
BOUNDS FOR THE EIGENVALUES OF SOME

VIBRATING SYSTEMS

DALLAS BANKS

1. Introduction, If a string with a non-negative integrable density
p{x), x 6 [α, δ], is fixed at the points x — a and x = 6 under unit tension,
then the natural frequencies of the string are determined by the eigen-
values of the boundary value problem

(1.1) y" + μρ(x)y = 0 , y(a) = y(b) = 0 .

Indicating their dependence on the function ρ(x), we denote these eigen-
values by

(1.2) μdp] <μΛp]< •••

We consider the set of all such strings which have the same total

S b

p(x)dx. It is well known [5] that the eigenvalues (1.2)
a

satisfy the inequality

^ y »=1,2, ,

with equality when a mass of amount M/n is concentrated at the mid-
point of each of n segments obtained by partitioning the string into n
equal parts. If we place some restriction on ρ(x) which prohibits such
an accumulation of mass, then we can expect to get a larger bound than
that of (1.3). M. G. Krein [8] has found that when 0 < ρ{x) < H<oo, the
eigenvalues (1.2) satisfy the inequalities

(1.4) M^χ( M_) < μ Λ p ] <

where X(t) is the least positive root of the equation

1 - t

The inequality (1.4) is sharp and as H—> oo, the lower bound approaches
that of (1.3).

In this paper, we investigate the nature of the density functions
for which the greatest lower bounds of the eigenvalues (1.2) are attained
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440 DALLAS BANKS

when other restrictions are placed on p(x). For convenience, we may
consider the eigenvalue problem

(1.5) u" + Xp(x)u = 0 , u(0) = u(l) = 0 ,

where p(x) = (b — a)p[(b — a)x + a], xe [0, 1], instead of (1.1). We note

that I p(x)dx = M. Denoting the eigenvalues of (1.5) by
Jo

\[P] < λ a[p] < ••• ,

we see t h a t

(1.6) KIP] = Φ - a)μn[p] .

We shall be concerned with determining bounds for the eigenvalues
of the differential system (1.5) under various types of restrictions on
p(x). The principal restrictions we shall consider are:

(a) p(x) is monotone in [0, 1],
(b) p(x) is convex, i.e., p(x) satisfies the inequality

/γ ____
2

where x1 and x2 are any two values such that 0 < xλ < x2 < 1.
(c) p(x) is concave, i.e., — p(x) is convex.

These properties are invariant under the linear transformation used to
obtain (1.5) from (1.1) so that p(x), xe [α, 6], will have the same proper-
ties as p{x). Hence, no loss of generality is involved in using the system
(1.5).

In § 2, 3 and 4, we obtain sharp lower bounds for \ [p] in these
three cases. For the higher eigenvalues we are able to obtain only
general information concerning the density distributions which give the
lower bounds. The ideas used also lead to results in the case of the
more general Sturm-Liouville system

( l β 7) [r(x)ur] + [λp(x) - q(x)]u = 0 ,

w'(O) - h0u{0) = u'(ΐ) + M ( l ) = 0 ,

where p(x) and q(x) are non-negative integrable functions, r(x) e C" is
positive and hQ > 0, hx > 0. In § 5, we obtain results under various as-
sumptions about p(x) and q(x).

In § 6, we consider the vibrating rod of variable density and with
clamped ends. The results we obtain are directly analogous to those
obtained by Erein and to those derived in § 2, 3 and 4 for the first eigen-
value of (1.5). In § 7, we obtain results for the first eigenvalue of a
membrane with fixed boundary in the case of bounded densities and in
the case of concave densities on a convex domain.
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The central idea used in finding lower bounds of λL [p] is the following.

LEMMA 1.1. If p(x) of (1.5) can be expressed as

(1.8) p(x) = \κ{x, t)g(t)df(t)
J

where
( i ) f(t) is a monotone increasing bounded function,
(ii) g(t) is non-negative and continuous,

(iii) K(x, t) is non-negative and \ K(x, t)dx = 1,
Jo

then

(1.9) \\p] > [[p{x)dxVg. 1. b. X^Kix, ί)J .
Do J teίo, i]

We use the fact that λj. [p] is the minimum of the Rayleigh quotient
[4]

[\u'(x)]2dx
_ Jo(1.10) J(p, u) f1

I p(x) [u(x)fdx
Jo

where u(x) ranges over all functions, with piecewise continuous first
derivatives in [0, 1], which satisfy the conditions u(0) = ^(1) = 0. In view
of (1.8), we have

m1K(xyt)g(t)df(t)~]u2dx
^ L /,j - xx,uΛ °- J .

I IΛJ iΛ/tλy

Jo

By the properties (i), (ii) and (iii) all terms are non-negative. Inter-
changing the order of integration, we find that

(l.ii) max
[κ(x, t)w
h_

[uf2c
Jo

'dx

2dx
L Jo

We note that

\ 1KXx t} u^dx

(1.12) λf1 [K(x, ί)l = max J ί —
u'2dx

Jo

Hence, (1.11) and (1.12) yield
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(1.13) λΓ1 [p] < [g(t)df(t) l.u.b. λ;1 [K(x, ί)] .
JO ί 6 C 0 , l ]

From (1.8) and (iii), we have

[p(x)dx = [g(t)df(t) .
Jo Jo

Hence (1.13) is equivalent to (1.9).

If the density p{x) is normalized so that \ p(x)dx = 1, then (1.13)
Jo

reduces to

\[P] >gΛ.b.\lK(x,t)].
te [o, i]

To obtain results for the higher eigenvalues of (1.5) we use another
approach.

LEMMA 1.2. Let p(x) and q(x) be non-negative integrable functions
defined for x e [a, b] and let f(x) be non-negative, continuous and mono-
tone increasing in [α, 6]. Let ce(a,b) be such that p{x) > q(x) for
x e [α, c) and p(x) < q(x) for x e (c, 6], Then

(1.14) \bp(x)dx = \bq(x)dx
Jα Jα

implies that

(1.15) \bp(x)f(x)dx < [\{x)f{x)dx .
Jα Jα

If f(x) is monotone decreasing, then the inequality is reversed.
By (1.14) we have

(1.16) \°[q(x) - p(x)]dx - \b[p(x) - q(x)]dx .

But [p(x) — q(x)] > 0 for x e [a, c) so that the generalized mean-value
theorem gives

(1.17) \\p(x) - q(x)]f(x)dx = Λx^Mx) - q(x)]dx
Jα Jα

for some xx e (a, c). Similarly, we have

(1.18) ^\q(x) - p(x)]f(x)dx - f(x^\q(x) - p(x)]dx

for some x2e (c, b). For a monotone increasing/(ίc), we have f(x^) </(ίc2)
so that (1.16), (1.17) and (1.18) imply

\°[p(x) - q(x)]f(x)dx < \\q(x) - p(x)]f(x)dx .
Jα Jc



BOUNDS FOR THE EIGENVALUES OF SOME VIBRATING SYSTEMS 443

q(x)f(x)dx and l p{x)f(x)dx to both sides, we obtain the desired
α Jc

result. If f(x) is monotone decreasing, it is clear that the inequality
has to reversed.

M. G. Krein has proved the following result which we will find use-
ful. [8]

LEMMA 1.3. Consider a family of density functions p(x) on [0, 1]

such that 0 < p{x) < H < OD and \ p{x)dx = M. Let μ = g. 1. b. μ^pix)]
Jo

where the greatest lower bound is taken over this family. Then there
is a function pQ(x) in this family such that μ = λiLPol

K r e i n ' s proof a l so h o l d s for λ w [ p ] , n = 2, 3, •••, a n d for t h e s u m

2. Monotone densities* We first consider the system (1.5) when
p(x) is a monotone increasing function. We have the following result.

