BOUNDS FOR THE EIGENVALUES OF SOME
VIBRATING SYSTEMS

DALLAS BANKS

1. Introduction. If a string with a non-negative integrable density
o(x), x € [a, b], is fixed at the points £ = a and # = b under unit tension,
then the natural frequencies of the string are determined by the eigen-
values of the boundary value problem

(1.1) Yy’ 4+ o)y =0, yla)=yb) =0.

Indicating their dependence on the function p(x), we denote these eigen-
values by

(1.2) o] < plo] < -

We consider the set of all such strings which have the same total
mass, M = pr(m)dx. It is well known [5] that the eigenvalues (1.2)
satisfy the ir[:equality

4n?

> _—, ’}’1,:1,2,...,
M — a)

(1.3) al 0]
with equality when a mass of amount M /n is concentrated at the mid-
point of each of n segments obtained by partitioning the string into =
equal parts. If we place some restriction on o(x) which prohibits such
an accumulation of mass, then we can expect to get a larger bound than
that of (1.8). M. G. Krein [8] has found that when 0 < p(x) < H <o, the
eigenvalues (1.2) satisfy the inequalities

Hn'm?
M2

(1.4) 4Hn 5 ( M

g H(b—a))gﬂ"[‘o]g

’

where X(f) is the least positive root of the equation

VXtan X =t
1—t¢
The inequality (1.4) is sharp and as H — oo, the lower bound approaches
that of (1.3).
In this paper, we investigate the nature of the density functions
for which the greatest lower bounds of the eigenvalues (1.2) are attained
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440 DALLAS BANKS

when other restrictions are placed on p(x). For convenience, we may
consider the eigenvalue problem

(1.5) w +ap@)u =0, u0)=ul)=0,
where p(x) = (b — a)p[(b — a)x + a], x € [0, 1], instead of (1.1). We note
that S:p(x)dx = M. Denoting the eigenvalues of (1.5) by

MP] < Mlpl < -ee

we see that

(1.6) A [p] = (b — @) (0] -

We shall be concerned with determining bounds for the eigenvalues
of the differential system (1.5) under various types of restrictions on
p(x). The principal restrictions we shall consider are:

(a) p(x) is monotone in [0, 1].

(b) »(x) is convex, i.e., p(x) satisfies the inequality

Ty — @

p(x) < p(x,) +
Ly, — &,

r— X
Lp(z,)
Xy — X,

where x, and x, are any two values such that 0 <z, <2,< 1.

(c) p(x) is concave, i.e., —p(x) is convex.

These properties are invariant under the linear transformation used to
obtain (1.5) from (1.1) so that p(x), x € [a, b], will have the same proper-
ties as p(x). Hence, no loss of generality is involved in using the system
(1.5).

In §2,3 and 4, we obtain sharp lower bounds for ,[p] in these
three cases. For the higher eigenvalues we are able to obtain only
general information concerning the density distributions which give the
lower bounds. The ideas used also lead to results in the case of the
more general Sturm-Liouville system

1.7 [r@@)u’] + Mp(@) — (@)l =0,
w(0) — hu(0) = w'(1) + hu(l) =0,

where p(x) and g¢(x) are non-negative integrable functions, r(x)e C’ is
positive and h, > 0,2, > 0. In §5, we obtain results under various as-
sumptions about p(x) and q(x).

In §6, we consider the vibrating rod of variable density and with
clamped ends. The results we obtain are directly analogous to those
obtained by Krein and to those derived in § 2, 83 and 4 for the first eigen-
value of (1.5). In §7, we obtain results for the first eigenvalue of a
membrane with fixed boundary in the case of bounded densities and in
the case of concave densities on a convex domain.
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The central idea used in finding lower bounds of X\, [p] is the following.
LEMMA 1.1. If p(x) of (1.5) can be expressed as
(1.8) p(e) = | K, hotyds)

where
(i) f(¢) ©s a monotone tncreasing bounded function,
(ii) g(t) is non-negative and continuous,

(ili) K(x,t) is mon-negative and SIK(x, tyde = 1,

then
(1.9) aipl = [ [ p@de e L bk, o1
;0 tefo, 1]
We use the fact that ), [p] is the minimum of the Rayleigh quotient
[4]
[Jorda
(1.10) J(p, u) = =

[ Pt lueyra

where u(x) ranges over all functions, with piecewise continuous first
derivatives in |0, 1], which satisfy the conditions u(0) = (1) = 0. In view
of (1.8), we have

1

Aol = maXSOUZK(W’ t)g (1)df(t) ]de
| ‘ Slu’zdx .

0
By the properties (i), (ii) and (iii) all terms are non-negative. Inter-
changing the order of integration, we find that

1 [ K, e
(L.11) A1) < o) maxe S dp
’ “ S w'rdax

We note that

SIK(x, tyudw
(1.12) MUK(, ¢)] = max =
“ X u'?dx

0

Hence, (1.11) and (1.12) yield
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(1.13) Aol < g:g(t)df(t) Lub A\ (K(z, 0)]

From (1.8) and (iii), we have

[ p@ds = [ o@are .

Hence (1.13) is equivalent to (1.9).
1
If the density p(z) is normalized so that S p(x)dx =1, then (1.13)
0
reduces to

M lpl =

0]

Lb. K(@, )] -

12 1]

m

To obtain results for the higher eigenvalues of (1.5) we use another
approach.

LEMMA 1.2. Let p(x) and q(x) be non-negative integrable functions
defined for xe [a, b] and let f(x) be non-negative, continuous and mono-
tone increasing in |a,b]. Let ce(a,b) be such that p(x) > q(x) for
xela,c) and p(x) < q(x) for xe(c,bl. Then

(1.14) S:p(x)dx = S:q(ac)dx
implies that
(1.15) [ p@rs@us < [a@ s

If f(x) is monotone decreasing, then the inequality is reversed.
By (1.14) we have

(1.16) [[1a@ — p@de = 1p(x) — q@)da

But [p(x) — q(x)] > 0 for ze€la,c) so that the generalized mean-value
theorem gives

(1.17) [[1p@) — a@1f@de = f@)| p@) - a@)da
for some x,€(a,¢). Similarly, we have
(1.18) [le@ - p@17@de = @) lo@) ~ p)ds

for some x,€ (¢, b). For a monotone increasing f(x), we have f(x,) < f(x,)
so that (1.16), (1.17) and (1.18) imply

[[1p(@) - a@i@ds < [la@) — pe) @



BOUNDS FOR THE EIGENVALUES OF SOME VIBRATING SYSTEMS 443

Adding ch(x) f(x)dx and pr(x) f(x)dx to both sides, we obtain the desired

result. If f(x) is monotone decreasing, it is clear that the inequality
has to reversed.

M. G. Krein has proved the following result which we will find use-
ful. [8]

LEMMA 1.3. Constder a family of density functions p(x) on [0, 1]
1
such that 0 < p(x) < H < o and S p(x)de = M. Let p=g.lb.p[p(x)]

where the greatest lower bound is taken over this family. Then there
18 a function p(x) in this family such that pt= N[

Krein’s proof also holds for M\, [p],n =2,3, -+, and for the sum
Sk [pl

2. Monotone densities. We first consider the system (1.5) when
p(x) is a monotone increasing function. We have the following result.

