LINEAR MAPS ON SKEW SYMMETRIC MATRICES: THE INVARIANCE OF ELEMENTARY SYMMETRIC FUNCTIONS

Marvin Marcus and Roy Westwick

1. Introduction. Let S_{n} be the space of n-square skew symmetric matrices over the field F of real numbers. Let $E_{2 k}(A)$ denote the sum of all $2 k$-square principal subdeterminants of $A \in S_{n}$ (the elementary symmetric function of degree $2 k$ of the eigenvalues of A). It is classical that if U is an n-square real orthogonal matrix and $A \in S_{n}$ then $U A U^{\prime} \in S_{n}$ and moreover for each k

$$
\begin{equation*}
E_{2 k}\left(U A U^{\prime}\right)=E_{2 k}(A) \tag{1.1}
\end{equation*}
$$

The correspondence

$$
\begin{equation*}
A \rightarrow U A U^{\prime} \tag{1.2}
\end{equation*}
$$

for a fixed orthogonal U can then be regarded as a linear transformation on S_{n} onto itself that holds $E_{2 k}(A)$ invariant. The question we consider here is the following: to what extent does the fact that (1.1) holds for some k characterize the map (1.2). In other words, we obtain (Theorem 3) the complete structure of those linear maps T of S_{n} into itself that for some $k>1$ satisfy $E_{2 k}(T(A))=E_{2 k}(A)$ for each $A \in S_{n}$. Our results are made to depend on the structure of linear maps of the second Grassmann product space $\Lambda^{2} U$ of a vector space U over F into itself.
K. Morita [2] examined the structure of those maps T of S_{n} into itself that hold invariant the dominant singular value $\alpha(A)$ of each $A \in S_{n}$. We recall that $\alpha(A)$ is the largest eigenvalue of the non-negative Hermitian square root of $A^{*} A$. Morita shows that if $\alpha(T(A))=\alpha(A)$ for each $A \in S_{n}$ then T has essentially the form given in our Theorem 3.
2. Some definitions and preliminary results. Let U be a finite dimensional vector space of dimension n over F. Let $G_{2}(U)$ denote the space of all alternating bilinear functionals on the cartesian product $U \times U$ to F. Then the dual space $\Lambda^{2} U$ of $G_{2}(U)$ is called the second Grassmann product space of U. If x_{1} and x_{2} are any two vectors in U then $f=x_{1} \wedge x_{2} \in \Lambda^{2} U$ is defined by the equation

$$
f(w)=w\left(x_{1}, x_{2}\right), \quad w \in G_{2}(U)
$$

[^0]Some elementary properties of $x_{1} \wedge x_{2}$ are:
(i) $x_{1} \wedge x_{2}=0$ if and only if x_{1} and x_{2} are linearly dependent.
(ii) if $x_{1} \wedge x_{2}=y_{1} \wedge y_{2} \neq 0$ then $\left\langle x_{1}, x_{2}\right\rangle=\left\langle y_{1}, y_{2}\right\rangle$ where $\left\langle x_{1}, x_{2}\right\rangle$ is the space spanned by x_{1} and x_{2}.
If A is a linear map of U into itself we define $C_{2}(A)$, the second compound of A, as a linear map of $\Lambda^{2} U$ into $\Lambda^{2} U$ by

$$
\begin{equation*}
C_{2}(A) x_{1} \wedge x_{2}=A x_{1} \wedge A x_{2} . \tag{2.1}
\end{equation*}
$$

