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l Introduction* Resume of some previous results*1 Let B be a
domain in the zlf z2-space2 possessing a Bergman kernel function K{B)(zlf

£2; t1912), (zlf z2) e B, (t19t2) e B. By identifying the arguments (tlf t2) — (zlf z2)

one obtains the function Km == K{B)(zlf z2) = Km(zlf z2; zlf z2) which plays
an essential role in the theory of pseudo-conformal transformations. An
important application to this theory is the theorem proved by S. Berg-
man stating that the metric

{B) v T
dzmdzn

is invariant under pseudo-conformal transformations (B. [1], p. 52). From
this follows that all measures of geometric objects in B which are based
on the metric (1.1) are also invariant under pseudo-conformal transfor-
mations.

In the present paper we are concerned in particular with the Rίemann
Curvature of (1.1) in an analytic direction (see definition in section 3).
Since the second derivatives of the function log K{B)(z19 z2) are the main
constituent in the definition of the curvature, we at first discuss bounds
for their distortion under pseudo-conformal transformation (see Theorem
1). For this purpose, Bergman's method of the minimum integral is
used (B. [3], p. 48; K. [1]; S. [1]):

Relations among various solutions of minimum problems of the type

(1.2) 1 \f(z) \2dω = min = λB (dω = volume element) ,
JB

are studied (see Theorems 2 and 3). Here f(z) are analytic functions,

Received September 28, 1959. The author wishes to thank Mr. M. Maschler for value-
able help in preparing the manuscript for publication.

1 Square brackets refer to the bibliography at the end of the paper. We use the ab-
breviations B. = Bergman, F. = Fuchs, K. = Kobayashi, S. = Stark.

2 In the present paper we consider only domains in the space of two complex variables.
The generalization of the methods to the space of more complex variables involves difficul-
ties of technical nature only.
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regular in B and subject to certain auxiliary conditions. By varying
these conditions, one obtains different λ/s. (Upper and lower indices on
XB indicate the auxiliary conditions, as described, e. g., at the end of this
section.) The method of the minimum integral, which is applied in order
to obtain bounds and distortion theorems for various quantities having
a geometrical meaning, is based on the fact that these λ/s depend
monotonically on the domain B (see (1.6), (1.7)). Indeed, if, for instance,
one can express these quantities and/or their distortion in terms of the
λ/s, and if one knows that there exist "domains of comparison" 7 and
A such that I c ΰ c A , then, using the relations among the λ's, one can
estimate the geometrical quantities and/or their distortion in terms of
the λ/s and the λ/s. In general, I and A are required to be domains
for which the kernel function can be expressed in a closed form; there-
fore, the various λ's can be estimated if one knows how to express them
in terms of the kernel function. This is done in B. [2], pp. 41-43, (see
(1.5)), and in §2, (see (2.2)).

Using the method of the minimum integral, Fuchs [1] has obtained
an expression for the curvature in analytic direction R, in terms of
certain λ/s, (see (3.6)). From this expression a bound for R is derived
in terms of the corresponding λ/s and λ/s, where I and A are domains
of comparison, IaBaA, (see (3.7)). It is shown in Theorem 4 and in
the example which follows that this bound can be sharpened if a bound
for the volume of B is given, and if a finite number of orthogonal func-
tions in B and certain integrals over B with weighting functions de-
pending only on A are known.

In order to prove some of the relations among the various λ's, we
use some results which were obtained in S. [1] and B. [4] p. 97 if.
These results and the definitions of the λ's, used in S. [1], will be stated
now for the convenience of the reader:

Consider the following general minimum problem: Let {φ{v)(z)},v =
1,2, •••, be a system of functions orthogonal in a domain B3 and com-
plete for the class ^f\B). Let aqp, q = 1, 2, , n, p = 1, 2, , be a
system of conplex numbers such that ΣΓ=i I α̂v |2<°° for q = l, 2, , n.
Let Xl9 ,Xn be complex numbers. Finally, let λ represent the minimum
of the integral