THEOREM 2.1. Let )\ [p] be the lowest eigenvalue of a string of
unit length with fixed end points whose density is an increasing func-
tion p(x). Then

Mol pla)dz =,

where N, = 7.88++.. The inequality is sharp and equality 1s attained
for a string whose density is the step function

_ 0 , xel0,t],
(2.1) H(x’ tO) - i(l — to)‘l, xr e [t()) 1] ’

where t, = 0.357+ ..,
Since p(x) is a positive, monotone increasing function, the Stieltjes
integral

pla) — p(0) = | dp()

exists for x €0, 1] except when lim, ,p(x) = 4+ <. Even in this case
the equality holds in a limiting sense. If we let

Iz t):{O, l<e<t<,
1, 0t <<,

then we have

pie) = {te, Hyap()
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wherever p(zx) is continuous. Here we have replaced the original value
of p(x) at x = 0 by p(0) = 0; evidently this does not change our result.
Since p(x) is monotone, the set of discontinuity points is of zero measure.
Hence, for purposes of integration, we may take the above equality to
be true everywhere. If we let H(x, t) = h(x, t)(1 — ¢)~!, we have

2.2 p() = | Hiw, )L - dp(0) .
By Lemma 1.1, we then have
M[p] = g b M [H(z, B)] .
te [0,1]
We find the values of ¢ for which the greatest lower bound is at-
tained by solving for \[H(x,t)] explicitly. If we solve (1.5) in the

interval [0, 1] with p(«) replaced by H(x, t) we find that over the interval
[t, 1], u(x) must satisfy the differential system

(2.3) W A =0, tu(t) = u(®), u(l) = 0.

The eigenvalues of (2.3) will be equal to \,[H(x,t)],n =1,2, --.. The
eigenfunctions of (2.3) are

tz, iz,

(%) = sin z,x tanl:tan‘l L
U, (x) = sin + T 13

]cos 2t

n=1,2 .-, where z, = V\i(1 — t) is the nth positive roots of

(2.4) tan z —t

Hence, the eigenvalues are

(2.5) M [Hi, t)] = lzi -, n=1,2 .-,

To find the value of ¢ which minimizes N,[H]| = \,[H(x, t)] we re-
place (2.4) by

(2.6) (1 —1t¢)sinz + tzcosz =0.

This has the same positive zeros as (2.4). Since sinz and z.cosz are
positive for 0 < z < /2, (2.6) has no positive zeros in this interval for
te[0,1]. Over the interval [x/2, 7), sin 2z is positive while z-cosz is
negative for ze(rw/2,w]. Therefore, for te(0,1), the left side of (2.6)
is positive at z = 7/2 and negative at z = 7. Hence, (2.6) has its first
zero in the interval [7/2, #]. In fact, only the first one lies in this inter-
val. For if we denote the left side of (2.6) by F(t,z) then
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F(t,z) =cosz — tzsinz

is negative so that for a particular value of te (0, 1), F'(¢, 2) is monotone
decreasing and hence has only one zero for ze[x/2, #]. By (2.6)

dz —2z
2.7 =
2.7) dt 1 —t 4 t%}

From (2.5), we have

dMv[H) 0 2, l: dz, 2 ]

2.8 = 2 _~ |

(2.8) dt 1—tL dt + 11—t

If we evaluate this at ¢ =0, we find d\,/d¢]|,.,= —=n*. Furthermore,

since 2z,(t) is finite, (2.4) implies that \,[H] — + o0 as t — 1, so that )\,[H]
has a minimum at some t,€(0,1). Since we are considering only the
first zero, z,(t), we will drop the subscript and write z(¢). At ¢, we must
have d),/dt|,.,, = 0 so that (2.8) implies

de| __1 e
dt li=e, 21—t

From (2.7) we find that z(¢,) = 2’ must satisfy

-z __ 1 7
1—t, + t2 21—t

If we solve for —it,(1 — t,)~?, it follows from (2.4) that

2'tanz' = —it;t.
Eliminating ¢, between this and (2.4) we find that 2z’ must satisfy
2.9) tan 22’ = 22’ .

The first zero of this equation is 2’ = 2.25. Hence, from (2.4) we find
t, = .857-.-Now (2.9) has only one zero for z € [n/2, 7] so that \,[H] has
only one relative extremum for ¢ € (0, 1). But we know there is a minimum
so that ¢, must be the value of ¢ which minimizes \,[H]. From (2.5) we
find this minimum to be approximately 7.88.

It does not appear possible to obtain lower bounds for the higher
eigenvalues by the exclusive use of Lemma 1.1. We can, however, ob-
tain a bound for the sum 337_,(\;'[p]) with the help of a theorem of
Courant [5], according to which

Slp(w)v?;dx
n 0
icz=1 Slv?dx

0
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has the maximum 37 ,(\;'[p]) if the v,k =1,2, ..., n, range over all
systems of mutually orthogonal functions with piecewise continuous de-
rivatives in [0, 1] such that v,(0) = v,(1) = 0.

THEOREM 2.2. Let N\[p],k=1,2, .-+, n, be the first n eigenvalues
of a string of unit length with fixed ends whose density is an increas-
ing function p(x). If N JH(z,t)),k=1,2, --.,n, are the first n eigen-
values of a strimg whose density is the step function defined by (2.1),
then

U:p(x)dx]—l S p] < S HE, 6)

where H(x,t,) s the step function (2.1) and t, is a suitable value in
[0, 1].

Evidently, the inequality is sharp.

By Courant’s theorem, we have for the eigenvalues of the system
(1.5)

n Slp(x)vidx
}_.M =max| > =%

=1 vy k=1

’

1
S vdx
0

for suitable »,. Using (2.2) and changing the order of integration we
have

\ glﬂ(x, tyids

Siag = max {1 —p) 5 0

=1 v, k=1 S vida
0
Since all the factors are positive we find
. o, | H, tyids |
PRY: S (1 — )] max 320 T )

L Sv;ﬁdw

.

Again by Courant’s theorem, we get

n 1 n
S < [ - ] S DulHe, 07 Jpe)
k=1 0 k=1

so that, as in the proof of Lemma 1.1, we have

Zxk < l.u.b. S NH(, ]
t€ [0,1] k=1
We found in the proof of Theorem 2.1, that \,[H(x, t)] becomes infinite
as t— 1. Hence, >7..[:\.[H(zx, t)]]"! approaches zero as t — 1. Thus,
there is a number & > 0 such that ¢ > 1 — & implies that
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d z,
Lub. 3 L [HI = 3 Dl H, 0117

But for t€[0,1 — 8], H(x, t) is uniformly bounded. Hence, Lemma 1.3
implies the desired result.

While it seems to be difficult to obtain exact numerical bounds for
the higher eigenvalues of the system (1.5), when p(x) is monotone, it is
possible to give a geometric characterization of the function p(x) which
corresponds to the minimum value of \,[p].

THEOREM 2.8. Let \,[p] be the nth eigenvalue of a string of unit
length with fixed ends whose density 1s a monotone increasing function
p(x). Then there is a string with the same total mass whose density
18 a monotone increasing step function q(x) with at most n jumps such
that

(2.10) M2l = Malal,

where \,[q] is the nth etgenvalue of the string with density q(x).

Let u,(x) be the nth eigenfunction of (1.5) corresponding to \,[p]-
It is well known that u,(x) has exactly (n + 1) zeros in the closed in-
terval [0,1]. We denote these zeros by

T=0<2, << voe <Xy <2, =1.

In each open subinterval (x,, Z;+:), #,(x) has only one maximum or one
minimum so that «2(x) has a maximum there. We denote these n maxi-
mum points by Z, < Z, < ++- < T,.

We will show presently that it is possible to construct a function
q(x) in such a way that over each of the intervals (z,-,, Z,), (@, x;), k=
1,2, ---,m,q(x) and p(x) are related as indicated in Lemma 1.2. By
Lemma 1.2, we will then have

S p(eyui(z)ds < S gene@de, k=1,2,,n,
Tp—-1 Tr—1

and

[ paps do < [“o@ni@ias, k=12, 0.
Ik, zk

Upon adding these inequalities, we get

(2.11) S% p(r)ui(z) de < Sn q(x)ui(x)dax , k=1,2 +--,m.
Tp-1 k-1

If we fix the string at the nodal points x,, k=0, 2, ---,n, then it is
known [5] that
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gz’c 'de
=kl k=1,2, , N
S p(x)undx
By (2.11), we have
S% wrdx Szk u'dx
Ag = T > min
gk q@yuzde "7 S q(x)yudx
Y Tg~1 Pr—1
where u(x,) =0,k =1,2, ---,n. In particular, ), must satisfy
S% u2dx
Tr—-1

A, > max | min .
1<k<n ueo’ | Tk 2
q(x)udx J
Tp—1

But the quantity on the right is greater than the nth eigenvalue \,[q]
of a string with density q(x) so (2.10) will hold (See [5]).