We remark that if x_{1}, \cdots, x_{n} is a basis of U then $x_{i} \wedge x_{j}, 1 \leq i<j \leq n$ is a basis of $\Lambda^{2} U$ and hence (2.1) defines $C_{2}(A)$ by linear extension. We first show that $\Lambda^{2} U$ is isomorphic in a natural way to S_{n} and under this isomorphism second compounds correspond to congruence transformations in S_{n}.
Specifically, let $\alpha_{1}, \cdots, \alpha_{n}$ be a basis of U and define φ by

$$
\begin{equation*}
\varphi\left(\alpha_{i} \wedge \alpha_{j}\right)=E_{i j}-E_{j t} \in S_{n} \tag{2.2}
\end{equation*}
$$

where $E_{i j}$ is the n-square matrix with 1 in position i, j and 0 elsewhere and extend φ linearly to all of $\Lambda^{2} U$. It is obvious that φ is an isomorphism since $E_{i j}-E_{j i}, 1 \leq i<j \leq n$ is a basis of S_{n}. Let T be a linear map of $\Lambda^{2} U$ into itself and define S, a linear map of S_{n} into itself, by

$$
\begin{equation*}
S(A)=\varnothing T \mathscr{\Phi}^{-1}(A), A \in S_{n} \tag{2.3}
\end{equation*}
$$

Let B be a linear map of U into itself. Then
Theorem 1. $T=C_{2}(B)$ if and only if $S(A)=B_{1} A B_{1}^{\prime}$ where B_{1} is the matrix of B with respect to the ordered basis $\alpha_{1}, \cdots, \alpha_{n}$.

Proof. Suppose $T=C_{2}(B)$. Then for $i<j$

$$
\begin{aligned}
S\left(E_{i j}-E_{j i}\right) & =\varphi T \varphi^{-1}\left(E_{i j}-E_{j i}\right) \\
& =\varphi\left(B \alpha_{i} \wedge B \alpha_{j}\right) \\
& =\varphi\left(\sum_{k=1}^{n} b_{k i} \alpha_{k} \wedge \sum_{k=1}^{n} b_{k j} \alpha_{k}\right) \\
& =\sum_{s, t} b_{s i} b_{t j}\left(E_{s t}-E_{t s}\right) \\
& =B_{1}\left(E_{i j}-E_{j i}\right) B_{1}^{\prime} .
\end{aligned}
$$

The implication in the other direction is similar.
Let $L_{2 r}$ denote the set of rank $2 r$ matrices in S_{n} and let $\Omega_{2 r}$ denote the set of vectors $\sum_{i=1}^{r} x_{i} \wedge y_{i}$ in $\Lambda^{2} U$ where $\operatorname{dim}\left\langle x_{1}, \cdots, x_{r}, y_{1}, \cdots, y_{r}\right\rangle=2 r$.

Theorem 2. $\varphi\left(\Omega_{2 r}\right)=L_{2 r}$

Proof. Let

$$
z=\sum_{i=1}^{r} x_{i} \wedge y_{i} \in \Omega_{2 r}
$$

Choose a non-singular map B of U onto U such that $B \alpha_{2 j-1}=x$, and $B \alpha_{2 j}=y_{j}, j=1, \cdots, r$. Then

$$
z=C_{2}(B) \sum_{j=1}^{r} \alpha_{2 j-1} \wedge \alpha_{2 j}
$$

so

$$
\begin{equation*}
\varphi(z)=\varphi C_{2}(B) \sum_{j=1}^{r} \alpha_{2 j-1} \wedge \alpha_{2 j} \tag{2.4}
\end{equation*}
$$

Let $S(A)=B_{1} A B_{1}^{\prime}$ for $A \in S_{n}$ where B_{1} is the matrix of B with respect to the ordered basis $\alpha_{1}, \cdots, \alpha_{n}$. Then by Theorem $1, \varphi C_{2}(B) \varphi^{-1}=S$ and from (2.4) we have

$$
\begin{aligned}
\varphi(z) & =S \varphi \sum_{j=1}^{r} \alpha_{2 j-1} \wedge \alpha_{2 j} \\
& =S\left(\sum_{j=1}^{r}\left(E_{2 j-1,2 j}-E_{2 j, 2 j-1}\right)\right) \\
& =B_{1}\left(\sum_{j=1}^{r}\left(E_{2 j-1,2 j}-E_{2 j, 2 j-1}\right)\right) B_{1}^{\prime} \in L_{2 r} .
\end{aligned}
$$