(1.3) ( \f\2dω = ΣAA, Λ=ί f-φ^dω ,
JB V = l JB

for functions fe£f\B) and satisfying

(1.4) ΣiA^aq> = Xqf g = l ,2 , ,w;

then ([Cf. B. (2), pp. 41-43; S. (1), (2.13)])
3 In the sense that f φ'v \z) φ'^>(z)dω = £ μ v , where δ^ = 0 for μ Φ v, £Vv = l. £\B) is

the class of functions /(z) which are regular in B and for which \ \f(z)\Wω < <*>.
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(1.5) λ = — o (xy
(X)

+ I (D) I,

where (X) is the column matrix of n rows having X,, as elements in the
rth row, (X)' is the transpose of (X), conjugated; (D) is the square
matrix of n rows having 'ΣJζ=mocr-,άsy as element in the r th row, sth
column, and | (D) | is the determinant of (D).

Denote by (l)-(8) the auxiliary conditions

( 1 )
( 2 )
( 3 ) fH(t) = l
( 4 ) / f l(ί) = 0
( 5 ) /.,(«) = 1
( 6 ) /.,(«) = <>

( 7 ) \fdω =
JB

( 8 ) ux{dfldz^t

and let

(a) X\

(e) λ**1

(i) XT

+ u2(dfldz2)t = 1, uu u2 complex numbers;

(b) λ̂ 1

(f) λ0/1

(j) xr

(c) XT

(g) λ r
(k) x1!

(d)

(h)

(1) λ̂ 2>

be the minima of the integral (1.2), for functions fe£f\B) which are
normalized at teB by the respective auxiliary conditions

(a): (1); (b): (2) and (3); (c): (2), (4) and (5);

(d): (3); (e): (5); (f): (2) and (5);

(g): (4) and (5); (h): (1) and (6); ( i ) : (2), (3) and (6);

(j): (3) and (6); (k): (1) and (4); (1): (2) and (8);
m ) l o i ,

Let G be a domain containing a domain B, BaG; we denote by

(n) XlB (O) λ ^ (p) λJS (q) X°ΘV

(r) K10B (s) λ $ ; (XB = λΛ(ί), ί e B),

the minima of the integral

for functions fe^f2(G) and normalized a t teB by the conditions
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(n): (1) and (7); (o): (2), (3) and (7);

(p): (2), (4), (5) and (7); (q): (2), (5) and (7);

(r): (2), (3), (6) and (7); (s): (2), (7) and (8) .

It follows from the definitions of the various λ's that

(1.6) λ7 < XB < XA for domains 7, B, A such that IaBdA

(1.7) XAB > XBB for domains A, B such that Az)B

(See S. [1], (3.7a). (3.7b)). From these inequalities the following result
can be deduced4:

LEMMA. Let B be any domain with finite Euclidian volume, in
the (z19 z2)~space, such that Vol B < V < cα. Then if I and A are any do-
mains IaBaA, we have

(1.8)

(1.9) (l/λ2) > {1 - (X\IV)} (1IXO]

(1.10) (I/XT) > {1 - (X)°l V)} (1/λS) + (Xfl V) (1/λ*01)

(1.11) (l/λ°Γ) > {1 - (λ}/7)} (1/λ-1) + (λ}/

(1.13) (l/λ^2)) > {1 - (XIIV)} (l/λi«) + (λV7)(l/λϊ>)

at t = (ίx, ί2) e 7.

2* Distortion theorems under some assumptions about the structure
of the domain. If integrals over a domain B of the type

(2.1)
Γ r

KU){ζ, ξ)dωζdωζ, v - 1, 2 ,

are known, where A is a domain which contains the domain B, then in
(1.8)-(1.13) the terms involving the XAB can be evaluated. For, if XAB is
any one of the λ's with double subindex in (1.8)-(1.13), then the relation
between XAB and the λ^ which has the same upper indices is described
as follows: Let ψM(z), z = (z19z2)eA, v = l, 2, ,be a complete ortho-
normal system of functions for the class £f2(A), then each function f(z)
of this class can be represented in the form: /(^) = Σvoo=i4^!v)(^)>
and the series converges absolutely and uniformly in any closed subdo-
main of A. Therefore, each of the λ/s is a special case of the general
minimum problem described in (1.3), (1.4)5. Thus it follows from (1.5)

* This is Theorem 2 of (S. [1]).
6 In these formulas replace B by A.