It remains to be shown that there exists a function ¢(x) of the de-
sired form.

We first consider the intervals (Z,, ], k = 1,2, ---, n. Here we set

q(x) = (xk - fk)‘ISikp(x)dx = Oy , k = 1,2, ---,mn.
Tk

Since p(x) is monotone increasing, the hypothesis of lemma (1.2) is ob-
viously satisfied. For the intervals (z,.,, #,), we choose a point ¢, €
[%4-1, Z,,] such that

@ = (@ — @) = | * p@ds — a,-i@, — 21-)

k-1
k=1,2,.--,n, where we take a, = 0 and set

g(w) = {B-0 T @i,
ay, %€ty Tl ,

k=1,2,.--,n. By the definition of the a,’s, p(%) > a1, & € [®x1, t;)
and p(x) < a, for xe€(t,, T,) so that the hypothesis of Lemma 1.2 is
again satisfied. Thus, the function ¢(x), x € [0, 1] may be taken to be

q(x) = g, ® € (ty, trs) » £k=0,1,2,.-¢,n,
where we let t, =0 and ¢,,, = 1. This proves the theorem.

3. Convex densities. We now turn to the consideration of (1.5) in
the case where p(x) is convex. We have the following theorem.
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THEOREM 3.1. Let \|p| be the first eigenvalue of a string of unit

length with fixed ends whose density is a continuous convex function
p(x). Then

M [p]SLp(x)dx >\,

where N, = 9.397.... The inequality 1s sharp and equality is attained
for a string whose density is the piecewise linear function

0 , wel0,t],
(3.1) G(x, t,) = 9 & — 1

(1 t)zv xe”o, 1];
— L

where t, = 0.104. .-,

We first note that any positive convex density p(x) may be written
as the sum p(z) + p,(x) where p,(x) is a positive monotone increasing
convex function and p,(«x) is a positive monotone decreasing convex funec-
tion. In particular, we may define p,(x) such that p,(0) =0 and p,(x)
such that p(1) = 0. If £€[0,1] is a minimum point of p(x), it is easily
confirmed that the functions

(P& L wel0, ],

pi(x) = (p(x) — p(&)(L — =) , zelg 1],

and

() = ip(x) — &), xe€l0,£],
’ pEL -2 , welg1],

have the required properties.
We may thus express p(x) as p(x) = ap(x) + Bp.x), where Mo =

| m(@)dz, Mg = | p@)dz, 52) = p@)la and Fe) = p@)B. From the

Rayleigh quotient0 we then have
(3.2) A[p] = max [J(p, w)]™

< max alJ(p, w)]™ + me%?( Bl (D, u)]™" .

u€eC’

Let \[p] and A [p,] be the first eigenvalues of strings with fixed end
points and densities p,(x) and p,(x)(x €[0, 1]) respectively. Then, from
(3.2),

M[p] = min ([, M[P])

(1,2)

Because of the symmetry of the boundary conditions «(0)=u(1)=0,
it is obvious that the bound for \,[p] in the case of monotone increasing
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p(x) is the same as that for monotone decreasing p(x). Hence, we need
only consider monotone increasing functions. Furthermore, as shown
above, we may assume that p(0) = 0.

Now set

, x€]0,t],

0
g(x’t):{x—t, xelt, 1],

where te€[0,1]. We first assume that the increasing function p(x) is
bounded and that the left-hand derivative p’(x) is bounded for « € [0, 1].
It then follows from integration by parts and the fact that

[0t = po) — 0,
for such a function p(x)[13], that
p(e) = 1O + { g, OrL(0).
If we set G(z, t) = (2/(1 — £))g(z, t), we have
pla) = | Gla, OTL/20 — ty1dpL()

Here we have replaced the original value of p_(x) at « = 0, by p’(0)=0;
evidently this does not change our result. By Lemma 1.1, we then have

(3.3) APl = g. L b MGG, 1| | peydz | .
tefo.1] 0

If p(x) or its left derivative is not bounded in [0, 1], we may consider
the system

(3.4) w + Ap@)u =0, u(0) =u(dl —e) =0

where ¢ > 0 is arbitrarily small. In the interval [0, 1—¢], p(x) and p’(x)
are bounded, so transforming the system (38.4) to the unit interval we
find, by (3.3), that

1-¢
(1 = Ol P = g.1 b \IGE@, O],
0 t€fo,1]
where A [p]. is the first eigenvalue of (3.4). Since ¢ is arbitrary and the
eigenvalues are continuous functions of the length of the interval, it
follows that (3.8) holds for any increasing convex density p(x).

To find the values of ¢ for which the greatest lower bound of ,[p]
is attained, we employ a procedure similar to that used in a correspond-
ing situation in the proof of Theorem 2.1. Our problem is then seen to
reduce to the computation of the lowest eigenvalue of the system
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2\
(I —1y

(3.5) u(x) + (x — tu(x) = 0, tv'(t) = v(t), v(1) = 0.

The eigenfnnctions of (3.5) are |7]

=T (=) R (2]

where J.,(¥y) are Bessel functions of order +1/3 and z,=(2/3)1/2\(1—1)""
is the nth positive root of

4N/ 2\ 2\/ z\'? .
(3.6) 1— t)r(§>(5) Jo2) + tl’<—3~><—2-> Jon(2) = 0.
Hence, the eigenvalues of (3.5) are
9z
3.7 MG, t)] = 22 =1,2, -
3.7 G (2, )] 81 — 1) n

We denote the left side of (3.6) by F'(¢,2). To find the value ¢, which
minimizes )\, [G], we must investigate some properties of this function.
The first positive zeros of J,(2) and J_,;(2) are & = 1.87 and &, = 2.90,
respectively [9]. In (0, &), F'(0, 2) and F'(1, z) are positive. Hence, F'(¢, z)
has no zeros in this interval for te(0,1). In [&, &), F(0, ) is positive,
while F'(1, z) is negative in (&, &]. Accordingly, for te (0, 1), F'(¢, &) is
negative while F(t, &) is positive. Hence, F'(t, z) has its first zero in
(&,, £). Furthermore, there is only one zero in this interval for a given
value of ¢, since

—Fy(t, 2) = (1 — OI(4/3)(2/2)7"J () + tI'(2[3)(2/2)1*Tyye(2)

and it is known that each of the terms on the right side is positive for
ze (&, &). Thus, for a given t, F'(t, z) is monotone decreasing over this
interval and thus has only one zero there.

Since we are considering only the first zero z,(t), we will drop the
subscript and write z(f). We have

G8) G TCBED ) = [EB)ED ™)

dt (1 — OI'(4/3)(2/2),(2) + t1(2[3)(2/2)PT.ss(z)

and by (3.7),

dn[Gl 9z dz P
(3-9) dt 81 —1t) [2% 1— t]'

If we evaluate this at ¢t = 0, we find (d\,[G])/dt|,-, = —1.38. Further-
more, since 2z(t) is finite for all ¢€[0, 1], (3.7) implies that for ¢—1,
M[G] — + o so that \,[G] has a minimum at some value t,€(0,1). At an
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extremum t’ of \[G] we must have (d\[G])/dt|,, = 0, so that (3.9) implies

dz 1 2(t)
3.10 = =-= .
(8.10) dt le=v 21—+t

If we substitute (8.8) into (3.10) and then eliminate ¢ between this
result and (3.5), we get

I'(413) (22, 5(2')],s(2") = I'(2/3) (2'[2)"* [Js(2)]
—1'(4/3) (&' [2) 71, (&) 1 (7) — (22T (') - 1ys(2)]
where 2’ = z(t'). If we use the relations [7],

Jon(x) = (1/3)(2/2) 7" () — J_oi() ,

in 7/
Jis(0) () + I () ops(®) = ‘2_5_12‘5_3

and

r(3>r<l> — 7/sin7/3
3)" 3

we finally arrive at the equation

(3.11) [r(%) <-Z—'>113J_1,3(z’) ][ r(%) <—%’—)1/3J_1,3(z’)

-3 e |- g =0

We show that this equation has only one zero in (&, £), i.e., that
M [G] has only one extremum for ¢e(0,1). This will be the case if the
derivative of the expression on the left of (3.11) is of one sign for
2’ € (&, &). The following statements relate to this interval.

