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1. Introduction and main results* This paper is an extension of
previous work on the Holder continuity of two-dimensional mappings.
We shall use the approach of Finn and Serrin1 and prove analogous
results in n dimensions. A two-dimensional quasi-conformal mapping is
one which carries infinitesimal circles into infinitesimal ellipses of bounded
eccentricity. An w-dimensional quasi-conformal mapping carries infini-
tesimal spheres into infinitesimal ellipsoids of bounded eccentricity. Finn
and Serrin gave an elementary proof that a quasi-conformal mapping is
uniformly Holder continuous in compact subdomains and obtained the
best possible Holder exponent. Their proof makes extensive use of the
Dirichlet integral. We obtain similar results in n dimensions using a
modified Dirichlet integral suggested by C. Loewner. It is not clear
whether the n-dimensional exponent is the best possible one.

Let u(x, y) and v(x, y) be continuously differentiate functions in a
domain D of the complex 2-plane. Then the function w(z) = u + iv
represents a quasi-conformal mapping if there exists a constant K such
that

(1) \Pw\2 = ul + u\ + vl + v\ < 2K(uxvy - uyvx) ,

for all points of the domain of definition of w. If K < 1, the mapping
functions are constant; if K = 1, they are conformal. The only case of
interest is K>1. Geometrically, (1) implies that infinitesimal circles
map into infinitesimal ellipses for which the ratio of minor to major axis

> K - Vκ2 - l.
Let / = (ulf , un) be an ^-dimensional mapping of a domain A of

En into En such that / is continuously differentiate, the Jacobian, J,
of the transformation is non-negative and

( 2 ) I Ff |2 = Σ u\ 3<> nKJ2ln , where u, , = dujdxj

and K is a constant holding for all points of the domain A of definition.
If K < 1, the mapping functions are constant, if i f = 1, the map-

pings are the conformal mappings of space. Geometrically the mapping
x-+f(x) is sense preserving and infinitesimal spheres map onto infini-
tesimal ellipsoids. In this paper the norm used is the usual one for En
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1 "On the Holder Continuity of Quasi-Conformal and Elliptic Mappings." Transactions
of American Mathematical Society, Vol. 89, No. 1 (1958), pp. 1-15. See this paper for a
bibliography of previous work.
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and is denoted by \x\.
Finn and Serrin treat a class of mappings which they call elliptic

mappings. This generalization of the notion of quasi-conformal mapping
is due to L. Nirenberg. w(z) is an ellistic mapping if it satisfied the
conditions for a quasi-conformal mapping except that condition (1) is
replaced by

( 3 ) I Vw |2 < 2KJ + Kλ ,

where K and Kλ are constant, K > 1 and Kx > 0. A generalization of
two-dimensional elliptic mappings is obtained by replacing condition (2)
in the definition of ^-dimensional quasi-conformal mappings by

(4) \Vf\n<(nK)n'2J+K1,

where K and Kx are constants, K > 1, and Kλ > 0. Such mappings we
shall call near quasi-conformal mappings.

In two dimensions many important estimates are given in terms of
the Dirichlet integral

I Vw |2 dxdy ,

where Cr is a circle of radius r. We shall find that the appropriate
n-dimensional analog of this integral is

ί
( n )w/2

ΣiKΛ dV,
where Sr is an ^-dimensional hypersphere of radius r. This integral
was suggested by C. Loewner in a paper that will appear shortly in the
Journal of Mathematics and Mechanics.

The proofs of Finn and Serrin make use of Morrey's lemma, which
is based on the usual Dirichlet integral. By means of the modified
Dirichlet integral, an analogous lemma is proved in n dimensions.

For the ̂ -dimensional quasi-conformal mappings and the near quasi-
conformal mappings the following two theorems are proved.