The implication in the other direction is a reversal of this argument.
We see then that a map T of $\Lambda^{2} U$ into itself is a second compound of some linear map of U into itself if and only if $\varphi T \varphi^{-1}$ is a congruence map of S_{n}; and $T\left(\Omega_{2 r}\right) \subseteq \Omega_{2 r}$ if and only if $\varphi T \varphi^{-1}\left(L_{2 r}\right) \subseteq L_{2 r}$.
3. $E_{2 k}$ preservers. Let S be a linear map of S_{n} into itself such that $E_{2 k}(S(A))=E_{2 k}(A)$ for all $A \in S_{n}$, where k is a fixed integer, $k \geq 2$. Then

Lemma 1. S is non-singular.
Proof. Suppose $S(A)=0$. Then

$$
\begin{align*}
& E_{2 k}(A+X)=E_{2 k}(S(A+X))=E_{2 k}(S(X))=E_{2 k}(X) \tag{3.1}\\
& \text { for all } X \in S_{n}
\end{align*}
$$

Obtain a real orthogonal P such that

$$
P A P^{\prime}=\sum_{i=1}^{r} \cdot\left(\begin{array}{lr}
0 & \theta_{i} \tag{3.2}\\
-\theta_{i} & 0
\end{array}\right)+0_{n-2 r}
$$

where $0_{n-2 r}$ is an $(n-2 r)$-square matrix of zeros and $\rho(A)=\operatorname{rank} A=2 r$.

Here Σ and $\dot{+}$ indicate direct sum. Now if $\rho(A) \geq 2 k$ simply set $X=0$ and from (3.1) and (3.2) we see that

$$
0<E_{2 k}(A)=E_{k}\left(\theta_{1}^{2}, \cdots, \theta_{r}^{2}\right)=E_{2 k}(0)=0
$$

a contradiction. On the other hand, if $\rho(A)<2 k$ select $X \in S_{n}$ such that

$$
P X P^{\prime}=0_{2 r}+\sum_{1}^{(k-r)}\left(E_{12}-E_{21}\right)+0_{n-2 k}
$$

where E_{12} is a 2 -square matrix. Then

$$
E_{2 k}(A+X)=E_{2 k}\left(P A P^{\prime}+P X P^{\prime}\right)=\prod_{j=1}^{r} \theta_{j}^{2}
$$

But $E_{2 k}\left(P X P^{\prime}\right)=E_{2 k}(X)=0$, since $k-r<k$. Hence the proof is complete.

Lemma 2. If $A \in S_{n}$ and deg $E_{2 k}(x A+B) \leq 2$ for all $B \in S_{n}$ and $A \neq 0$ then $\rho(A)=2$.

Proof. Suppose $\rho(A)=2 r$ and select a real orthogonal P such that $P A P^{\prime}$ has the form given in (3.2). Select B such that

$$
P B P^{\prime}=0_{2 r}+\sum_{2}^{\left[\frac{n}{2}\right]-r}\left(E_{12}-E_{21}\right)+C
$$

where if n is even C doesn't appear and if n is odd C is a 1 -square zero matrix.

Now if $k \leq r$

$$
\begin{aligned}
E_{2 k}(x A+B)= & x^{2 k} E_{k}\left(\theta_{1}^{2}, \cdots, \theta_{r}^{2}\right)+\text { lower } \\
& \text { order terms in } x .
\end{aligned}
$$

If $k>r$
$E_{2 k}(x A+B)=\binom{[n / 2]-r}{k-r} \theta_{1}^{2} \cdots \theta_{r}^{2} x^{2 r}+$ lower order terms in x. Thus $\operatorname{deg} E_{2 k}(x A+B)$ is either $2 k$ or $2 r$.

But this implies $2 r=2$ and $\rho(A)=2$.
Lemma 3. If $E_{2 k}(S(A))=E_{2 k}(A)$ for all $A \in S_{n}$ then $S\left(L_{2}\right) \subseteq L_{2}$.
Proof. Let $p(x)$ be the polynomial $E_{2 k}(x A+B)$. Then if $\rho(A)=2$ it is easy to check that deg $p(x) \leq 2$ for all $B \in S_{n}$. Hence $\operatorname{deg} E_{2 k}(x S(A)+S(B)) \leq$ 2 for all $B \in S_{n}$. But S is non-singular by Lemma 1 and thus by Lemma 2 , $\rho(S(A))=2$.