THEOREM 2.1. Let XL[p] be the lowest eigenvalue of a string of
unit length with fixed end points whose density is an increasing func-
tion p(x). Then

\[p]\ p(x)dx > λ0

Jo

where λ0 = 7.88 . The inequality is sharp and equality is attained
for a string whose density is the step function

(2.1) H(x, to) = I
ι ( l - ίo)-1, a? e [ί0> 1] ,

where t0 = 0.357 . .
Since p{x) is a positive, monotone increasing function, the Stieltjes

integral

P(x) ~ Pφ) = \Xdp{t)
Jo

exists for xe[0, 1] except when \iτnx_ylp(x) = + oo. Even in this case
the equality holds in a limiting sense. If we let

, 0 < t <x< 1 ,

then we have

p(x) == I h(x, t)dp(t)
Jo



444 DALLAS BANKS

wherever p(x) is continuous. Here we have replaced the original value
of p(x) at x = 0 by p{0) = 0; evidently this does not change our result.
Since p(x) is monotone, the set of discontinuity points is of zero measure.
Hence, for purposes of integration, we may take the above equality to
be true everywhere. If we let H(x, t) = h(x, t)(l — ί)"1, we have

(2.2) p(x) = [H(x9 ί)(l - t)dp(t) .
Jo

By Lemma 1.1, we then have

te[o,i]

We find the values of t for which the greatest lower bound is at-
tained by solving for λjiί(x, £)] explicitly. If we solve (1.5) in the
interval [0,1] with p(x) replaced by H(x, t) we find that over the interval
[ί, 1], u(x) must satisfy the differential system

(2.3) u" + —^—u = 0, tu\t) = u(t), u(l) = 0 .
-L — u

The eigenvalues of (2.3) will be equal to Xn[H(x, t)], n — 1, 2, •••. The
eigenfunctions of (2.3) are

un(x) = sin znx + tan tan" 1 tZn — tZn [cos zw£ ,

n = 1, 2, , where zn — l / λ n ( l — £) is the wth positive roots of

(2.4) t a n ^ __. —t ^
2 1 — t

Hence, the eigenvalues are

(2.5) K[H(x, t)] - - ^ - , w = 1, 2, ,
1 — t

To find the value of t which minimizes Xn[H] = λn[£Γ(aj, ί)] we re-
place (2.4) by

(2.6) (1 - t) sin z + tz cos z = 0 .

This has the same positive zeros as (2.4). Since sin z and 2 cos z are
positive for 0 < z < τr/2, (2.6) has no positive zeros in this interval for
£e[0, 1]. Over the interval [ττ/2, π), sin 2 is positive while z cosz is
negative for se(τr/2, π]. Therefore, for ίe(0, 1), the left side of (2.6)
is positive at z = π/2 and negative at 2 = TΓ. Hence, (2.6) has its first
zero in the interval [τr/2, TΓ]. In fact, only the first one lies in this inter-
val. For if we denote the left side of (2.6) by F(t, z) then
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Fa{t, z) = cos z — tz sin z

is negative so that for a particular value of t e (0, 1), F(t, z) is monotone
decreasing and hence has only one zero for ze[π\2, π]. By (2.6)

(2.7) dZl - ~~Zι

dt 1 - t + t*z\

From (2.5), we have

/o Q\ CLAJ} ill J Z1 o Cf/Zι I Zγ

di l-ti'dΓ 1 - ίJ "

If we evaluate this at £ = 0, we find dλ 1 /dί | t s . 0 = — π2. Furthermore,
since s^ί) is finite, (2.4) implies that \[H] —> +°° as t —* 1, so that λ j i ϊ ]
has a minimum at some t0 e (0,1). Since we are considering only the
first zero, zL(t), we will drop the subscript and write z(t). At ί0 we must
have dλi/dί | e. ί Q = 0 so that (2.8) implies

_ 1 z{t0)

From (2.7) we find that z(t0) = s' must satisfy

-z* 1 z'

1 - ί0 + tfca 2 1 - t0

If we solve for —to(l — £0)~\ it follows from (2.4) that

3 r t a n s r = -ίo"1 .

Eliminating ί0 between this and (2.4) we find that z' must satisfy

(2.9) tan 2s' = 2s' .

The first zero of this equation is z' = 2.25. Hence, from (2.4) we find
t0 = .357- -Now (2.9) has only one zero for s e [ττ/2, π] so that Xχ[H] has
only one relative extremum for t e (0,1). But we know there is a minimum
so that t0 must be the value of t which minimizes λj f f] . From (2.5) we
find this minimum to be approximately 7.88.

It does not appear possible to obtain lower bounds for the higher
eigenvalues by the exclusive use of Lemma 1.1. We can, however, ob-
tain a bound for the sum Σ ϊ - i ί ^ * 1 ^ ] ) with the help of a theorem of
Courant [5], according to which

I p(x)vl
n Jo

ΣTΓ7
J

vt2rlr
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has the maximum ΣS-iί^ *1^]) if the vk, k = 1, 2, , n, range over all
systems of mutually orthogonal functions with piecewise continuous de-
rivatives in [0,1] such that vk(0) = vk(l) = 0.

THEOREM 2.2. Lei λΛ[p], k = 1, 2, , w, δe ίλβ yϊrsί w eigenvalues
of a string of unit length with fixed ends whose density is an increas-
ing function p(x). If Xk[H(x, t)]9 k = 1, 2, , n, are the first n eigen-
values of a string whose density is the step function defined by (2.1),
then

\\1p{x)dxΎ1 Σ λr t
LJo J fc-i

x, t0)]

where H(x, t0) is the step function (2.1) and t0 is a suitable value in
[0,1].

Evidently, the inequality is sharp.
By Courant's theorem, we have for the eigenvalues of the system

(1.5)

Σ λ;:1 = max
n \ p{x)v\dx
V Jo

vndx

for suitable vk. Using (2.2) and changing the order of integration we
have

Σ λfcx = max ~ t) Σ
fc

)v\dx

Ί
Jo

v'Mx

Since all the factors are positive we find

n [H(x,t)vl
V Jomax

v
Jo

Again by Courant's theorem, we get

Σ λ*"1 < Γ(l - ί)j Σ [UH(x, ί]-1 Up(t) ,
fc = i Jo I fc = i

so that, as in the proof of Lemma 1.1, we have

fc = i ί e [ o , i ] fc = i

We found in the proof of Theorem 2.1, that λx[iϊ(x, t)] becomes infinite
as t—>1. Hence, ΣLi[λfc[iϊ(^, ί)]]"1 approaches zero as ί—»1. Thus,
there is a number δ > 0 such that t > 1 — δ implies that
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l.u.b. Σ [λjtf]]" 1 > Σ [\[H(x, ί)]]-1 .

But for t e [0,1 — δ], H(x, t) is uniformly bounded. Hence, Lemma 1.3
implies the desired result.

While it seems to be difficult to obtain exact numerical bounds for
the higher eigenvalues of the system (1.5), when p(x) is monotone, it is
possible to give a geometric characterization of the function p(x) which
corresponds to the minimum value of λw[p].

THEOREM 2.3. Let Xn[p] be the nth eigenvalue of a string of unit
length with fixed ends whose density is a monotone increasing function
p(x). Then there is a string with the same total mass whose density
is a monotone increasing step function q{x) with at most n jumps such
that

(2.10) λjp]>λjg],

where Xn[q] is the nth eigenvalue of the string with density q(x).

Let un(x) be the nth eigenfunction of (1.5) corresponding to Xn[p].
It is well known that un(x) has exactly (n + 1) zeros in the closed in-
terval [0,1]. We denote these zeros by

x0 = 0 < xλ < x2 < <xn-λ < xn = 1 .

In each open subinterval {xk, xk+1), un(x) has only one maximum or one
minimum so that u\{x) has a maximum there. We denote these n maxi-
mum points by xx < x2 < < xn.

We will show presently that it is possible to construct a function
q(x) in such a way that over each of the intervals (xk-lf xk), (xk, a?Λ), & =
1,2, •• ,n,q(x) and p(x) are related as indicated in Lemma 1.2. By
Lemma 1.2, we will then have

p(x)u2

n(x)dx < \ q(x)uA

n(x)dx , k — 1, 2, , n ,

and

_ p(x)ul{x) dx < \ q(x)ul(x)dx , k = 1, 2, , n .