(1) [I(2/3)(7'/2)°J -, 4(2")], is negative and decreasing.

(i) —(2/3)"(4/3)('[2)"*],;(z"), is negative so that the quantity in
the second bracket also is negative.

(iii) The second bracket is decreasing.

The last statement requires verification. The derivative of the
quantity in question is

[P e e ()(5) "]

(iii) will be verified if we show that

3I'(213) (iovis T (Y — T (o
(3.12) 2ra) &2 e = Ju@) > 0,
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for ze (&, &). Since
E%(z/'z)sz/s(Z) = (2/2)*_(2) < 0,

we have
(z'|2)2/3J2,3(z’) 2 (51/2)2/3J2/3(§1) .

Furthermore max; .,.¢ Jis(2) < .52. Evaluation of (3.12) then gives the
desired result.

We thus conclude that the left-hand side of (8.11) is increasing and
hence, that \,[G] has only one extremum for e (0,1). But we know
that there is at least one minimum so that it must be determined by
(3.11), i.e., t,=1. From (3.11) we find by Newton’s method that
z(t,) = 2.73 so that t, = .104-... Therefore, we find that

MG, 8] > V]G, )] = 9.897- - -.

Corresponding to Theorem 2.2, we have the following.

THEOREM 3.2. Let NJpl, k=1,2, ---,n be the first n eigenvalues
of a string of unil length with fixed ends whose density is a continu-
ous convex function p(x). If NJ[G(x, V)], k=1,2, ««-,n are the first n
etgenvalues of a string whose density is the convex increasing function
G(x, t) defined in (3.1), then

Hlp(x)d”]dé Aol < éx;l[(}(m, t)]

where t, is a suitable value n [0, 1].

Evidently, the inequality is sharp. The proof has the same forma!
relationship to that of Theorem 8.1 as the proof of Theorem 2.2 had tc
that of Theorem 2.1. Since no additional ideas are involved, we omit
the proof.

Theorem 3.1 can be used to obtain an explicit lower bound for the
second eigenvalue \,[p] of the system (1.5) when p(x) is convex.

THEOREM 3.3. Let \,[p] be the second eigenvalue of a string with
convex density. Then

M[fo]glp(x)dx > 4, ,

where N, is the value defined in Theorem 3.1. This inequality 1s shary
and equality is attained for a string with density q(x) where

G — 2x, t,), xe0,1/2],

q(®) :{G(Zx —1,%), xe[1/2,1],
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G(z, t) and t, being defined as in Theorem 3.1.

Let wu,(x) be the eigenfunction corresponding to \,[p]. Then wu,(x)
has exactly one nodal point x,€(0,1). If we hold the string fixed at
this point, we get two independent strings, each of which has the lowest
eigenvalue \,[p]. By Theorem 3.1 and equation (1.6), the lowest eigen-
value of a string with a convex density satisfies the inequalities

Ao

(3-13) Ao[D] = T E— = )ul
wIS p(x)dx
0
and
(3.14) D] > Ao s

(@ - @) s

We may take the density function for which the bound in (8.18) is
attained to be

p) = aG(H =2 1), we 0, ],

1

where « is such that SI P(x)dx = lep(x)dx. For the second segment the
0 0
bound is attained for the density function

p(x) = BG(T — & to), x € [z, 1]

1

where 8 is such that Sl p(x)dx = lep(ac)dx .
g 0

Now, consider a string whose density function is defined by piecing
together the above densities at x,. This particular choice of p(x) then
gives us a convex function. The second eigenvalue \,[p], of the result-
ing string satisfies the relationship A\,[p] < max (¢, ¢/’). Hence, (3.13)
and (3.14) imply that

(8.15) Na[p] = Na[D]
where \,[D] is the second eigenvalue of
(3.16) u” + Ap(x)u = 0, u(0) =u(l)=0.

We now consider this system with p(x) replaced by

aG( ® -z to>x elo, z],
i) = v

BG( ’1”__;0 , t0>x ele, 1],
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where a and B are now determined by the conditions gla(x)dx =M, a>
. 0
0, 3>0and where », € [0, 1] is a free parameter. It is clear that g.1.b.c.6.)
M) < NP L N[p]. We may let 0M = S le(x)doc so that | q(x)dx =
0 T
(1 —6)M. We now show that smallest possible value of )\,[¢] is attained
when x, = 1/2 and 6 = 1/2.

Let N[q]=N\y(x,, 0). We first show that M,(z,, 6)>4\, if x, €0, 1/4)
or x, €(3/4,1]. Assume z,€[0, 1/4) and consider the case where z}, the
nodal point of the eigenfunction corresponding to \,(z,, 0), lies in the
interval [0, 1/4). If we hold the string fixed at «}, the resulting segments
each have a lowest eigenvalue M\,(x,, ). In particular, N\ (z,, 0) is the

lowest eigenvalue of the segment [0, 2;]. By Theorem 3.1 and equation
(1.6), we have

M@ 0> — Mo > X]({l .
) Sz‘a(x)dx N
0

But 2} < 1/4 so that MX,(x,, 0) > 4x,. It follows in the same way that
if ) e (3/4,1] then \y(z, 0) > 2\ (1 — 2})~*- M~ and hence we again have
M (), 6)>4x,. Similarly if x, € (3/4, 1] we conclude that M ,(x,, )>4x\,
so that this inequality holds unless z, € [1/4, 3/4].

Hence, we consider the system (3.16) with g(x) in place of p(x) where
x,€[1/4, 3/4]. With «, restricted in this manner, it follows that the
family of density functions g(x) is bounded uniformly. Hence, by Lem-
ma 1.3, there are value 2! and ¢’ such that \,(x}, 6°) = min, o \,[%,, 6] for
some density q°(x).

We first note that 2! must be a nodal point of the corresponding
eigenfunction, for otherwise we could hold the string fixed at the nodal
point and find another density which would give a lower second eigen-
value by the process which was used to obtain (3.15).

Thus, the lowest second eigenvalue is given by

M, 07 = o — Ao .
20 (1— a1 — o)

Solving for #°, we find °=1—29, so that \,[x?, 60°] = \y/(x}(1 — «9)). This
is obviously smallest when «} = 1/2, so that ¢° = 1/2. By (1.15) we then
have the desired result.

We now consider the higher eigenvalues of the system (1.5) when
p(x) is convex. Unfortunately, we cannot use the technique just de-
scribed for \,[p], since the resulting function will, in general, not be
convex. It is, however, possible to obtain a geometric characterization
of the extremal density.
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THEOREM 3.4. Let \,[p] be the nth eigenvalue of a string of umwit
length with fixed ends whose density is a continuous convex function
p(x). Then there is a string with the same total mass whose density
18 @ piecewise linear convex function q(x) with at most n + 1 distinct
linear segments such that

Na[p] = Nalq]

where \,[q] is the mth eigenvalue of the string with density q(x).

Let u,(x) be the mth eigenfunction of (1.5) when p(x) is convex.
As in the proof of Theorem 2.3, we use the fact that \, = J(p, u.),
where J(p, u) is the Rayleigh quotient (1.10). If we construct a func-
tion ¢(x) such that the inequality (2.11) is satisfied, then it follows as
in the proof of Theorem 2.3 that \,[q] < N\,[p]. Hence, it remains to be
shown that such a function g¢(x) exists.