MINIMUM PROBLEMS IN THE THEORY OF PSEUDO-CONFORMAL 1025

that each λ̂  can be written in the form XA = — | (N) | -r- | (D) |, where
I (D) I is as in (1.5) and (N) is the matrix whose determinant occurs in
the numerator of (1.5).

Since KU)(z, ξ) = Σ*ΨM(z)ΨM(ξ)> t h e matrices (N) and (D) depend
only upon KU)(z, ξ) and its derivatives at the points z = t, ξ = t, and
in the case of λ^2) also upon ulf u2.

LEMMA. IfXA = — \(N)\ -ί- \(D)\9 where (N) and (D) are used as ex-
plained above, then the corresponding XABJ i. e., the XAB which has the
same upper indices as XAf can be expressed in the form

(2.2) XAB = -

Here

and

(N)
(U)

[[

(UY
E

(D)
(W)

ξ)dwζdwξ

(wy
E

(0,WuWt, ; Wn)

are row matrices6, and (U)' is the transpose of the row matrix whose
elements are the conjugates of the elements of (U); the same rule applies to
(W)'. The elements Wv depend only upon the expressions (2.1), and in
the case of X% also upon ux, us.

E.g., for

\ -> 1 Λ 01 \ 001 -v (2)

^AB — "ΆBI ΛMB> Λ ABI " AB >

we have, using the notation

(W) =

(W) = (#«>(£, t)dωζ,^K^(ζ, t)dωζ, \κ^{ζ, t)dωζ) ,

(ξ, t)dωζ, ΰx \κ^(ζ, t)dωζ + ΰ2\BK^(ζ, t)dωζ ,

respectively.

6 Note that (X) in (1.5) is a column matrix.
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Proof. We shall prove (2.2) only for the case of \°}B. The proof for
the other cases can be carried out along the same lines.

Let 9>v(z) be a complete orthogonal system for the class
Choosing n = 2, m = 1, α l v = φ*(t),

Xλ = 0, X2 - 1 ,
dz1

the general minimum problem of §1 (B is replaced by A) becomes the
minimum problem for λ^1.

The elements of the matrix (D) in (1.5) become values of the par-
tial derivatives of the kernel function and (1.5) is reduced to

where

\SU\

1°
0

\l

0

•^•oo"ΰϋ

1000

1
Jζ{A)

0010

lOΪό

and Su is the matrix which one obtains by deletion of the first row and
the first column from the matrix S. Here

If we choose m = 1, n = 3, α l v = φ»(t), α 2 v = dφ*(z19 z2)ldz1\z=t

,(ξ)dωζ, X, - 0, X2 - 1, X, - 0= (

then the same general minimum problem becomes the minimum problem
for X°A

ι

B, and (1.5) becomes XojB = - | Γ|/| Tu\
where

T =
0

v° Jβ

0 0 \

ί Ku±~(ζ,
) B OO1° V

and Tu is the matrix which one obtains by deletion of the first row and

the first column from the matrix Γ. Since Ku)(z, t) = KU)(t, z), we have

that this expression for X°jB is equivalent to (2.2).
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Other assumptions about B permit further estimates: E.g., let
{φ{

o

σ)(zlf z2)}, σ = 1, 2, , r — 1, φ^ (z19 z2) = constant, be a set of inde-
pendent functions of the class ^f\B). Let {φiσ)(zlf z2)}, σ=l, 2, , r—1,
be functions obtained by orthonormalizing over B the set {φ^(zlf z2)},
σ = 1, 2, , r — 1. If we assume that integrals over B of the type

(2.3) JB
, t)dωζ

m,n = 1, 2, , r — 1

are known, then we can use the relation

(2.4) (1/λi) > (1/λW) + Σ I'
σ = l

where

(2.5) λW - I (Pmn) I -

Here (Pww) is the square matrix whose elements Pm w are given by (2.3);

I (Pmn) I is the determinant of (Pmn), (Un) is the row matrix (UJJ^ Ur^)f

and (Uny is the transpose of (Un) conjugated.7 Notice that X\B2 = X\B.