Upon adding these inequalities, we get

S xk ΐxk

p(x)ul(x)dx < \ q(x)u2

n(x)dx , k — 1, 2, , n .
xk-l Jχk-1

If we fix the string at the nodal points xk, k = 0, 2, ,n, then it is
known [5] that



448 DALLAS BANKS

I k p(x)u\dx

By (2.11), we have

ut2dx
k = 1, 2, , n

S xfc

X f c - 1

>2dx
> £_i > mm

q(x)u2

ndx ue0' \ k q(x)u2dx
i J χ

f c -i

where w(a?fc) = 0, k = 1, 2, , n. In particular, Xn must satisfy

w > max min
)u2dx

But the quantity on the right is greater than the nth. eigenvalue Xn[q\
of a string with density q{x) so (2.10) will hold (See [5]).

It remains to be shown that there exists a function q(x) of the de-
sired form.

We first consider the intervals (xkf xk], k = 1, 2, , n. Here we set

_ p(x)dx = ak , fe = 1, 2, , n .

xk

Since p(a ) is monotone increasing, the hypothesis of lemma (1.2) is ob-
viously satisfied. For the intervals (xk-19 xk), we choose a point tk e
[^-1, xk] such that

5 χk

p(x)dx - ak^(xk - x^)
X f c - 1

k = 1, 2, , w, where we take α0 = 0 and set

fc = 1, 2, , n. By the definition of the αfc's, p(x) > ak-lf x e [xk-lf tk)
and p(x) < ak for x e [ίfc, xfc) so that the hypothesis of Lemma 1.2 is
again satisfied. Thus, the function q(x), x e [0, 1] may be taken to be

q(x) = ak, x e (tk, tk+1) , k = 0,1, 2, ., n ,

where we let t0 = 0 and £n+1 = 1. This proves the theorem.

3 Convex densities* We now turn to the consideration of (1.5) in
the case where p(x) is convex. We have the following theorem.
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THEOREM 3.1. Let \[p\ be the first eigenvalue of a string of unit
length with fixed ends whose density is a continuous convex function
p(x). Then

λ f /yil 1 /γ\(/y\/Ί/y» ^> Λ

Jo

where λ0 = 9.397 . The inequality is sharp and equality is attained
for a string whose density is the piecewise linear function

0 , x 6 [0, ί0] ,

(3.1) G(α, «o)= 2

 x~ ** χe\t 1]
( l - tQy'

where tQ = 0.104 .
We first note that any positive convex density p(x) may be written

as the sum pλ(x) + p2(x) where p£x) is a positive monotone increasing
convex function and p2(x) is a positive monotone decreasing convex func-
tion. In particular, we may define pγ(x) such that p^O) = 0 and p2(x)
such that p2(ί) = 0. If ξe [0,1] is a minimum point of p(x), it is easily
confirmed that the functions

, , \v(ξ)χ , ^€[0,^1 ,

(p(x) ~ p(ξ)(ί - x) , a e [£, 1] ,

and

p2{x) ~ ]

(p(|)(l — a?) , xe[ξ,l] ,

have the required properties.
We may thus express p(x) as p(x) = αpx(x) + βp2(x)f where Mα —

^(ίcjdαj, Λf/9 = I p2(x)dx, px(x) — pL(x)lct and p2(x) = p2(x)lβ From the
.. o Jo

Rayleigh quotient we then have

(3.2) X^[p] = max

< max a[J(p19 u)]~λ + max /5[J(p2 u)]-1 .

Let λjfpj and λi[p2] be the first eigenvalues of strings with fixed end
points and densities pλ{x) and p2(x)(x e [0, 1]) respectively. Then, from
(3.2),

\[p] > minίλitpj, λjp]) .
( 1 , 2 )

Because of the symmetry of the boundary conditions u(0)==^(l)==0,
it is obvious that the bound for Xλ[p] in the case of monotone increasing
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p(x) is the same as that for monotone decreasing p(x). Hence, we need
only consider monotone increasing functions. Furthermore, as shown
above, we may assume that p(0) = 0.

Now set

0 , α e [ 0 , t ] ,

x — t , xe[t,l],

where ί e [0,1]. We first assume that the increasing function p(x) is
bounded and that the left-hand derivative pL{x) is bounded for xe[0f 1].
It then follows from integration by parts and the fact that

for such a function p(x)[13], that

p(x) = p>_(0)χ + [1g(χi t)dpL(t) .
Jo

If we set G(x, t) = (2/(1 - t)*)g(x, ί), we have

p(s) = [G(x,t)[ll2(l-tγ]dpL(t).
Jo

Here we have replaced the original value of p'_(x) at x = 0, by p'_(0) = 0;
evidently this does not change our result. By Lemma 1.1, we then have

(3.3) \[p] > g. 1. b. λJGfc, ί
βeco.1]

If p(x) or its left derivative is not bounded in [0, 1], we may consider
the system

(3.4) u" + Xp(x)u = 0, u(0) = u(l - ε) = 0

where ε > 0 is arbitrarily small. In the interval [0,1 — ε], p(x) and p'-(x)
are bounded, so transforming the system (3.4) to the unit interval we
find, by (3.3), that

(1 - ε)X1[pl\1~Sp(^)dx > g. 1. b. \[G(x, t)] ,
Jθ ί€[0,l]

where λx[p]ε is the first eigenvalue of (3.4). Since ε is arbitrary and the
eigenvalues are continuous functions of the length of the interval, it
follows that (3.3) holds for any increasing convex density p(x).

To find the values of t for which the greatest lower bound of Xλ[p]
is attained, we employ a procedure similar to that used in a correspond-
ing situation in the proof of Theorem 2.1. Our problem is then seen to
reduce to the computation of the lowest eigenvalue of the system
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9Λ
(3.5) u"(x) + —^—-{x - t)u{x) = 0, tv'it) = v{t), v(l) = 0 .

(1 t)

The eigenfnnctions of (3.5) are [7J

- ί

where J±(1/3)(ί/) are Bessel functions of order ±1/3 and zm=(2/3)l/2λ(l — ί)" 1

is the nth. positive root of

(3.6) (1 - O^Dd-)"1 '/,^) + ίr(|)(|)1/3J_1/3(2) = 0 .

Hence, the eigenvalues of (3.5) are

(3.7) λn[G(s, t)] = _ p — , n = 1, 2, • .

We denote the left side of (3.6) by F(t, z). To find the value ί0 which
minimizes λx[Gl, we must investigate some properties of this function.
The first positive zeros of J^z) and J"-1/3(2) are ξQ = 1.87 and ξx = 2.90,
respectively [9]. In (0, £0), F(0, z) and F ( l , 2) are positive. Hence, F(t, z)
has no zeros in this interval for t e (0,1). In [ξ0, ξx), F(0, z) is positive,
while F(l, z) is negative in (ξ09 £J. Accordingly, for t e (0,1), F(t, ξQ) is
negative while F(t, ξx) is positive. Hence, F(t, z) has its first zero in
(|0> | j). Furthermore, there is only one zero in this interval for a given
value of t, since

-F.(t, z) = (1 - ί)Γ(4/3)(^/2)-1/3J4/3(^ + ίΓ(2/3)(^/2)1/3

β72/3(^) ,

and it is known that each of the terms on the right side is positive for
s € (lo> £1). Thus, for a given t, F(t, z) is monotone decreasing over this
interval and thus has only one zero there.

