ∂J and J^{\prime} be an interval of ∂D_{1} having a as an end point and $J^{\prime} \cap \partial D_{2}=a$. We choose a polygonal disk M on ∂T with ($J^{\prime} / \partial J^{\prime}$) in its interior while $\partial D_{1} \cap M=J^{\prime}$. By a swelling [5] of M toward the component of $E^{3} \backslash \partial T$ which meets ∂D_{2} we obtain a disk M^{\prime} which is locally polyhedral $\bmod \partial M$ and $M^{\prime} \cap \partial T=$ $\partial M=\partial M^{\prime}$. The sphere $S=M^{\prime} \cup(\partial T \backslash M)$ is tame by [8] and S is pierced at a by a tame arc lying on $\partial\left(D_{1} \cup D_{2}\right)$. Hence by [7] $\partial D_{2} \cup S$ is locally tame at a. We select an arc P in $\left(S \backslash M^{\prime}\right) \cup a$ which is locally polyhedral except at the point a. There is an arc A on ∂D_{2} which lies in the exterior of S except for its end point a. The arc $A \cup P$ is tame since $S \cup \partial D_{2}$ is tame. Let the arc P be swollen into a 3 -cell C^{3} with P in its interior such that C^{3} is locally polyhedral $\bmod a, C^{3} \cap S$ is a disk while $C^{3} \cap M=a$. Then ∂C^{3} is pierced at a by $A \cup P$ and so $A \cup P \cup \partial C^{3}$ is tame by [7]. Evidently there is an arc P^{\prime} on ∂C^{3} so

[^0]that $A \cup P^{\prime}$ pierces ∂T at a. Again by [7] $\partial D_{2} \cup \partial T$ is locally tame at a. A similar argument applies to the other end point of ∂J. Hence $\partial D_{2} \cup \partial T$ is tame. This proves Lemma 2.

Theorem 1. Let D_{1} and D_{2} be two tame disks in E^{3} such that $D_{1} \cap D_{2}=\partial D_{1} \cap \partial D_{2}=J$, an arc. Then $D_{1} \cup D_{2}$ is a tame disk.

Proof. Since D_{1} is tame there is a homeomorphism h_{1} of E^{3} onto E^{3} such that $h_{1}\left(D_{1}\right)$ is a plane triangle. The disk $h_{1}\left(D_{1}\right)$ is to be swollen so that a 3 -cell e^{3} is formed such that
(i) $h_{1}\left(D_{1}\right) \subset \partial e^{3}$,
(ii) e^{3} is tame,
(iii) and $e^{3} \cap h_{1}\left(D_{2}\right)=h_{1}(J)$.

That such a cell e^{3} exists follows from Lemma 5.1 of [5] and Theorem 9.3 of [8].

There is a homeomorphism h_{2} of E^{3} onto E^{3} which carries ∂e^{3} and $h_{1}\left(D_{1}\right)$ onto the boundary of a tetrahedron and a polyhedral disk, respectively. By Lemma $2 h_{2}\left(e^{3}\right) \cup h_{2} h_{1}\left(\partial D_{2}\right)$ is a tame set. By Theorem 2 of [6] we can insist that $h_{2} h_{1}\left(D_{2}\right)$ be locally polyhedral $\bmod h_{2} h_{1}\left(\partial D_{2}\right)$, while $h_{2} h_{1}\left(\partial D_{2}\right)$ is polygonal. Hence by Lemma $1 h_{2} h_{1}\left(D_{1} \cup D_{2}\right)$ is tame and so $D_{1} \cup D_{2}$ is tame.

The following result gives a characterization of tame 1-dimensional complexes in E^{3}. By a 1_{n}-star we mean a homeomorphic image of a 1-dimensional simplicial complex K with a vertex x whose star is K and x is the common end point of the n segments meeting only in x.

Theorem 2. If N is a 1_{n}-star in E^{3} such that $(n-1)$ of the branches of N lie on a disk D which meets the remaining branch J at x only and if each arc in N is tame, then N is tame.

Proof. By [2] we may assume that D is locally polyhedral $\bmod N$. An application of the method in Theorem 1 of [3] makes it possible to select a subset D^{\prime} of D which is a disk consisting of $(n-1)$ tame disks which contain arcs with x as an end point of all branches of N except J. An argument almost identical with that of Theorem 2 of [3] suffices to show that $J \cup D^{\prime}$ is tame and hence N is tame by [1] or [8].

Corollary 1. Let G be a graph in E^{3} such that the star of each vertex of G meets the conditions of Theorem 2, then G is tame. The conditions are evidently necessary as well.

Corollary 2. Let D be a tame disk and J a tame arc in E^{3}. If $D \cap J=\partial D \cap J=p$, an end point of J, and if $\partial D \cup J$ is tame, then $D \cup J$ is tame.

Proof. Since D is tame there is a space homeomorphism h which
carries D onto a face of a tetrahedron $T,[h(J) \backslash h(p)] \subset E^{3} \backslash T$. Let P be a segment on $h(\partial D)$ with $h(p)$ as an end point. We enclose P in a polyhedral disk M in ∂T such that P spans M and $h(\partial D) \cap M=P$. We swell M as in Lemma 2 to obtain a tame disk M^{\prime} such that $\partial M^{\prime}=\partial M$, and $M^{\prime} \backslash \partial M^{\prime} \subset E^{3} \backslash T$. Then $h(J) \cup h(\partial D)$ contains a tame arc which pierces the tame sphere [8] $S=M^{\prime} \cup(\partial T \backslash M)$ at $h(p)$ and so $S \cup h(J)$ is tame by [7]. The construction of an arc P^{\prime} as in Lemma 2 completes the proof.