Let

Wv) - 1, 2, - 1, = 1, 2,

be sets of functions8 such that each set consists of independent func-
tions and each function belongs to £f\B). Further, let {φ{)}, {#(v)},
{/3(v)}, v ~ 1, 2, , be sets of orthonormal functions such that each set
is complete for £f\B)f and such that the first functions of each sequ-
ence are obtained respectively by orthonormalizing over B the sets {φ{

Q

σ)},
K v ) } and {/SH F o r any domain G, G=)£, we define λ°ώ^ρ, λ | i r, λ 0 ^ ,
λ^J;1, in the same manner as we defined λ^, λ^, \%*J9 λll 1, except that
auxiliary condition (7) of § 1 is replaced respectively by the conditions

(2.6)
f φpfdω = 0,σ = 1,2,.. , r - 1;
JB

γM fdω = 0, v = 1, 2, , p — 1; and

i = 0, μ= 1, 2, • -, ςr — 1 .

7 A formula similar to (2.4) is proved in B. [1, 4] for the case in which the domains
are two-dimensional. (Extension to the case of four-dimensional domains offers no difficulty.)

E.g., = {l,Sl, ,Zl
(σ) Λ f
0 } = {
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REMARK. Conditions (2.6) do not change if one replaces β^, φ{

Q

σ), α<Sv),
by other linearly independent functions which are respectively linear com-
binations of the previous functions. In particular, these functions can
be replaced by /3(/λ), φ{σ), α ( v ), respectively.

THEOREM 1. Let J3* be the image of a domain B under a pseudo-
conformal transformation zt — z*(z19 z2), k = 1, 2, normalized at t by
(βzΐldzt)t = Skl. Here t = (t1912) e B, z*(tlf t2) = t*, δvv - 1, and δv μ = 0 for
v Φ μ. Further, let I and A be domains of comparison for B such that
t e IdBdA. Finally, let {φ{σ) (zlf z2)}, σ = 1, 2, , r - 1, {α(v)(^)}, v =
1, 2, , p — 1, and {β{μ)(z2)}, μ=l, 2, , q — 1, be three sets of functions
possessing the properties

(2.7) [ φ«ψ*dω = 8σΛ a^a^dω = Svjfc, f

Then9

<2 8 a > <[ 9 >log

g-1 Γ r-1 -\)

+ to)1 ΣIβίμ) I2 (i/λ!L) + Σ K ' I2

μ=l L σ=l L J j *

Σ

l*Σ|l - λl*Σ|α ( v >

+ (M)2 Σ I «<v) if (l/λ!i;) + Σ I <» |2Ίi
(2.8b) ^ [ g l b g κ ι m ^^ pyotfQf*^

< {(l/xr'fίi/λU) + ΣI ΨM \*]\2_t

The X's bearing multiple subscripts are functions of

KU){ty ί), K^- = [θ»+"+»+*KU)(z, t)ldzmdt?dtυ

2]z=t

v + μ + u + v = l,2, and a finite number of integrals over B with
weighting functions depending only upon A.

REMARKS: For two given domains, the theorem gives necessary
conditions in terms of various properties that one of the domains can

9 We use the abbreviations z = (zi, zύ> t = (ίi, t%).
1 0 Concerning the symbols λ\βr see pp. 6 and 14.
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be mapped onto the other by a transformation of the type described.
The middle terms in (2.8a), (2.8b) depend only upon B*, ί*.

For our proof we need certain relations between the λ's which we
formulate in the

THEOREM 2. The following relations hold:

(2.9) (1/λS) - ( 1 / n W J + λ1*. Σ I p» I2- {(1/λ*1) - (1/λ^W) ,

(2.10) (1/λΓ) = (1/λi A,) + K-Σ, I « M |2 {(l/λ**1) - (l/λi*ΛP)} ,
l

(2.11) (l/λί1) = (l/λsw + ΣI < ' I2,

(2.12) (1/λΓ1) = (l/λί£) + Σ I < ' I2 >
σ=l *

(2.13) (1/λϊ) > ( l - λ} Σ I /3<μ) |2)(l/λ°iB**β)

2! .