Since we are considering only the first zero zλ(t), we will drop the
subscript and write z(t). We have

ί 3 8 ) dz_ =

dt (

and by (3.7),

(3 9) d\[G] = 9̂ ; Γgdg , g 1
dί 8(1-t) I dt 1 - ίJ "

If we evaluate this at i = 0, we find (dX^G^jdtl^ = -1.38. Further-
more, since g(ί) is finite for all ί e [ 0 , 1], (3.7) implies that for t—•> 1,
^i[G] - ^ + ω so that Xi[G] has a minimum at some value t0 e (0, 1). At an
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extremum V of λx[G] we must have {dX^(J\)\dt\v = 0, so that (3.9) implies

(3.10) ^ 7dt 2 1 - t '

If we substitute (3.8) into (3.10) and then eliminate V between this
result and (3.5), we get

where z' = z(t'). If we use the relations [7],

Jφ(x) = (1/3) (x/2)"1^^) -

i i * ( ) > ι > ( ) + Φ ( ) 2 l 5 ( )

and

l ) Γ ( l
we finally arrive at the equation

Γ ( l ) Γ ( l ) = π / s i n 7 r / 3 '

We show that this equation has only one zero in (ξ0, ξ^, i.e., that
\[G] has only one extremum for t e (0, 1). This will be the case if the
derivative of the expression on the left of (3.11) is of one sign for
z' e (ξ0, £i) The following statements relate to this interval.

( i ) [Γ(2/3)(«72)1/3J-.1/3(ί2')]» is negative and decreasing.
(ii) -(2/3)Γ(4/3)(2;72)-1/3/1/3(^), is negative so that the quantity in

the second bracket also is negative.
(iii) The second bracket is decreasing.
The last statement requires verification. The derivative of the

quantity in question is

(iii) will be verified if we show that

(3.12) J f f l g (z'l2ΓJ^(z') - Jφ(z') > 0 ,
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for z e (£<,, ξx). Since

A-(zl2f'*J2l5(z) = {zβψtJ^lz) < 0 ,
dz

we have

Furthermore maxξ ( )<,<ξ ι !/4 l^) < .52. Evaluation of (3.12) then gives the
desired result.

We thus conclude that the left-hand side of (3.11) is increasing and
hence, that XL[G] has only one extremum for te(0, 1). But we know
that there is at least one minimum so that it must be determined by
(3.11), i.e., t0 = V. From (3.11) we find by Newton's method that
zv(Q = 2.73 so that t0 = .104-••. Therefore, we find that

Xλ[G(x9 t)] > X^Gix, t0)] = 9.397-.. .

Corresponding to Theorem 2.2, we have the following.

THEOREM 3.2. Let Xk[p], k — 1, 2, « , n be the first n eigenvalues
of a string of unit length with fixed ends whose density is a continu-
ous convex function p(x). If Xk[G(x, t)}, k = 1, 2, , n are the first n
eigenvalues of a string whose density is the convex increasing function
G(x, t) defined in (3.1), then

ϋ p(x)dxΎ1 Σ \?[p] < v χ-ι[G(x, Q]

where t0 is a suitable value in [0, 1],
Evidently, the inequality is sharp. The proof has the same formal

relationship to that of Theorem 3.1 as the proof of Theorem 2.2 had tc
that of Theorem 2.1. Since no additional ideas are involved, we omϋ
the proof.

Theorem 3.1 can be used to obtain an explicit lower bound for the
second eigenvalue X2[p] of the system (1.5) when p(x) is convex.

THEOREM 3.3. Let X2[p] be the second eigenvalue of a string with
convex density. Then

X2[p]\ p(x)dx > 4λ0 ,
Jo

where λ0 is the value defined in Theorem 3.1. This inequality is shar%
and equality is attained for a string with density q(x) where

|G(1 - 2a?, ί0), x e [0, 1/21 ,

~Ί~lyt0)fxe [1/2,1] ,
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G(x, t) and t0 being defined as in Theorem 3.1.
Let u2(x) be the eigenfunction corresponding to X2[p]. Then u2(x)

has exactly one nodal point xx e (0,1). If we hold the string fixed at
this point, we get two independent strings, each of which has the lowest
eigenvalue X2[p]. By Theorem 3.1 and equation (1.6), the lowest eigen-
value of a string with a convex density satisfies the inequalities

(3.13) X2[p] > —-h = μ>
xλ p(x)dx

Jo

and

(3.14) X2[p] > ^ = μt*.
(1 — xM p(x)dx

We may take the density function for which the bound in (3.13) is
attained to be

p(x) = CXG(^^ , ίo\ x e [0, x,] ,

V xλ /

p(x)dx = I p(x)dx. For the second segment the
o Jo

bound is attained for the density function

p(x) - βθ(^-^ , ίo\ x 6 [χ19 1]

V 1 — x λ I

p(x)dx = \ p(x)dx .

xχ Jo

Now, consider a string whose density function is defined by piecing
together the above densities at xλ. This particular choice of p(x) then
gives us a convex function. The second eigenvalue λ2[p], of the result-
ing string satisfies the relationship X2[p] < max (//, //'). Hence, (3.13)
and (3.14) imply that

(3.15) X2[p] > X2[p] ,

where X2[p] is the second eigenvalue of

(3.16) u" + Xp(x)u = 0, u(0) = ^(1) = 0 .

We now consider this system with p(x) replaced by

q(x)

Xγ



BOUNDS FOR THE EIGENVALUES OF SOME VIBRATING SYSTEMS 455

where a and β are now determined by the conditions \ q(x)dx = M, a>
. 0

0, β>0 and where x1 e [0, 1] is a free parameter. It is clear that g.l.b.(αί β x)

ί
χ i _ Γ1 _

q(x)dx so that I q(x)dx =
0 _ J?l

(1 — #)M. We now show that smallest possible value of X2[q] is attained
when xx = 1/2 and 6> = 1/2.

Let X2[q] = X2(x19 θ). We first show that MX2(x19 6>)>4λ0 if xγ e [0, 1/4)
or ^6(3/4,1]. Assume xι e [0, 1/4) and consider the case where x[, the
nodal point of the eigenfunction corresponding to X2(x19 θ)9 lies in the
interval [0,1/4). If we hold the string fixed at x[, the resulting segments
each have a lowest eigenvalue X2(xlf θ). In particular, X2(xlf θ) is the
lowest eigenvalue of the segment [0, x[]. By Theorem 3.1 and equation
(1.6), we have

x[\
x'q(x)dx X'M

JO

But x[ < 1/4 so that MX2{xl9 Θ) > 4λ0. It follows in the same way that
if #[€(3/4, 1] then \2(xl9 Θ) > λo(l — x[)~λ-M-1 and hence we again have
M\(x19 6>)>4λ0. Similarly if xλ e (3/4, 1] we conclude that MX2(xlf <9)>4λ0

so that this inequality holds unless xx e [1/4, 3/4].
Hence, we consider the system (3.16) with q(x) in place of p(x) where

#! e [1/4, 3/4]. With xx restricted in this manner, it follows that the
family of density functions q{x) is bounded uniformly. Hence, by Lem-
ma 1.3, there are value x\ and θ° such that X2(x°19 θ°) = min^eXata?!, θ] for
some density q°(x).

We first note that x\ must be a nodal point of the corresponding
eigenfunction, for otherwise we could hold the string fixed at the nodal
point and find another density which would give a lower second eigen-
value by the process which was used to obtain (3.15).

Thus, the lowest second eigenvalue is given by

Solving for θ\ we find θ° = l-x°ly so that X2[x°lf θ°] = λo/(^(l - x°)). This
is obviously smallest when x\ — 1/2, so that θ° = 1/2. By (1.15) we then
have the desired result.

We now consider the higher eigenvalues of the system (1.5) when
p(x) is convex. Unfortunately, we cannot use the technique just de-
scribed for X2[p]f since the resulting function will, in general, not be
convex. It is, however, possible to obtain a geometric characterization
of the extremal density.
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THEOREM 3.4. Let Xn[p] be the nth eigenvalue of a string of unit
length with fixed ends whose density is a continuous convex function
p(x). Then there is a string with the same total mass whose density
is a pίecewise linear convex function q(x) with at most n + 1 distinct
linear segments such that

where Xn[q] is the nth eigenvalue of the string with density q(x).
Let un(x) be the nth eigenfunction of (1.5) when p(x) is convex.

As in the proof of Theorem 2.3, we use the fact that Xn = J(p, un),
where J(p, u) is the Rayleigh quotient (1.10). If we construct a func-
tion q{x) such that the inequality (2.11) is satisfied, then it follows as
in the proof of Theorem 2.3 that Xn[q] < Xn[p] Hence, it remains to be
shown that such a function q(x) exists.