We begin by carrying out a preliminary construction. As in Theorem
2.3, we denote the minimum points of u(x) by «,,k =0,1, ---, n, and
the maximum points by Z,,k=1,2, ---,n. We consider each of the
intervals (x,_,, )k = 1,2, ---, n separately. Let a(x) be any linear func-
tion such that a(x) < p(x), © € [%,_,, #,]. Then 7r(x) = max[a(x), 0] satis-
fies the inequality 0 < r(x) < p(z).

We now consider one of the intervals, say (x;-,, «,), where 1<k<n.
Let ¢, be any number such that ¢, > p(Z.). Then there is a number a,
such that

(3.18) Szk [a(x — ) + ¢c]dx = r" p(x)dx .

Tr—1
If a.(x — Z,) + ¢, > r(x), © € [, T;], then we define
9(%, ¢) = a(® — T) + ¢, T € [Ty, Ty
If ayx — ) + ¢, < r(x) for some z e [x,_,, Z.], we determine a, by the

condition

(3.19) S’“ r(@)da + Srf[ak(a: —F) + elde = S” p)dz |

where x) is such that a,(x, — ;) + ¢, = r(x;). We then define

7"(95) ’ S [xk—ly x;c] ’
ak(x - *’Tvk) + ¢, Xe€ [m;c’ :_E'lc] .

glc(xs Clc) = {
Likewise, we find b, such that

(3.20) [Zue = 7 + eulde = [*p@)de

Tk
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If by(x — Z,) + ¢, > r(x), © € [Ty, %], we define
hi(z, ¢;) = b(x — &) + ¢, © € [Ty, @]

If b(x —z,) + ¢, < r(x) for some x €|, ©,], we determine b, by the
condition

(3.21) [Ftbete — 20+ eldo + [ rnte = [*po)de

k
where xy satisfies b.(x) — Z,) + ¢, = r(x}), and define

jbk(x - jk) +c., xe lilc’ x;c,] ’

h(z, c,) = ,’}”(90) , xelxl, x,] .

We may consider a, and b, to be functions of ¢,, where ¢, > p(Z,).
In fact, they are continuous functions for any finite ¢,, since a small
change in ¢, can cause only a small change in either a, or b,. We want
to show that there is a value of ¢,, say ¢;, such that a, = b,, i.e., such
that a, — b, = 0 for ¢, = ¢. If ¢, = p(Z,), the convexity of p(x) implies
that the corresponding value of a, — b, is non-positive. Furthermore,
for ¢, sufficiently large, the corresponding value of a, — b, is positive.
But a, — b, is a continuous function of ¢, so that the desired value c;
exist.

We now let

gl\:(xy c;u) ’ T e |xk—17 jIc.I ’
hlc(xr Cl’c) ’ re [5:I£9 xk] .

q(x) = {

From (3.18) or (3.19), whichever applies, we have

™ gz = pade .
$Pg—-1 *Tp-1

Hence, the convexity of p(x) and the form of ¢,(x) imply (by Lemma
1.2) that

(3.22) [ a@ueie = " sapds

T -1 -1

Similarly, from (8.20) or (3.21) we have

(3.23) [ quomsda > [*pepie)ds .

We are now able to construct the function ¢(x) by complete induc-
tion. To avoid excessive detail, we carry out the proof only up to n=3.
In (%, x,), we set r(z) = 0, and form ¢,(x). In (x, x,) we also form g¢,(x)
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with r(x) = 0. Then, comparing q,(x,) and ¢,(«,), we have the following
alternatives:

(i) If qu(=) > qJ(=x), we form a new function g¢,(x) with r(x) =
max [q,(%), 0], € [, @,].

(ii) If qi(=x) < gx,), we form a new function g¢(x) with r(x) =
max [0’ q2(x)]’ re [xm xl]'

(i) If q.(z) = q(x,), we leave q,(x) and ¢,(x) as they are. Using
whichever alternative applies, we define

a(x), xe€[x, ],

PO = @), vels, .

Now, form q,(x) with »(z) = 0 for z € [x,, #;] and compare ¢*(x,) and
qs(%,). We have the same alternatives as above, the only difference in
procedure being that if ¢®(x,) < ¢i%,), we must redefine ¢ (x) with
r(x) = max|[0, g(x)] for x e |[x,, x,] .

It is clear that the induction can be carried out. Furthermore, the
resulting function ¢(x) will be convex, for by the above construction any
two adjacent linear segments of the graph of ¢(x) can only have a com-
mon point, such that the corresponding value of ¢(x) is less than or
equal to p(x). Because of this convexity, there is at most one subinter-
val over which ¢(x) = 0. Hence, for each of the points z,, k=1, -+, n,
there is at most one vertex of the graph of ¢(x), except for possibly the
one just mentioned. Thus, the graph of ¢(x) has at most n + 1 linear
segments. That ¢(x) satisfies the inequality (2.11) follows immediately
from (3.22) and (3.23). Hence, our theorem follows as in the proof of
Theorem 2.3.

4. Concave densities. In this section, we consider the system (1.5)
when p(x) is concave. We prove the following.

THEOREM 4.1. Let \[p] be the first eigenvalue of a string of unit

length with fixed ends whose density is a continuous concave function
p(x). Then

alpl| @) =

where N, = 6.952..-. The inequality is sharp, equality being attained
for a string whose density is the symmetric triangular function

4x , x¢€[0,1/2],

T(x) = {4(1 —x), ze[l/2,1].

We first assume that p(x) has finite left and right derivatives in the
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closed interval [0, 1]. We define f(x) = —p’(x), © €0, 1] where we have
set p.(0) = ».(0). We then define

(1 —1t), xel0,t],

g9(x, t) = {(1 —a)t, wxelt1].

It follows from integration by parts and the fact that

[Fdt = o) — pv

(p(t) is absolutely continuous) that
pe) = pO)(1 — @) + p(De + | e, DA
If we set G(z,t) = 2/t(1 — t) g, t), we get
pe) = | GG, 1t — /21dr(t)

Here, we have modified f(¢) so that the integral includes the terms
p(0)(1 — «) and p(1)x. By Lemma 1.1, we have

M) o) = min (66, )]
0 tefo,1]

The minimum exists by Lemma 1.3.
If either the right or left derivative is not finite in |0, 1], we con-
sider the system

WA+ Apu =0, u@)=ul—¢)=0,

where ¢ > 0is small. The above considerations then hold for this system
and we have

(1 = 29npL| p@)d = min MGG, 1)

Letting ¢ — 0, we have the desired result.
To find the value of ¢ for which )\[G(x, t)] is a minimum, we con-
sider the system

(4.1) W+ AG@, =0, w(0) =ul)=0.

It is convenient to translate the system to the interval [—1/2, 1/2].
Thus, we consider

(4.2) VNG, tw =0, v(—1/2) = »(1/2) =0,

where



460 DALLAS BANKS

pfrt1l - _ypca<i<ie,
2t 1 1

Gz, t) =
ol=20  _yoica<i.
Y

We show that )\ [Gy(x, )] is a minimum when ¢ = 0.

Following Hardy, Littlewood and Polya [6], we define the rearrange-
ment of a non-negative integrable function g(x), x€[—1/2, 1/2] into a
symmetrically decreasing function g(x), x € [—1/2,1/2]. To do this, con-
sider the set S = {x]|g(x) > y}, where y is some number in the range
of g(x). Let p{S} be the measure of the set S. We define the function

m(y) = p{x|g(x) > y}
and let

g@):{m4@m, xel0,1/2],
g(—x) , xe[-1/2,0].

where m~' denotes the inverse of m(y). In particular, since m(y)=1—y/2
for ¢ = G, y€|0, 2], we find that this symmetrization transforms G (z, t)
into Gy(z, 0). Thus

Gy(x, 0) = Gy(x, t) = 42(1 —2x), wel0,1/2],
2(1 +20), we[-1/2,0].