(2.i4) (l/λ0/1) > ( I - λi Σ i «(v) ήσ/λϊϊ?*,)
\ V=l /

+ λ} S | α"" |2{(l/λ**r>) + Σ l ̂ ζ ' I2} .
V-l ( σ = l 2 j

Proof. To establish (2.9) we evaluate λgΛ**β, λ2, λl1, and λ^ using
(1.5) by taking for (m, n, Xlf X2f alv, α2v) the values (q, 2, 0,1, /3(v), /8 )̂»
(1, 2, 0,1, /^\ /8iJ>), (1,1,1, - , βζ\ -Y1 and (1,1, 1, - , β™, - ) respec-
tively, where /5(v) and βζ> are evaluated at t = (tlf t2). Now all the λ's
of (2.9) are expressed in terms of {/5(v)}, v = 1,2, , and their deriva-
tives at ί, and the relation between these λ's is easily verified to be
(2.9). Equation (2.10)-(2.12) are established in the same manner by using
in (1.5) for X°*B\P, λ

0/1, λ**1, λi, λ*^, λ*1, λ**,1, λ**1, values of (m,n,X19

X*f «iv, oc2v) respectively as follows: (p, 2, 0,1, α { v ), a™)9 (1, 2, 0,1, α ( v ), αi2

v)),
(1,1,1, - , aζ\ - ) , (1,1,1, _ , a*\ - ) , (r, 1,1, _ , φ™-), (1,1,1, _ , ^ ,
_ ) , (r, 1,1, _ , ^ > f - ) , and (1,1,1, - , φζ, - ) .

From the relations (1/λi) > Σ?=i I β{μ) \\ (1/λi) > Σ"=i I <*(v) I2» J t f o 1 -
lows that the coefficients before the braces in (2.9) and (2.10) are each
less than or equal to 1. By essentially the same reasoning used to derive
(1.7) (see S. [1], (3.7b)), we obtain.

y AID £> .

ii " _ " means no special value is required for this quantity.
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Equations (2.9) and (2.10) are of the form12

(2.16)

where λ£ 0 < 1, and where the auxiliary condition associated with
are among the auxiliary conditions associated with λjBJ5(S). Hence

*, and the brace in (2.16) is non-negative. By use of (2.15), and since

+ λr flf{(l/λ5f>)

we have

(2.17) (l/λΛ) > (1 - λr ffXl/λ^^,) +

Using (2.15) in (2.11) and (2.12), and substituting the resulting inequali-
ties into (2.17), we obtain (2.13) and (2.14). This completes the proof of
Theorem 2 and we begin with the proof of the Theorem 1.

Since

μv
-̂i rp __.

(see (1.1)), it follows from the normalization that

From the relation

XX. \*Ίt &2* Λ l > ( C 2 / — •*•*- \"Ί * "2 y "1 f

(see B. [2]), it follows that the last two equalities are equivalent to

(λi/λS). - Tg* s

and

Using the bounds for λi, λg, and λ̂ *1 as given by (2.4), (2.13), and (2.14),
we obtain (2.8a) and (2.8b).

To complete the proof of Theorem 1 we need only show that in
(2.8a) and (2.8b) the λ's bearing multiple subscripts are expressible in

12 (2.16) becomes (2.9) if we set λB = 4 \ XBBW = *BB**q. λB = *B, 4 * ) = λP a n d

9 = Σ μ ΐ J ^ ^ I 2 ; (2.16) becomes (2.10) if we set λB = λB*\ XBBIS) = 4*AP)>
 λB = *B> 4* J =

Λj*1, and gr = Σ v l ί l α ( v ) ί2- T h e symbol (S) in XBB(S) means that some additional conditions
are superimposed in addition to the conditions (n) — (s), see p. 6.
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terms of Ku\ K{^, v + μ + u + v = l,2, and a finite number of integrals over
B with certain weighting functions independent of B. That this is true
for X\Br is shown by (2.4). Let {^(v)}, v = 1, 2, , be a system of or-
thonormal functions over A complete for J?f2(A). Xι