We begin by carrying out a preliminary construction. As in Theorem
2.3, we denote the minimum points of u/n{x) by xk, k — 0, 1, , n, and
the maximum points by xk, k = 1, 2, , n. We consider each of the
intervals (xk-ιy xk)k = 1, 2, , n separately. Let a(x) be any linear func-
tion such that a(x) < p(x), x e [xk-lf xk]. Then r(x) — max[a(x), 0] satis-
fies the inequality 0 < r(x) < p(x).

We now consider one of the intervals, say (xk-lf xk), where l<k<n.
Let ck be any number such that ck > p(xk). Then there is a number ak

such that

(3.18) y [ak(x - xk) + ck]dx = y p(x)dx .

If ak(x — xk) + ck > r{x)y x e [xk-lf xk], then we define

9*fa, ck) = ak(x - xk) + ck, x e [xk-19 xk] .

If ak(x — xk) + ck < r(x) for some xe [xk-19 xk], we determine ak by the
condition

(3.19) \ k r(x)dx + \ k

f[ak(x - xk) + ck]dx = \ k p(x)dx ,
Jχk-1 ^xk JχJc-l

where xk is such that ak(xk — xk) + ck = r(xk). We then define

\r(x) , x e [xk.lf x'k] ,

[ak(x - xk) + ck, xe [x'k, xk] .

Likewise, we find bk such that

(3.20) \^[bk(x - xk) + ck]dx = \**p(x)dx .
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If bk(x — xk) + ck > r(x), x e [xk, xk\> we define

K(%, ck) = 6Λ(& - £fc) + ck, a; e L̂ fc, αΛ] .

If 6fc(cc — ά?fc) + cfc < r(as) for some xe[xk, xk], we determine bk by the
condition

(3.21) Γfc [6s(a? - άfc) + ck]dx

J xfc

where xk satisfies bh(x" — a?Λ) + ck = r(cCfc), and define

7 , , f&fc(̂  - »*) + cfc , a; e [xk, x'ζ\

We may consider alύ and 6/, to be functions of c/c, where clc > p(x,c).
In fact, they are continuous functions for any finite ck, since a small
change in c!ύ can cause only a small change in either ak or bk. We want
to show that there is a value of ck, say c'k, such that ak = bk, i.e., such
that ak — bk = 0 for cfc = c'k. If cfc = ί?(»Λ), the convexity of p(x) implies
that the corresponding value of ak — bk is non-positive. Furthermore,
for ck sufficiently large, the corresponding value of ak — bk is positive.
But ak — bk is a continuous function of ck so that the desired value ck

exist.
We now let

nfa, c'k) , xe\xk-ltxk] ,

From (3.18) or (3.19), whichever applies, we have

\ k qk(x)dx = I fc p(x)dx .

Hence, the convexity of p(x) and the form of qk(x) imply (by Lemma
1.2) that

(3.22) [k qk(x)ul(x)dx > \** p(x)K(x)dx .

Similarly, from (3.20) or (3.21) we have

(3.23) \X* qk(x)u2

n(x)dx > \Jp(x)u2

n(x)dx .

We are now able to construct the function q(x) by complete induc-
tion. To avoid excessive detail, we carry out the proof only up to n = 3.
In (x0, Xj), we set r(x) = 0, and form qx(x). In (xi9 x2) we also form q2(x)
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with r(x) — 0. Then, comparing qλ{xλ) and q2{xλ), we have the following
alternatives:

( i ) If q^) > q2(%i)> we form a new function q2(x) with r(x) =
max[gi(^), 0], x e [xlf x2],

(ii) If q^Xi) < ?2(#i)> we form a new function qλ(x) with r(#) =
max[0, q2(x)],xe[x0, x,].

(iii) If QΊ(#I) = #2(̂ i)> we leave qλ{x) and g2(#) as they are. Using
whichever alternative applies, we define

\q2(x) , xe[xlfx2] .

Now, form q3(x) with r(x) = 0 for x e [a?a, x3] and compare g(1)(as2) and
tf3(^2) We have the same alternatives as above, the only difference in
procedure being that if qω(x2) < qJipo2), we must redefine qω(x) with
r(x) = max[0, qs(x)] for a? e [x0, x2] .

It is clear that the induction can be carried out. Furthermore, the
resulting function q(x) will be convex, for by the above construction any
two adjacent linear segments of the graph of q(x) can only have a com-
mon point, such that the corresponding value of q(x) is less than or
equal to p(x). Because of this convexity, there is at most one subinter-
val over which q(x) — 0. Hence, for each of the points xte9 k = 1, , n,
there is at most one vertex of the graph of q{x), except for possibly the
one just mentioned. Thus, the graph of q(x) has at most n + 1 linear
segments. That q(x) satisfies the inequality (2.11) follows immediately
from (3.22) and (3.23). Hence, our theorem follows as in the proof of
Theorem 2.3.

4 Concave densities* In this section, we consider the system (1.5)
when p(x) is concave. We prove the following.

THEOREM 4.1. Let Xx[p] be the first eigenvalue of a string of unit
length with fixed ends whose density is a continuous concave function
p(x). Then

1

p(x)dx > λ0
o

where λo = 6.952 . The inequality is sharp, equality being attained
for a string whose density is the symmetric triangular function

ί4x , * e [0,1/2],

{4(1 - a;) , x e [1/2,1] .

We first assume that p(x) has finite left and right derivatives in the
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closed interval [0, 1]. We define/(ίc) = —p'_(ίc), x e [0, 1] where we have
set pL(0) = p'+(0). We then define

j a ; ( l - t ) f xe[0,t),
9{X' ' ( ( 1 - x)t , xe[t,l).

It follows from integration by parts and the fact that

[f(t)dt = p(0) - p(l)
JO

(p(t) is absolutely continuous) that

p(x) - p(0)(l -x) + p(l)x + [g(x, t)df(t) .
Jo

If we set G(x, t) = 2/ί(l - t) g(x, t), we get

Here, we have modified f(t) so that the integral includes the terms
p(0)(l ~ x) and p(l)x. By Lemma 1.1, we have

\[p]\ p(%)dx > mmX^Gix, t)\ .
Jo fe[o,i]

The minimum exists by Lemma 1.3.
If either the right or left derivative is not finite in [0, 1], we con-

sider the system

u" + \spu = 0 , u(e) = u(l — e) = 0 ,

where ε > 0 is small. The above considerations then hold for this system
and we have

(1 - 2ε)XL[p]X *p(x)dx > min λJGO, t)]
Jε ce[o,i]

Letting ε —> 0, we have the desired result.
To find the value of t for which Xj[G(xt t)] is a minimum, we con-

sider the system

(4.1) u" + \G(x, t)u = 0 , u(0) = u(l) = 0 .

It is convenient to translate the system to the interval f —1/2, 1/2].
Thus, we consider

(4.2) v" + TiG^x, t)v - 0 , v(-l/2) = v(l/2) - 0 ,

where
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U*h Π~ ± "I/O

Gl%, ί) = ' +

, 1 - 2 *
1

JL

- 1 / 2 < ί < « < 1/2

We show that Xλ[Gλ{x, t)] is a minimum when £ = 0.
Following Hardy, Littlewood and Polya [6], we define the rearrange-

ment of a non-negative integrable function g(x), x e [ —1/2, 1/2] into a
symmetrically decreasing function g(x), x e [—1/2,1/2]. To do this, con-
sider the set S = {x \ g(x) > y}, where y is some number in the range
of g(x). Let μ{S} be the measure of the set S. We define the function

™>(y) = / Φ Iff 0*0 ^1/}
and let

a? e [0,1/2] ,

α?e [-1/2,0] .

where m~ι denotes the inverse of m(y). In particular, since m{y)~l — yβ
for g = Glfye [0, 2], we find that this symmetrization transforms G ί̂c, t)
into GiO, 0). Thus

Gl(x, 0) = Gl(*, ί) = P
(2(1 +2a?) , a? 6 [-1/2,0].