By a result of Beesack and Schwarz [2], the first eigenvalue of (4.2)
is greater than the first eigenvalue of

v+ \Gie, o =0, w(—1/2) = v(1/2) =0,

Le., M[G(x, H)] = NMG(w, 1/2)]. Hence, N[p] = M [G(z, 1/2)] = M[T(2)].
If we solve (4.1) with ¢t = 1/2 [7], we find the eigenvalues to be

MGz, 1/2)] = (9/2)z7 ,
where z, is the mth positive root of the equation
J—zls(z) =0

and J_,; is the Bessel function of order —2/3. Numerical calculation
gives the result

M[G(x, 1/2)] = 6.952- - ..
As in the case of monotone and convex densities, we have the fol-

lowing result for the first n eigenvalues of (1.5) when p(x) is concave.

THEOREM 4.2. Let N\ [p],k=1,2, .-+, n be the first n eitgenvalues
of a string of unit length with fixed ends whose density is a continuous
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concave function p(x). If M|[G(z,8)),k=1,2,--+,n, are the first n
etgenvalues of a string whose density is the triangular function

2% , zel0,t],
G(x, t) =

2(1:?) velt, 1] .

then

H:p(x)dx]_l kzl Ai'p) kZl < MG, )]

for suitable t,.

It is evident that the inequality is sharp. We omit the proof since
it contains no new ideas.

For the higher eigenvalues of (1.5), when p(x) is concave, we prove
the following.

THEOREM 4.3. Let \,[p] be the nth eigenvalue of a string of unit
length with fixed ends whose density is a continuous concave function
p(x). Then there is a string with the same total mass whose density
18 a precewise linear concave function q(x), where the graph of q(x) has
at most m + 1 linear segments and where q(0) = q(1) = 0, such that

NalD] = Nald]

where \,[q] is the nth eigenvalue of the string with density q(x).

We use the same construction as in the proof of Theorem 8.4. This
is possible, for if p(x) is concave, —p(x) is convex.

Let u,(x) be the nth eigenfunction of (1.5) when p(x) is concave.
As in § 2, we denote the nodal points of w,(x) by =, £k =0,1,2,-+., n,
and the maximum points by Z, k=1, ---,n. Then —wui(x) has the
maximum points 2.,k =0,1, .-+, 2, and the minimum points Z,, k =1,
2, «++,n. Over each of the intervals (Z,, ZTy.,), k=1, -+, n — 1, we way
define —gq,(x, ¢;) where now —p(x,) < ¢, <0, as in Theorem 3.4. As
before, there is a value of ¢, = ¢} such that g,(x, ¢}) is linear at x=u,.
For the intervals (0, z,) and (Z,, 1) we let ¢, = 0 and and ¢, = 0 so as to
define —q, (%, ¢,) and —g,(x, ¢,). Now using the same induction argument
as in Theorem 3.4, we form the functions —q,(%, ¢.) and obtain a func-
tion —q(«) which is convex and satisfies the inequality

(4.4) S:p(x)ui(x)dw < S:q(w)uidx .

Here, r(x) is always a linear function and is always negative. The
graph of —gq(x) consists of at most » + 1 linear segments, one for every
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point %, k = 0,1, -+, n, and ¢(x) is concave. By the argument used in
the proof of Theorem 2.3, it then follows that \,[p] > \.[q].

5. The general Sturm-Liouville system. We now turn to the Sturm-
Liouville system

(5.1) [r(x)u] + [Ap(x) — q(®)]w =0,
w'(0) — heu(0) = w'(1) + hu(l) =0,
where p(x) and ¢(x) are non-negative integrable functions, r(x)eC' is

positive, and h, > 0, h, > 0. The lowest eigenvalue of this system is
given by

:[r(w)u” + q(x)u’ldx

(5.2) M[p] = min S -
S p(x)wdx

u€e0’

’

where the functions w(x) satisfy the appropriate bonndary conditions.
It is easy to see that the conclusion of Lemma 1.1 also applies to

this differential system, i.e., if p(x) can be expressed in the form (1.8),
then

M) p@)de = g.1b MK, 1],

where \[K(x, t)] is the first eigenvalue of the system (5.1) with p(x)
replaced by K(x,t). Hence, it is possible to generalize Theorems 2.1,
3.1 and 4.1 to the system (5.1). We have

TIHEOREM 5.1. The densities p(x) wminimizing the expression
Xl[p]g p(x)dx, where ) [p] is the lowest eigenvalue of the system (5.1)
under? the assumptions

(a) p(x) ts monotone,

(b) p(x) is convex,

(c) p(x) is concave,
are of the same character as those discussed in Theorems 2.1, 3.1 and
4.1, respectively.

The proof of the theorem presents no new features. It should, how-
ever, be noted that the symmetrization argument used in the proof of
Theorem 4.1, cannot be applied unless ¢(x) and r(x) have the symmetric
property q(x) = g(1 — x) and 7(x) = r(1 — z). In the general case, all
that can be said is that the graph of the extremal density consists of
two linear segments passing through (0, 0) and (0, 1), respectively. It
should also be noted that the lack of symmetry in the boundary condi-
tion of (5.1) makes it impossible to tell, in general, whether the g.l.b.
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M [p] for monotone convex p(x) is approached in the case of increasing
p(x) or decreasing p(x).
We now consider the system

(5.3) w” + p(@) — q@)u =0, u(0) =u1)=0.

We denote the first eigenvalue of (5.3) by \,[p, ¢]. We have the follow-
ing lemma.

LEMMA 5.1. Let q(x) be of the form

4@ = | K@, noase
where K(x, t), g(t) and f(t) are as defined in Lemma 1.1; then
Mlp g] = g.1.b. M [p, QK(z, )],
where N [p, QK(x, t)] is the lowest etgenvalue of
w” + [Mp(r) — QK(, t)ju =0, u(0) =u(l) =0

and @ = Slq(x)dx.
0
By (5.2), we have

1

fur —|—B:K(x, t)g(t)df(t)]uz lda

1
S puidx
0

0

M, q] = minS

u€eqg’

Hence,

M [P, ¢] > min Slg(t) S:[(u’P/Q + K=, t)““]doc?
1 4 T uec’ Jo S:p(m)u2dx J,

= Q| gt [p, QK G, ]dr (D)

df(t)

= M@ g0 (t) 2. 1 b. M [, QK(w, )] -

But Q = Slg(t)df (t), so that the conclusion of the lemma follows .
0
If q(x) is concave, Lemma 5.1 yields the following result.

THEOREM 5.2. The lowest etgenvalue \,[p, q] of (5.3) when q(x) s
concave satisfies the inequality

N[0, ¢] = min \ [p, QG(x, t)]
t€[0,1]

where N [p, QG(x, t)] is the lowest eigenvalue of (5.3) with q(x) replaced
by QG(x, t), G(x, t) being defined by
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2% , xel0,t],
Gz, t) =

11—

2(1_t), xelt,1].

We first assume that ¢’.(0) and ¢’.(1) are finite. As in Theorem 4.1,
we may express q(x) as

4@ = | 6@ 1Kt - v/21d70) .
By Lemma 5.1, we have
(5.4) Mp, ) > g.1 b b, QGG 1)

If ¢'.(0) or ¢ (1) are not finite, we consider the system (5.3) with z re-
stricted to the interval [¢, 1 — ¢]. Transforming this system to the unit
interval, we see that (5.4) applies, so that letting ¢ — 0, we find that
(5.4) holds in general for concave gq(x).

Since ), [p, QG(x, t)] is a continuous function of ¢ € [0, 1], there must
be a value of ¢t for which the greatest lower bound is attained.

The same procedure can be made to yield corresponding results in
the case of monotone and convex densities.

We close this section with some remarks about the system

(5.4) w4+ @ =0, w0)=ul)=0,
where Slpdoc =1.
0

If p(x) is monotone increasing, then ), the lowest eigenvalue of
(5.4), satisfies \, > n%/4.

This follows immediately from Lemma 1.2 if we compare p(x) and
q(x) = 1.