THEOREM 1. Let f be a quasi-conformal mapping defined in a
domain A of En. Assume | / | < 1. Then in any compact subregion B
of A,

( 6 )

where d is the distance from B to the boundary of A; μ — μ(n, K) and
0 < μ < 1 and C = C(n, K), a constant depending only on the dimension
of the space and K. (See equation (12) for definition of μ.)
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THEOREM 2. Let f be a near quasi-conformal mapping defined on
a domain A of En. Let | / | < 1. Then in any compact subregion B
of A

(7) | / ( ^ ) - / f e ) l < ^ l ^ - ^ l %
where H is a constant depending on n, K, K1} and d (d is the distance
from B to boundary of A) and μ = μ(n, K), 0 < μ < 1. μ is the same
constant that appears in Theorem 1.

2 Preliminary lemmas* To generalize the proofs of Finn and
Serrin to n dimensions, several lemmas are needed. They are listed
below and the more difficult proofs are given.

LEMMA 1. The weak Maximum Principle holds for quasi-conformal
mappings, i.e., if f is quasi-conformal in a bounded region A and
continuous in A, then the maximum of the norm (and of the components)
is attained on the boundary A of A. The minimum of the components
is also attained on A. (The proof is the same as in two dimensions.)

LEMMA 2. Let u be a function defined in some domain A. If
u = 0 on Sr where Sr is the surface of a sphere of radius r in A and
n is the dimension of the space, then

(8) [ \u\ndA<Crn[ \ut\
ndA,

where ut is the tangential component of the gradient of u on Sr and C
is a constant depending only on the dimension of the space.

LEMMA 3. For all α, b > 0, λ > 0 and n>2,

(9) ? ί _ _ α ^ 6 J ϊ L < -5L. + xb ,
{n - 1 ) " λ

and the constant of this inequality cannot be improved.

LEMMA 4. Let u be a function defined in a domain A and let
ω ΞΞΞ ω(Sr) be the oscillation of u on the surface of sphere of radius r
in A where n is the dimension of the space. Then there exists a con-
stant C depending only on the dimension of the space such that

(10) ^Λ^ii < C\ \Ut \ndA m

r Jsr

LEMMA 5. Let (aυ) be an n x n matrix with real coefficients. Then
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(11) I det (atJ) I £ - ± - ( ± a],)'" .

The constant in the inequality cannot be approved. (This lemma follow
immediately from the proof of Hadamard's inequality.)

Morrey's lemma in n dimensions. Let B be a closed subregion of
D and let d — distance (J5, D). Suppose there exist constants L, μ, r0,
where 0 < μ and r0 < d, such that for all spheres Sr with center in B,
r < r0,

D(r) = [ \Vf\ndV <

Then / satisfies a Holder condition in B:

C = 1 ( nL \lln(2πC1(n~l)\^-
π^-An-lJ \ μ )

where

μ

and d = Cx(n).

Proof of Lemma 2. Let n > 3. Choose the coordinates such that
u = 0 at the north pole. For given ( 2̂, , ^w_i), let 7̂ m = um(θ2, , ^w_j)

be the maximum of \u\ for 0 < θλ < π. We have u = I ^dfl, which
Jo

implies that

S π ΓΓπ Ίl/nΓfff Jn Π n-1

\uθ\dθ<\\ \uθ \
nrn-' sin— θλdθγ ^ — ~

U o J LJo rsin^θj
by Holder's inequality. Let

J o sin*1-1 ^

C < co. Hence

^ ^ Γ^" 1 sinw"2 θ1dθ1

l ut \
nrn-λ

Now

f. \u\ndA=; r71-1^^ ••• [*\u\n sin"-2 θrfθrfω^
}sv Jo Jo Jo
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rf

Γ(nβ)