ABr is the minimum of

, 4 - \fψ*dω,
JA

for functions / e ̂ f\A) and satisfying

A(ί) = Σ ^ ( ί ) = 1, f W)(ξ
1 v = l l JB

0 μ = l,2, , r - l .
V=l JB

T h u s X*Br c a n b e e v a l u a t e d u s i n g (1.5) a n d t a k i n g ΎYI — Xx = l,n — r,

fX2 = . . . = χr = 0, αlv = ψ̂ >, αfcv = f ^ r ^ ^PWα*, 2 < fc < r. Like-

wise λjί,?, λ2B48#β and X°AB*P are evaluated in the form required by the
theorem by substituting in (1.5) the values

(2.18) m = 1, n = r, Xλ = 1, X2 - . = Xr - 0 ,

f, 2 < k < r;
B

(2.19) m = l,n = q+l,X1 = 0,X1 = l,X3=- -

= Xq+ι = 0, α l v = ψM, a2v = ψζ\ α fcv

= 1 βoIC~2)(ζ2)ψ{v)(ζ)dωζf 3 < k < q + 1;

(2.20) m = l,n = p + l,X1 = 0,X2 = l,XSi= •

respectively. This completes the proof of the theorem.

3. Curvature in an analytic direction* In this paragraph we con-
sider the Riemann curvature of Bergman's metric.

m,n=l m dZmdzn

is the metric defined in a domain 2?, where the formal operations are
carried out as if zlf z2, zlt z2 were independent coordinates. The compo-
nents of the fundamental tensor of the Riemannian geometry defined by
(3.1) are then

011 = 012 = 022 = 01Ϊ = 012" = 022 = 0 ,

„ _ JL rp ~ _ -i- rp „ -»- rp _ rt — T"* —

— Y 11' 012 — — 12, 021 — — 21, 022 ~ — 22,
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where now

(3.2) = Σμ,V=l,2,l,2 Σ

Taking the usual formula for the Riemannian curvature of the metric

Σμ,v=i,2.r,2^μv^^v in the plane defined by the vectors {ua}, {va},a =

1, 2, Γ, 2(Va = ΰaf v* = v«) we obtain

(3.3)

where

Σ = Σ i i T_

and RnM are the usual Riemann symbols of the first kind.
If {vΛ} belongs to the same analytic plane as {ua} (i.e., if vcύ=aucύf

v* = au«f then (3.3) becomes what is called the curvature in the analy-
tic direction {ua}, a = 1, 2(B. [2], p. 54)

jπ> μvfc

where

2 WΊ1 — 2 — Λ T ' - Λ T ' —
V ^ _ _ >Γ^ ΊD_ _ u •* μ\ I >Γ^ 'Γ'fcp ^ - ^ μ p f -̂  fcλ
/ j — y^ i > •*^'λαίμβ~T TZ " Ί ~ ^ j •*- * * ~

7l,μ,V,fc=l OZjϋZβ P,fc = l α^Q. 9<2β

ΛΓTil ΛΓT _ / TΛ ΠΠ12 T^ _ / 7") '7^21 '7^— / 7~) ΛΓ̂ 22 T"J _ / 7~)
i — JL 221 ISf -*- — J- 2ll-*-^t •*- — -*- 121 -^t -*- — •*- 111 •*--' f

J-J — Λ. n 1 22 -t- 12 * -ί 21

Using Bergman's method of the minimum integral, Fuchs [1] has
obtained the following result. Let Xψ = Xψ(t), t = (ίx, ί2) e B denote the
minimum of the integral

(3.4) \ \f\2dω, dω — dx1dy1dx2dy2
J -B

for functions / e £f2(B),f = f(z) = f(zlf z2), zk = x^ + ίyk, k = 1, 2, and
normalized by the auxiliary conditions

/(«) = /io(O =/oi(«) = 0, ulMt) + Zu^f^t) + ulfO2(t) = 1

where fmn(t) = [dm+nfldz?dz2]t; ux and u2 are arbitrary fixed complex num-
bers, then

13 I.e., in the summation, both μ and v take the values 1, 2,1, 2; Z v = Zv.
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( 3 5 ) Xψ = ΊFΓo ^ r ' Σ ^ Σ ,

Using (3.5), the relation 1JK = VB and the relation

(see B. [2], p. 53), we have

(3.6) 2 - R = λjf/λg3 , JB =

Since λ̂ 2) and λg3 are positive, it follows from (3.6) that the curva-
ture in an arbitrary analytic direction is less than 2. (B. [2], p. 54; F. [1]).