By a result of Beesack and Schwarz [2], the first eigenvalue of (4.2)
is greater than the first eigenvalue of

v" + XG^x, t)v = 0, v(-l/2) = v(l/2) = 0 ,

i. e., λ^Gίa?, ί)] > \[G(x, 1/2)]. Hence, λ^p] > \[G(x, 1/2)] = \[T(x)].
If we solve (4.1) with t = 1/2 [7], we find the eigenvalues to be

λn[G(a?, 1/2)] - (9/2K ,

where zn is the ^th positive root of the equation

and J_2/3 is the Bessel function of order —2/3. Numerical calculation
gives the result

\[G(xfll2)] =6.952 . .

As in the case of monotone and convex densities, we have the fol-
lowing result for the first n eigenvalues of (1.5) when p(x) is concave.

THEOREM 4.2. Let Xk[p], k = 1, 2, , n be the first n eigenvalues
of a string of unit length with fixed ends whose density is a continuous
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concave function p(x). If Xk[G(x, t)], k = 1, 2, •••,%, are the first n
eigenvalues of a string whose density is the triangular function

, x e [0, t] ,

G(x, t) =

then

B l -l-l n n

p\X)ax 2-i *>κ LPJ 2-ι -^ ^*; L̂ V ^j ô J
0 J fc = l fc = l

/or suitable t0.
It is evident that the inequality is sharp. We omit the proof since

it contains no new ideas.
For the higher eigenvalues of (1.5), when p(x) is concave, we prove

the following.

THEOREM 4.3. Let Xn[p] be the nth eigenvalue of a string of unit
length with fixed ends whose density is a continuous concave function
p(x). Then there is a string with the same total mass whose density
is a piecewise linear concave function q{x), where the graph of q(x) has
at most n + 1 linear segments and where q(0) = q(l) = 0, such that

where Xn[q] is the nth eigenvalue of the string with density q(x).
We use the same construction as in the proof of Theorem 3.4. This

is possible, for if p(x) is concave, — p(x) is convex.
Let un(x) be the nth eigenfunction of (1.5) when p(x) is concave.

As in § 2, we denote the nodal points of un(x) by xk9 k = 0, 1, 2, , n,
and the maximum points by xk, k = 1, , n. Then —u2

n(x) has the
maximum points xk, k = 0, 1, •••,#, and the minimum points xk, k = 1,
2, •••,%. Over each of the intervals (5?fc, 5fc+1), k = 1, , n — 1, we way
define — qk(x, ck) where now — p(xk) < cfc < 0, as in Theorem 3.4. As
before, there is a value of ck = c'k such that qk{x, c'k) is linear at x~xk.
For the intervals (0, xλ) and (xn9 1) we let c0 = 0 and and cn = 0 so as to
define —qo(x, c0) and — gw(x, cw). Now using the same induction argument
as in Theorem 3.4, we form the functions — qk(x, ck) and obtain a func-
tion — q(x) which is convex and satisfies the inequality

(4.4) \ p(x)u2

n(x)dx < \ q(x)Undx .
Jo Jo

Here, r(x) is always a linear function and is always negative. The
graph of — q(x) consists of at most n + 1 linear segments, one for every
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point xk, k = 0,1, , n, and q(x) is concave. By the argument used in
the proof of Theorem 2.3, it then follows that Xn[p] > λn[g].

5. The general Sturm*Liouville system. We now turn to the Sturm-
Liouville system

(5 χ ) [r(x)u'Y + [Xp(x) - q(x)]u = 0 ,

u'(0) - h0u(0) = u'(l) + h&Q) = 0 ,

where p(x) and q(x) are non-negative integrable functions, r(x) e C is
positive, and h0 > 0, hλ > 0. The lowest eigenvalue of this system is
given by

I [r(x)uf2 + q(x)u2]dx
(5.2) Xί[p] = πiin J^

ueo'

where the functions u(x) satisfy the appropriate bonndary conditions.
It is easy to see that the conclusion of Lemma 1.1 also applies to

this differential system, i. e., if p(x) can be expressed in the form (1.8),
then

\[p]\1p{x)dx > g.l.b. \[K(x, ί)] ,
Jo tε[o,i]

where Xλ[K(x9 t)] is the first eigenvalue of the system (5.1) with p{x)
replaced by K(x, t). Hence, it is possible to generalize Theorems 2.1,
3.1 and 4.1 to the system (5.1). We have

THEOREM 5.1. The densities p(x) minimizing the expression

Xi[p]\ p(x)dx, where Xx[p] is the lowest eigenvalue of the system (5.1)
Jo

under the assumptions
(a) p(x) is monotone,
(b) p(x) is convex,
(c) p(x) is concave,

are of the same character as those discussed in Theorems 2.1, 3.1 and
4.1, respectively.

The proof of the theorem presents no new features. It should, how-
ever, be noted that the symmetrization argument used in the proof of
Theorem 4.1, cannot be applied unless q(x) and r(x) have the symmetric
property q{x) = q(l — x) and r(x) = r(l — x). In the general case, all
that can be said is that the graph of the extremal density consists of
two linear segments passing through (0, 0) and (0,1), respectively. It
should also be noted that the lack of symmetry in the boundary condi-
tion of (5.1) makes it impossible to tell, in general, whether the g.l.b.
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Xiίp] for monotone convex p(x) is approached in the case of increasing
p(x) or decreasing p{x).

We now consider the system

(5.3) u" + [Xp(x) - q(x)]u = 0 , u(0) = u(l) = 0 .

We denote the first eigenvalue of (5.3) by XL[p, q]. We have the follow-
ing lemma.

LEMMA 5.1. Let q(x) be of the form

q(x) = [K(x, t)g(t)df{t)
Jo

where K(x> t), g(t) and f(t) are as defined in Lemma 1.1; then

\[P,Q] >g.lb.XdP,QK(x,t)],
ce[o,i]

where Xλ[p, QK(x, t)] is the lowest eigenvalue of

u" + [Xp(x) - QK(x, t)\u = 0 , u(0) = u(l) = 0

and Q = i q(x)dx.
Jo

By (5.2), we have

Γjic/2 +ΓΓx(a;, t)g(t)df(t)~\u2ldx
Xi [P, q] = ^ £ — f l — ' —

\ pu2dx
Jo

Hence,

\ [p, QΊ > mm \ g(t)
ueo' Jo \ p(x)u2dx

Jo

(VQ)\g(t)df(t) g. 1. b. λ, [p, QiΓ(x, ί)] .
Jθ ίg[0, 1]

But Q = I g(t)df(t), so that the conclusion of the lemma follows .
Jo

If (?(#) is concave, Lemma 5.1 yields the following result.

THEOREM 5.2. The lowest eigenvalue \[p, q] of (5.3) when q(x) is
concave satisfies the inequality

\[P, Q] > rain λjp, QG(x, t)]
teco.i]

where λx[p, QG(x, ί)] is the lowest eigenvalue of (5.3) with q(x) replaced
by QG(x, t), G(x, t) being defined by
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| , X β [0, t] ,

G(x, t) =
~ x)

We first assume that q'+(0) and qL(l) are finite. As in Theorem 4.1,
we may express q{x) as

q(x)=[G(x,t)[t(l-t)l2]df(t).
Jo

By Lemma 5.1, we have

(5.4) \ [p, q] > g. 1. b. \ [p, QG(x, t)] .
ίe[o,i]

If g'+(0) or q'-(l) are not finite, we consider the system (5.3) with x re-
stricted to the interval [ε, 1 — ε]. Transforming this system to the unit
interval, we see that (5.4) applies, so that letting ε —> 0, we find that
(5.4) holds in general for concave q(x).

Since λjp, QG(x, t)] is a continuous function of t e [0, 1], there must
be a value of t for which the greatest lower bound is attained.

The same procedure can be made to yield corresponding results in
the case of monotone and convex densities.

We close this section with some remarks about the system

(5.4) u" + Xp(x)u = 0 , i*'(0) = nil) = 0 ,

where \ pdx = 1 .
Jo

If p(x) is monotone increasing, then X19 the lowest eigenvalue of
(5.4), satisfies λ x > ττ2/4.