Combining the above results

f I un I dA < VTΓ{{n~ 1 ) / 2 } C"-V"(
Js,. P(%/2) JS

Proof of Morrey's lemma. Denote the points xx, x2 by P and 0,

respectively. Let \xλ — x2\ < r0 and let r — \xι — x2\. Let M be a

perpendicular bisector of PQ. Select a point S o n 1 such t h a t P S =

OS < P Q < rβ. Then

/(P)-/(Q)=( Λdr-f /^r

which implies

< ( \fr\dr+\ \fr\dr.
JPS JQS

Hence

S 2π Γπ (*π fπ/3

••• \f(P)-f(Q)\dθ1..-dθr.1
0 JO JO J

W-3

5 i2 Γ2π Γπ Γπ Γτr/3

• ••

o Jo Jo Jo J
So

π71

I Pf \nrn-ι-» sinw~2 ^ sin θ^drdθ, . . d
TΓ^-'LJ^

where

j = f r " 1 + - ^ τ sin-ί-S^)^ s in"^"^^ 2 s i n " " ^ θn-2drdθ1
J5.,

j ^-τr~rl ΊV — 1

where

C . . . gin ̂ ^ sin ι ^ ^ ; ( 9 2 sin ̂ θn^dθλ . d(9w_2 <o Jo
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nrn-ι-*dωn = r-*D(r) ,

n — 1

since by hypothesis

Combining

\f(P)-f(Q) I <

where

C = 3 / nL Y'n(2πC1(n-l)\^
2 πn~' \n~lJ V ^ /

Proof of Lemma 4.2 The surface of the w dimensional hypersphere
of radius r can be mapped onto a n — 1 dimensional hyperplane by a
stereographic mapping. Under such a transformation

= [ \Fu\n~ιdV,
iv

and

f (1 - cos 0J I ut \
ndS =

J^r

where the variables on the surface of the sphere are (θlf θ2, •• ,0n-i),
on the hyperplane are (p, θ2, •• ,^ ra-i), and domains of integration are
mapped onto one another. Hence

\Fu\ndV< [ \ut\
ndS .

v }sr

In the hyperplane

\Vn\n~1dV <\[\Vu\ndV

. I ut

where latter integration is taken over the whole surface of the n di-
mensional hypersphere and

2 The author is indebted to R. Finn for suggesting this proof which strengthens and
simplifies the author's original proof.
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c ? = Γ * *# Γ r ^ i ^ " 3 θ*sinW"4 Θ3 s i n °n-2 d θ , - . . d θ n ^ .
Jo Jo Jo

Hence by Morrey's lemma applied in the n -~ 1 dimensional hyperplane

ωn < Cp\, \ut\
ndS ,

where C is a constant depending only on n. It follows immediately that

\ut\
ndS.

3 Proof of Theorems 1 and 2. The proof of Theorem 2 will be
given before that of Theorem 1, and Theorem 1 will follow as an im-
mediate corollary of Theorem 2. Then an alternate method of proof for
Theorem 1 will be given. This second proof uses a modulus of continuity
instead of Morrey's lemma.

Proof of Theorem 2. It must be shown that it / is a near quasi-
conformal mapping, then D(r) < constant rwμ- for r sufficiently small.
Then the conclusion will follow by Morrey's n dimensional lemma. By
(4)

D(r) < (nK)nl2[ JdV 4- ωnr
nKL .

Jsr

I Jd V — \. uxdu2 dun = I (wA — uλ)du2 dun

•' sr J s.r J
Γ __ d(u2 un) 7
)sr ' l d(82---8n)

where ΰλ is the mean value of ux over Sr, ds2 = rdθ19 ds3 = s sin ^d^2,
ds4 = r sin 0X sin ^2d^3, , and dsn — r sin ΘL sin θn-2dθn-lm Hence by
Lemma 5, Lemma 3, and Lemma 2

JdF< L-^
- 1 ) —

x (. I u - ΰλ I [%llβa + + %ϊ>β + u\,H + . + < β

n-l n-Λ

n-l __ w-ΐ

n r r

where C = C(w) is the constant of Lemma 2. Hence
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f JdV<C'r[. \ft\
ndA,

where

»-l n-ί

c> = (^ - *> * * c ,
n

and finally

C r .

r dr

The Holder exponent μ is defined by the equation

(12) -L = Cnnl2Knl\n -

where C is the constant of Lemma 2.
Combining above results

(13) D{r) <
nμ dr

where ωn is the area of the unit sphere in n dimensions.