In Example 1.4 of [4] an arc A which is the union of two tame arcs is shown. Although A has an open 3 -cell complement in compactified E^{3}, it is nevertheless wild. A similar example can be obtained from Example 1.4 of two tame disks which meet at a point on the boundary of each and which have a wild union. In this connection we give the following result.

Theorem 3. Let D_{1} and D_{2} be disks in E^{3} such that each arc in D_{1} and D_{2} is tame and $D_{1} \cap D_{2}=\partial D_{1} \cap \partial D_{2}=J$, an arc. Then $D_{1} \cup D_{2}$ is a disk such that each arc in $D_{1} \cup D_{2}$ is tame.

Proof. Let J^{\prime} be an arc in $D_{1} \cup D_{2}$. If ∂J^{\prime} does not lie in $\partial D_{1} \cup$ ∂D_{2} we extend J^{\prime} so that this is the case, obtaining $J^{\prime \prime} \supset J^{\prime}, \partial J^{\prime \prime} \subset \partial D_{1}$ $\cup \partial D_{2}$ and $J^{\prime \prime} \subset D_{1} \cup D_{2}$. By [2] there is a disk D such that $\partial D=$ $\partial\left(D_{1} \cup D_{2}\right), J \cup J^{\prime \prime} \subset D$ and D is locally polyhedral $\bmod J \cup J^{\prime \prime} \cup \partial D$. The arc J in D is the intersection of two disks in D, D_{1}^{\prime} and D_{2}^{\prime}, such that $D_{1}^{\prime} \cup D_{2}^{\prime}=D$. Consider any point x of $J^{\prime \prime}$ in $D_{1}^{\prime} \mid \partial D_{1}^{\prime}$. In [3] a method is given for enclosing x in the interior of a tame subdisk of D_{1}^{\prime}. Hence D_{1}^{\prime} is locally tame at each of its interior points and ∂D_{1}^{\prime} is tame. By [8] D_{1}^{\prime} is tame. A similar argument can be applied to D_{2}^{\prime}. Hence $D_{1}^{\prime} \cup D_{2}^{\prime}$ is a tame disk by Theorem 2. Then $J^{\prime \prime}$ is tame and so J^{\prime} is tame. Since J^{\prime} was arbitrarily chosen $D_{1} \cup D_{2}$ is a disk in which each arc is tame.

Corollary 1. Let L_{1} and L_{2} be tame disks which intersect in a single point on the boundary of each. If $L_{1} \cup L_{2}$ lies on a disk in which each arc is tame, then $L_{1} \cup L_{2}$ is tame.

Proof. Let $L_{1} \cup L_{2}$ lie on a disk D such that each arc in D is tame. By Theorem $2 \partial L_{1} \cup \partial L_{2}$ is tame. There is a disk D^{\prime} in D with a tame boundary such that $D^{\prime} \cap\left(L_{1} \cup L_{2}\right) \subset \partial L_{1} \cup \partial L_{2}$ while $D^{\prime} \cup L_{1} \cup L_{2}$ is a disk. Then by [2] there is a disk $D^{\prime \prime}$ such that $\partial D^{\prime \prime}=\partial D^{\prime}, D^{\prime \prime}$ is locally polyhedral $\bmod \partial D^{\prime \prime}$ and $\partial D^{\prime \prime} \cap\left(L_{1} \cup L_{2}\right)=\partial D^{\prime} \cap\left(L_{1} \cup L_{2}\right)$. Now $D^{\prime \prime}$ is tame by [8] and so $D^{\prime \prime} \cup L_{1} \cup L_{2}$ is tame by Theorem 2. It follows that $L_{1} \cup L_{2}$ is tame.

References

[^1]2. R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. 65 (1957), 456-483.
3. P. H. Doyle, Tame triods in E^{3}, Proc. Amer. Math. Soc. 10 (1959), 656-658.
4. R. H. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. 49 (1948), 979-990.
5. O. G. Harrold, H. C. Griffith, and E. E. Posey, A Characterization of tame curves in three-space, Trans. Amer. Math. Soc. 79 (1955), 12-34.
6. E. E. Moise, Affine structures in 3-manifolds, V. The triangulation theorem and Hauptvermutung, Ann. of Math. 56 (1952), 96-114.
7. ——, Affne structures in 3-manifolds, VII. Disk which are pierced by intervals, Ann. of Math. 58 (1953), 403-408.
8. —, Affine structures in 3-manifolds, VIII. Invariance of the knot-types; Local tame imbedding, Ann. of Math. 59 (1954), 159-170.

Michigan State University
University of Tennessee

[^0]: Received April 27, 1959. The work on part of this paper was supported by the National Science Foundation Grant G-2793.

[^1]: 1. R. H. Bing, Locally tame sets are tame, Ann. of Math. 59 (1954), 145-158.