This follows immediately from Lemma 1.2 if we compare p(x) and
q(x) = 1.

Similarly, if we compare a concave density p(x) and q(x) = 2x, we
find that \[p] satisfies the inequality

λ x > λ 0

where λ0 = 6.95 /4 is the lowest eigenvalue of (5.4) with p(x) = 2x.

6. The vibrating rod The eigenvalue problem associated with a
rod with clamped ends at x = a and x = b is

(6.1) yiυ - μp(x)y = 0 , y(a) = y'(a) = y(b) = y\b) = 0 .

As in the case of the string, we may transform this system to the unit
interval. We have

(6.2) uiυ - \p(x)u = 0 , u(0) = M'(O) = u(l) = ̂ (1) = 0 ,



BOUNDS FOR THE EIGENVALUES OF SOME VIBRATING SYSTEMS 465

where p(x) = (b — a)ρ[(b — a)x + a], we note that I p(x)dx = \ p(x)dx.
JO Ja

The eigenvalues μn[ρ], n = 1, 2, , of (6.1) are related to those of (6.2)
by the equation

K[P\ =Φ- aYμn[ρ] , n = 1, 2,

The first eigenvalue of (6.2) is equal to the minimum of the Rayleigh
quotient

[\u")2dx
(6.3) J(p, u) = -As

J

where u(x) ranges over all functions ueC2 such that u(0) = uf(0) = 0

and u(l) = w'(l) = 0.
The following results correspond to Theorems 2.1, 3.1 and 4.1 for

the string.

THEOREM 6.1. Let λjp] be the lowest eigenvalue of a rod of unit
length with clamped ends. From the assumptions that

(a) p(x) is monotone,
(b) p(x) is convex,
(c) p(x) is concave,

we have

1 Jo 1

where

(0 , x e [0, ί0] ,

(α') JΓ(a, t0) = 1 . -

0 , a? e [0, ί0] ,

(6') JBΓ(a;,ίo) = - t0) , x e (ί0,1] ,

, xe[0, ίo] ,

(c') ίΓ(a;,ίo) =
^ r , «e[ ί o , l ]

respectively', /or suitable values of t0.

There is nothing new involved in the proof over that of the corre-
sponding theorems for the string. In fact, we need only replace thq



466 DALLAS BANKS

Rayleigh quotient of (1.5) by (6.3) and the respective proofs for the
corresponding string problem apply.

In the case of concave p(x), it can be shown that λx[p] takes its
smallest value for tQ = 1/2, i.e., we have the following result.

THEOREM 6.2. If \[p] is the lowest eigenvalue of a rod with
clamped ends whose density function is a positive concave function p(x),
then

\[p]\pdx > λjpo] ,
Jo

where

(4(1 — a?) , a? 6 [1/2,1] .

The proof will be based on the following result of Beesack [1].

THEOREM 6.3. Let p(x) be continuous and non-negative for x e
[ — 1/2, 1/2] and let p(x) be the rearrangement of p(x) into symmetrically
decreasing order. Then the first eigenvalues of the system

(6.4) uίυ - Xp(x) = 0, M( —1/2)=%'(—1/2) =

and

(6.5) viβ - μp(ίφ = 0, v(-l/2) = v'(-l/2) == v(l/2) = v'(l/2) = 0 .

satisfy the condition

(6.6) lh[v\ < \[P]

The rearrangement of p(x) into symmetrically decreasing order is
defined as above in Theorem 4.1.

The proof of Theorem 6.2 follows immediately from Theorems 6.1
and 6.3, since the symmetrization of

l*L , x e [0, ί] ,

K(x, t) =

_ M , X 6 [ί, 1] ,

is K(x, 1/2).
Theorem 6.3 also leads to a result corresponding to that of Krein

for a string with a bounded density function.

THEOREM 6.4. Let p(x) satisfy the condition 0<p(x)<H<™,
#e[0,1]. Then the lowest eigenvalue Xλ[p] of a rod with clamped ends
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and density p(x) satisfies the inequality

f1

λ2[ί)] p(x)dx > λ0 ,
Jo

where λ0 is the lowest eigenvalue of the rod with density

o ,

po(x) = •

and where M = I p(x)dx.
Jo

Let yλ(x) be the first eigenfunction of a rod with clamped ends and

density p(x), (the function resulting from symmetrization of p(x) about

x = 1/2). Then it is clear that po(x), p(x) and y\{x) satisfy the hypo-

thesis of Lemma 1.2 over the interval [0, 1/2] so that

p(ί%iO*O<^ :< \ pj^)y\{x)dx .

o Jo

By symmetry, we have

\ p(x)yl(x)dx < \ po(x)yl(x)dx .
Jl/2 J 1/2

Adding these two inequalities, we find

\\y['fdx \\y['Ydx

\[P] - f > f > λ0 .
p{x)y\dx \ po(x)yldx

Jo Jo

Hence, by Theorem 6.2 we have X^p] > λ0.
We close this section with the remark that corresponding versions

of Theorem 6.1 hold if we replace the boundary conditions (6.2) by anj
of the other boundary conditions used in the theory of the vibrating
rod.

7. The vibrating membrane* We consider a vibrating membrane

covering a simply connected domain D whose boundary is a Jordan curve

C. Let p{x, y) be the density of the membrane. We assume that p(x, y

is measurable and that

(7.1) 0 < p(x, y) < H < CXD , (x,y)eD f
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The eigenfunctions and the eigenvalues of this membrane, with the
boundary fixed at (x, y) e C, are determined by the integral equation [14]

u(x, y) = λj I G(x, y, ξ, rj)p{ξ, η)u(ξ, rj)dξdη ,

where G(x, y, ξ, η) is the Green's function of the domain D. We denote
the first eigenvalue by λjp].

We define M and R by the relations

(7.3) M= ίf p(x, y)dxdy , πR2 = if dxdy

and let Z)* be the circle x2 + y2 < R2. In this section, we prove the
following two theorems concerning λ^p].

THEOREM 7.1. The minimum of \[p], subject to the restrictions
(7.1) and (7.3), is given by a membrane covering D* with density

("> «••»> = If1 ".<*!!".<„.
(0 , ρ2 < x2 + y2 < R2

where p is defined by πp2H = M.
Let D be a convex domain. p(x, y) is concave in D if, for (α ,̂ yγ) e Z)

and (x2, y2) e D, we have

For a concave density function, we have the following result.

THEOREM 7.2. Let X2[p] be the lowest eigenvalue of a membrane,
with fixed edges, covering a convex domain D, whose density function
is concave. Then

cr

where λ0 = 3.26 . The inequality is sharp and equality is attained
for a circular membrane of radius R and density

(7.5) pQ(x, y) = plr) - M^{R - r) , 0 < r < R ,
7Γxt

where r2 — x2 -\- y2.

Krein [8] has conjectured the result of Theorem 7.1 for the case
where D = D*. The numerical value of the minimum is given by the
least positive root of
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J0(V XH p) - pJΌiV XH ρ)V XH In p/R = 0 .

To prove these theorems, we use the extremal characterization of
λjp], i.e., the first eigenvalue \[p] of (7.2) is given by

(7.6) \[p] = gΛ.
u

where J(p, u) is the Rayleigh quotient

11 I grad u(x, y) \2dxdy

(7.7) J(p, u) = -ψ
11 p(x, y)u*(x, y)dxdy

and where the greatest lower bound is taken over all continuous func-
tions with piecewise continuous first derivatives, such that u = 0 on C.

As the following lemma shows, the same result is obtained if u is
made subject to additional restrictions.

LEMMA 7.1. The first eigenvalue X^p] of (7.2) is given by

(7.8) \[p] = g.l.b.J(p,u)
u

where J(p, u), is the Rayleigh quotient (7.7) and where the greatest
lower bound is taken over all analytic functions u(x, y) with u = 0 on C.

Since p(x9 y) is a measurable function, Vp(x9 y) is measurable. Hence,
there is a polynomial, Q(x, y), such that for arbitrary numbers δ9η>09

we have

(7.9) \Vp(x,y)-Q(x,y)\<δ

except on a set of measure less than η. Furthermore, Q(x, y) may be
chosen such that q(x, y) = Q\x, y) is non-negative and is less than H.