Let B be a closed subregion of A, and let d be the distance from

B to A. Let Sr be a sphere whose center is in B. For such a sphere

£(r) < X . - ^ - + αv-lζ , for 0 < r < d.
wμ dr

Hence

( r D ) <
dr

and integrating

(14) 2)(/t>) < {i?(ί) + K2}[^y , p<t<d

where

We now wish to estimate D{t). We know

D(t) < ( n K ) , . , . I Mx I [< f ί + + ul T^dA + r ^ Λ
( » - l ) " ^ J δ
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where

K3 =

We have also used the fact that | / | < 1. The immediately preceeding
result implies

(D(r) - < Kf^r^L ,
dr

for r < d and where K5 = dnωnK19

Now suppose ΰ( ί ) > iΓ5 for some t. Then i)(r) > Kb for all r > t.
Hence

< #(» - D

or

where

^ 6 - X?(w - 1)" .

So

This inequality also holds if D(r) < Kδ.
Now let t = cίe~v where y = 1/w//. Combining (14) and (15) we ob-

tain D(p) < Hρnμ- where H is a constant depending only on n, K, Kly

and d. We can now conclude that for xly x2 e D and | xx — x2 \ < de~v

that \f(xx) — f{x^\<H\xx —x2\
μ. Because of the bound on | / | , we

get a similar result when | xx — x2 \ > de~v.

Alternate proof of Theorem 1. Here we do not use Morrey's lemma,
instead a modulus of continuity on / is obtained in terms of D(r).
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Proof. For any point set T c A, let ω(t) = l.u.b. \f{xx) - f(x2) \
where xx x2 e T. Since / is quasi-conformal, it satisfies the weak maxi-
mum principle. Let Sr be a sphere of radius r such that its center is
at least a distance p from A. Then ω(Sr) = ω(Sr). By Lemma 4,

— — — < C for s < r.
r dr

Hence

ωn(Ss) log ϋ < CDί^) for s < p.
s

This implies

- L log (pis)

where C depends only on the dimension of the space.
D(p) can be estimated by the technique used in the proof of Theo-

rem 2.

D(p) < e(nμy-\nKγ»ωn(n

where e is the base of the natural logs, μ is defined as in proof of
Theorem 2 and p < d*e~v. This is valid for all spheres of radius p
whose centers are at least a distance cί* from A.

Let xλ and x2 be two points in B such that | xx — x2 \ = 2s < de~nv =
de~llιx. The midpoint of the line segment xjc~2 is at least a distance
c£* = d/2 from A. Consequently

for s < p < d*e~*.
Let

p = sβ v

Then

^ 1 2

On the other hand, if | xx — x21 < de"vμ, we again get a Holder estimate
since | / | < 1.

4 Additional results* Theorems 3 and 4 are on removable singu-
larities. The final theorem is concerned with one-to-one quasi-conformal
mappings.
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THEOREM 3. Let f(x) satisfy the hypothesis of Theorem 1 or 2 for
all points x in the domain A except on a set T of isolated points in
A. Then f can be defined at the points of T such that the resulting
function is continuous in A and satisfies the conclusion of Theorems
1 or 2.

Proof. To prove Theorem 3 it is sufficient to show that D(r) exists
and satisfies

D(r) < (nK)nl2\ uτdu2 . . dun + ωnr
nKλ ,

for all spheres whose surface contains no points of T. Then all the
previous statements are valid and hence / satisfies a Holder condition
in B — T. Finally / can be defined on T such that resulting function
is continuous in A and satisfies a Holder condition throughout A.

Let S be a sphere of radius r. Let Sr contain exactly one point x0

of T. Let Sσ be a sphere of radius a with center xQ.

Hence

when

D(σ,r)= \ \Pf\ndV.
JSr-8σ

D(σ, r) < -(nK)n/2[ u,dn2 dun

/ = (nK)n'2\. u,du2 -- du

Hence

(D(σ, r)-I)< KΪ-σ
L da J

which implies

(D(σ, r) - iyέr < κ a

dσ
Suppose D > / for some value of σ, say σ = σ2. Then D > I for all
a < σ2. There we may integrate from σx to σ2 and obtain

l o g ^ 2 < C(n, K)
σ* (D(σ2, r) - iyέr

Let σλ approach zero. A contradiction is then obtained. Therefore
D(σ, r) < I. Let σ approach zero, and we obtain D(r) < I.
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Since there at most a finite number of points of T in any compact
subset of A, the desired result can be obtained.