Similarly, if we compare a concave density p(x) and q(x) = 2x, we
find that \,[p] satisfies the inequality

A= A
where )\, = 6.95.-+/4 is the lowest eigenvalue of (5.4) with p(x) = 2.

6. The vibrating rod. The eigenvalue problem associated with a
rod with clamped ends at * = a and x = is

(6.1) ¥ — po@)y =0, y)=1y(a)=yb) =y'(b) =0.

As in the case of the string, we may transform this system to the unit
interval. We have

(6.2) u® —ap@)u =0, u(0) ='(0)=ul)=u'(1)=0,
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where p(x) = (b — a)p[(b — a)x + a]. we note that Slp(oc)doc = Sb p(x)dex.

The eigenvalues g, [p],n = 1,2, -+, of (6.1) are related to those “of (6.2)
by the equation

>“n[p]:'(b_a’)a#n[lo]y n=1,2,°'-

The first eigenvalue of (6.2) is equal to the minimum of the Rayleigh
quotient

Sl(u”)de
(6.3) J(p, u) = L—-—
S p(x)udx

where u(x) ranges over all functions u e C* such that «(0) = »'(0) =0
and u(l) =«'(1) = 0.

The following results correspond to Theorems 2.1, 3.1 and 4.1 for
the string.

THEOREM 6.1. Let \,[p] be the lowest eigenvalue of a rod of unit
length with clamped ends. From the assumptions that

(a) p(x) is monotone,

(b) p(x) is convex,

(¢) p(x) 18 concave,

we have
Mpl] ple)do = (K@, 1)
where
0 , xef0,¢],
(@) Kz, t) = 1 , we(t, 1],
1—1t,
0 , X € [0, to] ’
(b’) K(m’ to) - 2(96 - to)
a—iy’ x € (t, 1],
2% , x€l0,¢)],
(2
(¢) K@ t)=] ,
—2
(T——_t[,) , Te [ty 1]

respectively, for suitable values of t,.
There is nothing new involved in the proof over that of the corre-
sponding theorems for the string. In fact, we need only replace the
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Rayleigh quotient of (1.5) by (6.3) and the respective proofs for the
corresponding string problem apply.

In the case of concave p(x), it can be shown that \,[p] takes its
smallest value for ¢, = 1/2, i.e., we have the following result.

THEOREM 6.2. If M\, [p] is the lowest eigenvalue of a rod with
clamped ends whose density function is a positive concave function p(x),
then

Mp)| pds = nld

where
4z , € [0! 1/2] ’

pi() = {
41 —-2z), x2€[l/2,1].

The proof will be based on the following result of Beesack [1].

THEOREM 6.3. Let p(x) be continuous and mon-negative for xe
[—1/2, 1/2] and let p(x) be the rearrangement of p(x) into symmetrically
decreasing order. Then the first eigenvalues of the system

(6.4) u™ —apx) =0, w(—1/2)=u'(—1/2) =u(1/2) =%'(1/2)=0,
and

(6.5) v* — pp(x)v =0, v(—1/2) =v'(—1/2) =»(1/2) =v'(1/2)=0.
satisfy the condition

(6.6) t[P] < N [p] .

The rearrangement of p(x) into symmetrically decreasing order is
defined as above in Theorem 4.1.

The proof of Theorem 6.2 follows immediately from Theorems 6.1
and 6.3, since the symmetrization of

2% , zel0,1],
K(x,t) =

2l =% = e 1],
11

is K(z, 1/2).
Theorem 6.3 also leads to a result corresponding to that of Krein
for a string with a bounded density function.

THEOREM 6.4. Let p(x) satisfy the condition 0 < p(x) < H < o,
xe[0,1]. Then the lowest eigenvalue \,[p] of a rod with clamped ends
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and density p(x) satisfies the inequality
1
Mol ple)ds =,

where N, 1s the lowest eigenvalue of the rod with density

0, xe[o, 12 — ﬁ),
2H

po(x) = H, we[1/2—2z—f‘4{—, 1/2+%j|,

0, xe<1/2+§Mﬁ, 1],

and where M = Slp(x)dx.
0

Let y.(x) be the first eigenfunction of a rod with clamped ends and
density 7(x), (the function resulting from symmetrization of p(x) about
# = 1/2). Then it is clear that p,(x), p(x) and y%(x) satisfy the hypo-
thesis of Lemma 1.2 over the interval [0, 1/2] so that

12 __ 1/2
SO p(x)yi(x)de < SO p(®)yi(x)d .
By symmetry, we have
1 1
[ pewi@is < | nEieds

Adding these two inequalities, we find

1 1
[wras  {wird
0 > 0

M [}_)] = = &7
Soﬁ(x)y‘fdx Sopo(w)yidw

>N

Hence, by Theorem 6.2 we have \,[p] > A,

We close this section with the remark that corresponding versions
of Theorem 6.1 hold if we replace the boundary conditions (6.2) by any
of the other boundary conditions used in the theory of the vibrating
rod.

7. The vibrating membrane. We consider a vibrating membrane
covering a simply connected domain D whose boundary is a Jordan curve
C. Let p(x, ) be the density of the membrane. We assume that p(x, y
is measurable and that

(7.1) 0<px,y)<H<L o, (x,y)eD.
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The eigenfunctions and the eigenvalues of this membrane, with the
boundary fixed at (z, %) € C, are determined by the integral equation [14]

u(z, 1) = ]| 6, v, & (e, Duce, iy,

where G(zx, ¥, £ 1) is the Green’s function of the domain D. We denote
the first eigenvalue by A, [»].
We define M and R by the relations

(7.3) M = SSDp(x, ydxdy , 7R*= dexdy

and let D* be the circle 2 4+ 4> < R®. In this section, we prove the
following two theorems concerning \,[p].

THEOREM 7.1. The minimum of )\ [p], subject to the restrictions
(7.1) and (7.3), is given by a membrane covering D* with density

H, 2 2£ 2
(7.4) P, ) = { vy sP
O , 92£x2+y2£R2

where p is defined by wp’H = M.
Let D be a convex domain. p(x, ¥) is concave in D if, for (x,y)e D
and (x,, ¥,) € D, we have

p< x, J2r B Y '; ?/2> < (1/2) [y, 4)) + D(@s ¥5)] -

For a concave density function, we have the following result.

THEOREM 7.2. Let \[p] be the lowest eigenvalue of a membrane,
with fixed edges, covering a convex domain D, whose density fumction
1s concave. Then

N [] SSD”(”’ ydxdy > 7\, ,

where A, = 8.26+-.. The inequality is sharp and equality is attained
for a circular membrane of radius R and density

3M

(7.5) (2, Y) = 1) = n'R3(R—T)’ 0<r<R,

where r* = x* + Y.

Krein [8] has conjectured the result of Theorem 7.1 for the case
where D = D*. The numerical value of the minimum is given by the
least positive root of
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J(V'NH p) — pJ (V' NH o)V \H In p|R =0 .

To prove these theorems, we use the extremal characterization of
MIpl, i.e., the first eigenvalue \,[p] of (7.2) is given by

(7.6) [Pl = g.1.b. J(p, w),
where J(p, u) is the Rayleigh quotient

grad u(z, ¥) ’dzdy

(1.7 )= s
[, 7o, v, yyzdy

and where the greatest lower bound is taken over all continuous funec-
tions with piecewise continuous first derivatives, such that # = 0 on C.

As the following lemma shows, the same result is obtained if u is
made subject to additional restrictions.

LEMMA 7.1. The first eigenvalue )\, [p] of (7.2) is given by
(7.8) M[pl=g. 1 b. J(p, u)

where J(p, u), is the Rayleigh quotient (7.7) and where the greatest
lower bound 1is taken over all analytic functions u(x, y) with uw = 0 on C.