We consider the membrane over the domain D with density q{xy y).
The eigenfunctions and eigenvalues will be determined by (7.2) with
p(x, y) replaced by q(x, y). In particular, we denote the first eigenvalue
by \[q]. Since q(x9y) is an analytic function in D, it is well known
that

(7.10) X1 [q] = min J(q, u)f

ueo°°

where the minimum is taken over all the indicated functions for which
u Ξ= 0 on C. It is also well known that the eigenvalues of (7.2) are
continuous functional of p(x, y). More precisely, for any ε > 0, there
is a δx > 0 such that

(7.11) jjjj/'fo V
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implies

(7.12)
λi [p]

<e .

It is easy to see that 8 and η may be chosen so that (7.9) implies (7.11)
and hence, also (7.12).

For any analytic function u(x, y) such that u — 0 on C, we now show
that there are values of 8 and rj such that (7.9) implies

(7.13) \[J{v,u)Y*-[J{q,u))-i\<ε

where ε > 0 is arbitrary and 8 and ΎJ are independent of u(x, y).
We have

A = \[J(p, u)]-1 - [J(q, O n < [J(\ p-q\, u)]-\

Now I p — q I = \Vp~ + Vq~ \ \ λ/p~ — Vq~\ < 2λ/TΪ8f except on a set S

of measure less than η. Hence,

max u(x, y)
A < 2]/HS[J(lf u)]-1 + Hη *

\ \ I grad u \2dxdy

By Rayleigh's theorem on the first eigenvalue of a homogeneous mem-
brane [11], J( l , u) > JljR2, where j 0 is the least positive zero of the
Bessel function J0(x) and R is defined by (7.3). Furthermore, if we let
um = max(Xιl/)6Z, u{x, y), then

u dxdy > Aπc ,

where c is the capacity of an infinite circular cylinder of radius R with
zero potential on the surface of the cylinder and potential one on the
axis of the cylinder [11]. Hence, we have

A < 2VΉ^σ +
Jo 47ΓC

so that (7.13) follows.
Let uλ{xyy) be the first eigenfunction corresponding to Xλ[q]. We

may choose δ and rj so that (7.12) and (7.13) hold simultaneously. Hence,
we have

(7.14) I λΓ1 [p] - [J(p, it,)] I < I λΓ1 [P] - λΓ1 [q] I

+ I [J(q, t t i )] - U(P, ih)] \<2ε,

for some function ux{x, y) which is analytic in D.
By (7.13) we have, for any analytic function u(x, y) that
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(7.15) [J(p, u)]-1 < [J(q, u)]-1 + ε .

(7.10) and (7.12) then give

[J(p, u)]-1 < XT'ίQ] + e < X^[p] 2ε .

Since ε is small, we finally conclude that Xλ[p] < J(p, u). This with (7.14)
gives (7.7).

We now introduce the symmetrization of p(x, y) with respect to a
line perpendicular to the (x, ^/)-plane, i.e., Schwarz symmetrization [11].
We may define it by considering the function

<*>(p) = μi(χ> v)> p(χ> v) > p}

where μ denotes the measure of the set indicated and where p is some
number between 0 and H. Then the symmetrization of p(x, y) is

p(x, V) = P(r) = a-\πr2) , r e [0, R] = D * ,

where r2 = x2 + y2.
We now prove the following.

LEMMA 7.2. The lowest eigenvalue Xλ[p] of (7.2) is bounded below
by the lowest eigenvalue Xλ[p] of the membrane with fixed boundary
over D* and density p(x, y).

B. Schwarz [15] has shown that when p(x, y) e C",

\[p] > g-l.b. J[p, u] ,
uec

where now the Rayleigh quotient is defined over D*. By Lemma 7.1,
it follows that Xλ[p] > Xι[p\. The proof of Lemma 7.2 differs only in
detail from the proof of the result of Schwarz.

By Lemma 7.1, there is an analytic function u(x, y) such that

(7.16) \[p] + e>J(p,u)

where ε > 0 is arbitrary. Let ϋ(x, y) = ΰ(r), r e ΰ * be the above sym-
metrization of u(x, y). Schwarz shows that such a symmetrization of
an analytic function gives a function with piecewise continuous first
derivatives and it is further known [11] that

\I I gradu \2dxdy >\\ I g r a d ύ \2rdrdθ .

We also known [6], [11] that

\ \ p(%9 y)u2(x, y)dxdy < \ \ p(r)ΰ\r)rdrdθ .

Hence, we have from (7.16) and Lemma 7.1 that
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\[p] + ε > J(p,ϋ) > Xdp] .

But ε is arbitrary so that Lemma 7.2 follows.
We now prove Theorem 7.1. By Lemma 7.1, there is a symmetric

and analytic function ϋ(x, y) = u(r), (x, y) e JD*, such that for arbitrary
ε > 0 ,

\ [p] + ε > J(p, S) .

ΐZ(r) may be chosen such that it is the first eigenfunction of a mem-
brane with a symmetric, analytic density q(x,y) = g(τ), (#> v) eD*. In
this, case, the integral equation which gives ΰ(r) is equivalent to the
partial differential equation of this membrane. It is easily seen that
ΰ(r) must have its only maximum at r — 0. We now compare the in-
tegrals

iί p(r)u(r)rdrdθ

and

PQ(r)u(r)rdrdθ ,\\j
where po(r) = po(#, 2/) is defined by (7.4). From the definition of p{r)
we have 0 < p(r) < H, 0 < r < R. Hence, ~p(r)r and po(r)r satisfy the
same relationship as p(x) and q(x) of Lemma 1.2. It then follows that

\[p] + ε > J(poΰ) .

By Lemma 7.1, we have λjp] > λjpo], since e is arbitrary. In view
of Lemma 7.2, this proves Theorem 7.1.

To prove Theorem 7.2, we again consider p{x, y) — p(r), (x, y)eD*.
This function is obtained by Schwarz symmetrization from p(x, y),(x,y)e D,
where D is a convex domain. We show that if p(x, y) is concave, then
so is p(x, y).

Consider the three dimensional set

S = {(x, y,z)\(x,y)eD , 0 < z < p(x, y)} .

This set is convex and Steiner symmetrization, i.e., symmetrization with
respect to a plane, preserves convexity [3]. Furthermore, p(x, y) may
be obtained by an infinite number of Steiner symmetrizations with re-
spect to planes through the origin which are perpendicular to (x, τ/)-plane
[3], [11]. This symmetrization of S gives

S = {(x, y,z)\(x,y)eD , 0 < z < p(x, y)} .

Clearly, p(x, y) will then be a concave function.
As in the proof of Theorem 7.1, there is an analytic function
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ύ(x, y) = ΰ(r) whose only extremal value is the maximum at r = 0 such
that Xdp] + e > J(p, ύ). Since ΰ(r) is concave, po(r) and p(r) satisfy
the relation pQ(r) > p(r) for r e (0, r0) where r0 e (0, R) and po(r) < p(r)
for r e (r0, i2). Hence, rpo(r) and rp(r) are related in the same way as
p(x) and q(x) in Lemma 1.2. As in Theorem 7.1, we have λjp] > λjpo].
By Lemma 7.2, Theorem 7.2 then follows.

Using well-known techniques for the computation of eigenvalues
[4], we find that the lowest eigenvalue Xλ[p\ of (7.2), where p(x, y) is
concave, satisfies the relation

p(x, y)dxdy X1[p] > (3.26 *)π .

Z. Nehari has shown [10] that if p{x,y) is super harmonic, then X^p]
satisfies

p(x, y)dxdyX1[p] < πj2

0

where j0 is the least positive zero of JQ(x), the Bessel function of order
zero. But a concave function is superharmonic [12] so that the bound
also applies in our problem. Thus, if p(x, y) is concave in a convex do-
main,

3.26τr < ίf p(x, y)dxdyX1[p] < πj\ .
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