THEOREM 4. Let f be a continuously differentiable function defined
in the region 0 < \x\ < 1. Suppose that

\Vf\n <(nK)nl2J + K1\x\-nλ ,

where K, Kly and d are constants such that K > 1, Kλ > 0 and 0 < λ > 1.
Also assume uλ = o{\ x\~μ) as x —> 0 where μ = μ(n, if) as defined in
Theorems 1 and 2. T/^e^ w ccm be defined at x = 0 sucfc ίλ,αί ίfee
resulting function is continuous in 0 < | x \ < 1, cmd m αn /̂ closed
subregίon of \ x \ < 1, / satisfies a uniform Holder condition with ex-
ponent μ.

Proof. If Sr is any sphere in | x \ < 1 whose surface does not con-
tain the origin, the D(r) exists and satisfies

(16) D(r) < (nK)n'2[ uλdu, . . . dun +
}sr r

If Sr does contain the origin, then let Sσ denote a sphere of radius
σ and center x = 0.

Then as in proof of Lemma 3,

(17) D{σ, r) < - (nK)nlA u,du2 - - - dun + B ,

where B denotes the right hand side of (16).
By hypotheses

where

ε(|a?|)->0 as | a? | -> 0 .

Without loss of generality we may assume the ε(| x |) is monotonically
increasing.

n n2 Γ f "I n

{D(σ, r) — J)™-1 < (nK)*"-1*] \. uλdu2 dnn »-i

< - C(n, ^
Now suppose D > J for σ = σQ. Then D > J for all # < σ0. Hence
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Integrate from σx to σ2 where σλ < σ2 < σQ,

— [σT - aT] < C(n, K)ε(σ2)(D - J)"^ .
nμ

Let σλ approach zero. Hence

(18) (D - Bf^ < C(n, K)ε(σ)σ-n* .

As in the proof of Theorem 2, the inequality of the hypothesis implies

D - B < -—ML + J<Kl_σn-nX

~ nμ dσ n — nX

It follows that

- jL[cr-^(D(σ, r) - B(r)] < C(n, K, χ,)α-«λ-nμ+»-i #
dσ

Hence, for σλ < σ,

σ^(D(σlf r)~ B) < σ-n\D{σ, r) - B) + C(w, K, X)σn{1-»-λ) ,

and finally

D{σy r)~B> [D(σu r) - B - Cσ^-^σΓ]— .
σnμ.

Let σ < σ0. For fixed σ, σx may be chosen small enough such that

D(σlf r)-B- Cσn{1~^λ)σr > 0 .

For small enough σ this contradicts (16). Hence D(σ, r) < B which im-
plies D(r) < B.

Now proceed as in the proof of Theorem 2. Let B be an arbitrary
compact subregion of | x \ < 1 and let d = distance from B to | x | = 1.
For any sphere with center in B,

nμ dr

This implies

K1r'nμ"ml[ ρ~nλdV=ζ r D ) < K 1 r [ ρ d V
dr }sr n — nX

Integrating from p to d,

ρ-nfίD(ρ) < d~

.Note that D(p) is bounded by

JdV+κ\ p~nλdV
1 js1
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So D(ρ) < constant ρnιί.
By Morrey's n-dimensional lemma, / is uniformly Holder continuous

on B with exponent μ.

THEOREM 5. Let f(x) be a one-to-one quasi-conformal mapping of
I x I < 1 onto | /1 < 1 and such that /(0) = 0. The f can be extended to
a one-to-one continuous mapping of \ x \ < 1 onto | /1 < 1 satisfying
I /(&i) - / ( O \< Hlx,- x2\^ where H = H(n, K) and, μ = μ{n, K).
0 < μ < 1.