Let I and i , ί e ί c S c i , be domains of comparison for the given
domain B. Then from (3.6) and the monotonicity of the λ's, we obtain

(3.7) R<2- (λ|2)/λci]) .

We shall show that the inequality (3.7) can be improved in certain
cases if information about B of the following types is given: (1) Volume
B < V, where V is a known number, (2) a few functions orthonormal
over Bf and (3) certain moments over B with weighting functions de-
pending only upon I and A. We assume that

(3.8) VolA> V>Yo\B, IaBcA.

We shall show that this information leads to an improvement in (8.7)
for some cases.

Define λc/3] == λc/3](ί), t e B to be the minimum of the integral (3.4)
for functions fe ^f\B) and normalized by the auxiliary conditions flo(t) =
/oi(*) = 0, u\f20{t) + 2 2 ^ fu(ί) + u2

2f02(t) = 1, where ux and u2 are arbitrary
fixed complex numbers.

Let

μ — 1,2, * , q — 1, be sets of functions satisfying

( a^ a^dω = δvfc, [ β^ ^dω = δμfc ,
J β }B

8pk = 0,pφk, 8kk = 1. We define λgg, λ ^ , λ^U* for BaG to be the
minima of the integral

(3.9) f \f\>dω

for functions / e J*f\G) and normalized by the respective sets of auxi-
liary conditions
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= /oi(ί) - 0, u\fM(t) + 2

fjjt) = 1, ( fdω - 0;

following relations hold

(1/λffl) + ( - (1/λSS)}

1. /(*) = Mt

+ v

2. Λo(t) = O,

3. /io(ί) = O,

THEOREM 3.

(3.11)

where FB =

(3.13)

Proo/. Let {^(σ)(2;)}, <J = 1, 2, , ψ(1) = (Vol β)~1/2, be a set of or-
thonormal functions complete for ^f\B). The minima λg3, λc/3] and λ̂ 3]
are expressed in terms of u19 u2 and sums involving the functions {̂ (σ)}
and their derivatives by taking in (1.5) values of [m, n, Xx X2, -3Γ3, X*, an,
α2V, α3v, α4v,], respectively, as follows:

[1, 4, 0, 0, 0,1, φ™(t), «>(i), W(ί), # ] ,

[1,3,0,0,1, ~ , t i o v ) ( i ) , t i r ( i ) ^ i - ] ,

(1/λ*01) -

and

where

[2, 4, 0, 0, 0,1, γ ( v ϊ(ί),

The minima occurring in FB (see (3.11)) are expressed in terms of
ulf u2 and sums involving {̂ (v)} and their derivatives as indicated in the
proof of Theorem 1. Combining the expressions for the minima so as to
eliminate ulf u2 and the sums involving {ψ{σ)} and their derivatives, we
obtain (3.11). Relations (3.12) and (3.13) are established in a similar
manner. To express λJJ1** and Xi0B**q *n terms of sums involving {ψM}
and their derivatives, we take in (1.5) values of [m, n, Xlf X2, α lv, α2v],
respectively as follows: [p, 2, 0,1, ^ ( ί ) , ̂ ( ί ) ] , [?, 2, 0,1, ψ%(t), ψff(t)].
To find similar expressions for the other minima in (3.12) and (3.13), see
the proof of Theorem 2.
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THEOREM 4. Let B be a given domain in the (zlf z2)-space having
interior and exterior domains of comparison I and A, Let the point
t = (tlf t2) e / and R be the Riemann curvature at t in the analytic direc-
tion (ulfu2)7 of the Bergman metric (3.1) where K = K{B)(z,z) is the
kernel function of B. Let {φ{σ)(zlf z2)}, σ = 1, 2, , r — 1, {α(v)(^)}, v =
1, 2, , p — 1, {β[fX)(z2)}, μ — 1, 2, , q — 1, be three sets of functions
possessing the properties

(3.14) f ψ^ψ^dω = δσfc, ( a^a^dω = δvfc, ( β^W'dω = δμk,
j £ JB JB

δPS = 0,pφk, 8hk = l .