Since p(x, ¥) is a measurable function, 1/p(x, y) is measurable. Hence,
there is a polynomial, Q(x, y), such that for arbitrary numbers 3, >0,
we have

(7.9) [Vp(z, ) — Qz, y)| < &

except on a set of measure less than 7. Furthermore, Q(z, ¥) may be
chosen such that q(z, y) = Q*x, y) is non-negative and is less than H.

We consider the membrane over the domain D with density q(x, y).
The eigenfunctions and eigenvalues will be determined by (7.2) with
p(x, y) replaced by q(x, ¥). In particular, we denote the first eigenvalue
by M[q]. Since q(z, ) is an analytic function in D, it is well known
that

(7.10) M [¢] = min J(g, ),

ue0™
where the minimum is taken over all the indicated functions for which
=0 on C. It is also well known that the eigenvalues of (7.2) are
continuous functionals of p(x, y). More precisely, for any & > 0, there
is a 8, > 0 such that

a1 [{ [],6%@ v, & N0V/3@ 9pE D — V@, D Didady dedn<s,
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implies
1 1
(7.12) — - <
MmIpl M)

It is easy to see that 8 and » may be chosen so that (7.9) implies (7.11)
and hence, also (7.12).

For any analytic function u(x, ¥) such that u = 0 on C, we now show
that there are values of & and » such that (7.9) implies

(7.13) [[J(p, W] — [J(g, w)]| < e

where ¢ > 0 is arbitrary and & and 7 are independent of w(x, ).
We have

A= |[J(p, W) — [J(g, ]| < [J(|p — g, w)].
Now |p—q|=VD +Vq | | VP —Vq|<2VHS, except on a set S
of measure less than 7. Hence,

— max u(x, ¥)
A < 2VHS[J(Q, w)]- + Hy—(=wep

SS | grad w *dxdy
D

By Rayleigh’s theorem on the first eigenvalue of a homogeneous mem-
brane [11], J(1, u) > ji/R? where j, is the least positive zero of the
Bessel function Jy(x) and R is defined by (7.3). Furthermore, if we let
Uy, = MAaX, 4ep (2, ¥), then

SS lgrad L i 2daody > 4rme ,
D U

where ¢ is the capacity of an infinite circular cylinder of radius R with
zero potential on the surface of the cylinder and potential one on the
axis of the cylinder [11]. Hence, we have

H

__R2
A<2VH—0 +
YH 4re

7,

so that (7.13) follows.

Let wu,(z, y) be the first eigenfunction corresponding to ),[q]. We
may choose & and 7 so that (7.12) and (7.13) hold simultaneously. Hence,
we have

(7.14) A 2] — [J(p, w)l| < A [p] — Ma]]
+ [[J(g, w)] — [J(p, )] | < 2¢,

for some function u,(x, ¥) which is analytic in D.
By (7.13) we have, for any analytic function u(x, y) that
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(7.15) [J(p, W] < [J(g, w)]" + €.
(7.10) and (7.12) then give
[J(p, W] < A'a] + e < \'[p] 2¢.
Since ¢ is small, we finally conclude that )\, [p] < J(p, u). This with (7.14)
gives (7.7).
We now introduce the symmetrization of p(x, y) with respect to a

line perpendicular to the (x, ¥)-plane, i.e., Schwarz symmetrization [11].
We may define it by considering the function

a(o) = p{(x, v), plx, y) > o}
where ¢ denotes the measure of the set indicated and where p is some
number between 0 and H. Then the symmetrization of p(x, ¥) is
p(e, y) = p(r) = a(zxr*), rel0, R]=D*,

where r* = a? + 9.
We now prove the following.

LEMMA 7.2. The lowest eigenvalue N\ [p] of (7.2) is bounded below
by the lowest eigenvalue )\ [D] of the membrane with fixed boundary
over D* and density p(x, y).

B. Schwarz [15] has shown that when p(x, y) e C’,

Mlp] > g.Lb. J[p, u],

u€eo’

where now the Rayleigh quotient is defined over D*. By Lemma 7.1,
it follows that )\, [p] > N\ [p]. The proof of Lemma 7.2 differs only in
detail from the proof of the result of Schwarz.

By Lemma 7.1, there is an analytic function u(x, ¥) such that

(7.16) M)+ e = J(p, w)
where ¢ > 0 is arbitrary. Let u(x, y) = u(r), r € D* be the above sym-
metrization of u(x,y). Schwarz shows that such a symmetrization of
an analytic function gives a function with piecewise continuous first
derivatives and it is further known [11] that
“ | grad w [*dady > SS | grad @ [*rdrd0 .
D D*
We also known [6], [11] that
SS (@, y)u(z, y)drdy é“ p(rya*(r)rdrdd .
D D*

Hence, we have from (7.16) and Lemma 7.1 that



472 DALLAS BANKS

M[p] + e > J(p, @) = \[D] .

But ¢ is arbitrary so that Lemma 7.2 follows.

We now prove Theorem 7.1. By Lemma 7.1, there is a symmetric
and analytic function #(x, y) = %(r), (x, y) € D*, such that for arbitrary
e>0,

NPl + e > J(p, @) .

#(r) may be chosen such that it is the first eigenfunction of a mem-
brane with a symmetric, analytic density q(x, ) = q(r), (x,y)e D*. In
this, case, the integral equation which gives (r) is equivalent to the
partial differential equation of this membrane. It is easily seen that
#(r) must have its only maximum at r = 0. We now compare the in-
tegrals

SSD*ﬁ(T)ﬁ(T)rdrdﬁ

and
Sgp*ﬁo(r)i(r)rdrdﬁ ,

where py(7) = Py, y) is defined by (7.4). From the definition of 2(r)
we have 0 < p(r) < H, 0 < r < R. Hence, p(r)r and py(r)r satisfy the
same relationship as p(x) and q(x) of Lemma 1.2. It then follows that

M[P]+ e = J(pyu) -

By Lemma 7.1, we have \,[p] > N\ [D,], since € is arbitrary. In view
of Lemma 7.2, this proves Theorem 7.1.

To prove Theorem 7.2, we again consider p(x, ¥) = p(r), (x, y) € D*.
This function is obtained by Schwarz symmetrization from p(x, v), (x, y) € D,
where D is a convex domain. We show that if p(z, y) is concave, then
so is p(x, ¥).

Consider the three dimensional set

S={xv,2)|(@yeD, 0<z<pk, v9)}.

This set is convex and Steiner symmetrization, i. e., symmetrization with
respect to a plane, preserves convexity [3]. Furthermore, »(x, y) may
be obtained by an infinite number of Steiner symmetrizations with re-
spect to planes through the origin which are perpendicular to (z, y)-plane
[3], [11]. This symmetrization of S gives

S={=v2|(@yeD, 0<z<p@y).

Clearly, p(x,y) will then be a concave function.
As in the proof of Theorem 7.1, there is an analytic function
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W(x, y) = a(r) whose only extremal value is the maximum at » = 0 such
that \,[p] + ¢ > J(p, #). Since wu(r) is concave, p(r) and p(r) satisfy
the relation PDy(r) > p(r) for r e (0, r) where r,€ (0, R) and p,(r) < p(r)
for re(r, R). Hence, rp,(r) and rp(r) are related in the same way as
p(x) and g(x) in Lemma 1.2, As in Theorem 7.1, we have )\, [D] = N\ [Do]-
By Lemma 7.2, Theorem 7.2 then follows.

Using well-known techniques for the computation of eigenvalues
[4], we find that the lowest eigenvalue \,[p] of (7.2), where p(x,y) is
concave, satisfies the relation

SSDp(wv ydaxdy -z [p] > (3.26. )7 .

Z. Nehari has shown [10] that if p(x, y) is superharmonic, then )\,[p]
satisfies

Sgnp(w, y)dzdynm[p] < 755

where j, is the least positive zero of Jy(x), the Bessel function of order
zero. But a concave function is superharmonic [12] so that the bound
also applies in our problem. Thus, if p(z, y) is concave in a convex do-
main,

3.26m < SS o(x, y)dxedyn, [p] < 7Jh .
D
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