The proof of this theorem is an immediate generalization of the
proof of the 2-dimensional theorem of the Finn and Serrin paper. AH
new ideas have already been introduced. Hence the proof will not be
given.

5. Weakened difFerentiability requirements* The previous theorems
remain true if instead of / e C1 and \ /jf\2 < nKJ2ln, f satisfies
( i ) / e C in A, f = (uλ, u2J , un),
(ii) Ui is absolutely continuous in Xj for almost all values of the other

n — 1 v a r i a b l e s i,j = l, * ' , n ,
(iii) the derivatives uitj (which exist almost everywhere by (ii) should

be nth integrable,
(iv) IVf |2 < nKJ2ln almost everywhere or \Vf\n< (nK)nlV + Kλ almost

everywhere.
To prove the above theorems it suffices to show that the following

inequalities on the growth of the modified Dirichlet integral of / remain
valid under the weakened hypotheses

(19)

for p < t < d and K2 = μ K l ωnt
n.

1 — μ

< 2 0 )

for t < d and where

Kβ = ωn{nKf'2(n -

We shall prove (19) in the case where | Vf |2 < nKJ2ln. The other state-
ments are proved in a similar manner.

Let / be approximated in the wth integral norm of its derivative

by a sequence of functions f{h) e C\ Thus ( | F(f -f{h))\ndV and

sup \f — f{h) I approach zero as h approaches zero. For f{h\ (let Jm be

its Jacobian), Q{h) is defined to be \ J{h)dV.
JS
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d V

since | / | < 1. ε approaches zero as h approaches infinity, and

Dw{r) = [ \Γfw\*dV.

Hence

Let Λ approach infinity. Thus

λ) -

λ) - D(r)] ,

where

Q(p)=\ JdV.

We know | Ff |2 < nKJ2ln almost everywhere. Hence

Z>(r) < (nK)nl2Q(r) .

Therefore

X) -

Let

F(r) =

Then

which implies

So

U r + λ

=r < C(n, Kf^{r + λ)F'(r)
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which implies

d r <X^C(nK) d F

(r + λ )

Hence

_ C(n,K)

Let λ approach zero and we obtain the desired inequality.

6 Improvement on Holder exponent.

LEMMA 6. If

\Ff\2<nKJ*'n ,

then

\fXi\»£C»ι*\Γf\»,

where

c _ K(n - iγln - λ
(1 - \)»K(n - iγln '

for any such that 0 < λ < 1.

Proof.

n~\λ\ Σ uO

since

Because

α1/w6"^~" < λ"-^ + Xb for 0 < λ < 1 ,
(n - 1)~

I Ff I2 < nKJ*" < nK\ fXl \^(n -

<κ(n-iyi'ί[χn-1\fx\
1 + :

1 J-2
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Hence

\f I 2 < (K(n ~~ 1 ) 2 / W ~~ ̂ ) \[7f |2

'^ X l 1 " (1 -Xn)K(n- 1) 2 / J '

A simple calculation shows that there is exactly one value of λ
between 0 and 1 which will minimize C(λ). To find the value of λ,
solve the equation

(n - l)Xn - nK(n - lf^X"-1 + 1 = 0 .

The Holder exponent μ of Theorem 1 and Theorem 2 is not the
largest exponent that can be obtained. In the proofs of Theorem 1 and
Theorem 2 if Lemma 6 were used, the size of μ would be increased.

The constant of Lemma 2 also determines the size of μ. We con-
jecture that the best constant for this lemma is 1, i.e.,

(21) [ \u\ndA < rn\. \ut\
ndA if \.udA = 0.

Js

r Js

r JSr

This is true if n = 2 for then the inequality is Wirtinger's inequality.
If (21) is true, then μ could be defined by the equation

V ; μ L 1 - X n J V J

where λ is the root between 0 and 1 of the equation

(n - l)Xn - nK(n - l)2/wλw/1 + 1 = 0 .

We further conjecture that this value of μ will be the " b e s t " that can
be obtained for given K.
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