Then

(3.15) R < 2 - λf'L

where

L = max {(1/λM), (1/λffl)

F > Vol B, F = X)KXfiF1Ft ,

F1 = max {(1/λ!1), d/λHr) + g

F2 = max](l/λί01), VX,/MS**Q/ -, ^

(Λ IΛ *01 \ _1_ Λ * 1 / V 1 I /v(V) I 2 \ Γ/1 K * * 1 \

where the X's are solutions of minimum problems depending upon
the domains indicated in the subscripts, and where the λ's bearing
multiple subscripts depend only upon the kernel function of A, the first
few derivatives of the kernel function of A, a finite number of integrals
over B with weighting functions depending only upon A, and in the
case of Xι2l also upon ulf u2.

Proof. From the definitions it is clear that

(3.16) λ^*33 < λg] < XψB

Hence (3.11) implies

(3.17) FBIYOI B Ξ= (XI. λ°i λD/tλ*1 λ|0 1 Vol B) < 1 .

Using the monotonicity of the λ's, (3.11)-(3.13) imply

yθ,XOj yxj Λiβ J zZ_ \Λ-\ ivAB) i \-* 1/ ' )\\-*~l"JA ) \ *-l^ϋAB/\

(See details of the proof of Theorem 2 in S. [1], which is the lemma in
§ 1 of this paper.)
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where Fλ is such that FB> Fly

(3.19) (1/λ*01) >

<z-i

From (3.6) it follows that

(3.21) B ^ 2 - λ ? ) L1

where Lλ is a lower bound for ijXψ. Combining (3.21), (3.18), (3.19),
(3.20), (2.13), and (2.14), we obtain (3.15).

To express the minima bearing multiple subscripts in terms of the
quantities mentioned in the theorem, we proceed as in the proof of
Theorem 3.

EXAMPLE. If L = l/λcj], then (3.15) reduces to (3.7). To show that
there are cases in which (3.15) is an improvement over (3.7), we pro-
ceed as follows: Let the given domain B contain the origin and have
as interior an exterior domain of comparison at the origin the hyper-
spheres

2

I- Σ I ZJC — em Γ < ^ 2

and
A:Σ\zk-εM\2<M2 , ε2 < 1/2

respectively.

In constructing examples we must always take m and M so related
that Id A. We note that / c i if m < M.

Define FIA to be

FIA - (

and to facilitate computing take ux = 1, u2 = yi, y real. Using formula
(1.5) (see also B. [2] p. 43] and the fact that the kernel functions of I
and A are

K{I)(z, z) = 2m2/jτr2[m2 - Σ (** - em))(zk - ε m ) ] | 3 ,

z, z) = Σ

respectively, we compute the λ's in terms of ε, m, M, y, and obtain that
(FJV)(llXψ) and (l/λc/3]) can be written in the forms

3]) - - -\a Σ
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where

P,= V{^)= VI(Yo\I)>l,

a = \ — 1 , p = M/m > 1 ,
1 πW8(l - 2ε2)8) r '

and where the coefficients U^(y) and Wμ(y) are functions of y only.
Computation gives that U0(y) = (y + I)2 = W0(y), and

W - If - 3) =

If we let f] = (l/χ/"2^) — ε we obtain

Σ UM^* = Uv)
V = 2

and

Σ WM^-4 = Uv)
2

where bo(y) = 4(1 — 2τ/2 — 3̂ /4) and where gλ{y) > 2̂(τ/) for \y\ sufficiently
small.

To obtain our desired example, we first choose y sufficiently near
zero that gx(y) > g2(y). Then we take ε positive and near to W~2, m
near to M, and B such that IdBczA and such that F/(Vol I) is near
1 so that

This then gives the desired example, for we have

L

so that (3.15) gives a better bound for R at the origin in the direction
(1, yi), y real and | y \ small, than does (3.7).
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