Theorem 3. If $E_{2 k}(S(A))=E_{2 k}(A)$ for all $A \in S_{n}$, where k is a fixed integer satisfying $4 \leq 2 k \leq n$ and $n \geq 5$ then there exists a real matrix P such that

$$
\begin{equation*}
S(A)=\alpha P A P^{\prime} \text { for all } A \in S_{n} \tag{3.3}
\end{equation*}
$$

where $\alpha P P^{\prime}=I$ if $2 k<n$ and $\alpha P P^{\prime}$ is unimodular if $2 k=n$. If $2 k=$ $n=4$ then either S has the form (3.3) or

$$
S(A)=\alpha P\left(\begin{array}{cccc}
0 & a_{34} & a_{24} & a_{23} \tag{3.4}\\
-a_{34} & 0 & a_{14} & a_{13} \\
-a_{24} & -a_{14} & 0 & a_{12} \\
-a_{23} & -a_{13} & -a_{12} & 0
\end{array}\right) P^{\prime}
$$

where $A=\left(\begin{array}{cccc}0 & a_{12} & a_{13} & a_{14} \\ -a_{12} & 0 & a_{23} & a_{24} \\ -a_{13} & -a_{23} & 0 & a_{34} \\ -a_{14} & -a_{24} & -a_{34} & 0\end{array}\right)$ and $\alpha P P^{\prime}$ is unimodular.
Proof. By Lemma 1, S^{-1} exists and we check that

$$
E_{2 k}\left(S^{-1}(A)\right)=E_{2 k}\left(S^{-1}(A)\right)=E_{2 k}(A),
$$

for any $A \in S_{n}$. Hence by Lemma 3

$$
S^{-1}\left(L_{2}\right) \subseteq L_{2} \text { and thus } S\left(L_{2}\right)=L_{2}
$$

Now define T, a mapping of $\Lambda^{2} U$ into itself, by (2.3)

$$
T=\varphi^{-1} S \varphi
$$

By Theorem 2

$$
\begin{aligned}
T\left(\Omega_{2}\right) & =\varphi^{-1} S \varphi\left(\Omega_{2}\right) \\
& =\varphi^{-1} S\left(L_{2}\right) \\
& =\varphi^{-1}\left(L_{2}\right) \\
& =\Omega_{2} .
\end{aligned}
$$

At this point we invoke a theorem of Chow [1, pp. 38]. Let $T^{\prime \prime}$ be the mapping of 2-dimensional subspaces of U into themselves induced by T; that is, let $T^{\prime \prime}(\langle x, y\rangle)=\langle u, v\rangle$ whenever $T(x \wedge y)=u \wedge v$, (assuming of course that x and y are linearly independent). Then $T^{\prime \prime}$ is well defined and it follows from the above that it is a one-to-one onto adjacence preserving transformation: if two 2-dimensional subspaces of U intersect in a subspace of dimension 1 then their images under $T^{\prime \prime}$ intersect in a subspace of dimension 1 . Therefore $T^{\prime \prime}$ is induced either by a correlation or a collineation of the subspaces of U. If $\operatorname{dim} U \geq 5$
$T^{\prime \prime}$ is induced by a collineation. If $\operatorname{dim} U=4$ and if $T^{\prime \prime}$ is induced by a correlation then $\left(T T_{1}\right)^{\prime \prime}$ is induced by a collineation. Here T_{1} maps $\Lambda^{2} U$ into itself and satisfies

$$
\begin{align*}
& T_{1}\left(x_{i} \wedge x_{j}\right)=x_{l} \wedge x_{m} \tag{3.5}\\
& \{i, j, l, m\}=\{1,2,3,4\} \text { and } i<j, l<m
\end{align*}
$$

Now, assuming $T^{\prime \prime}$ is induced by a collineation we show that

$$
\begin{equation*}
T=\alpha C_{2}(P) \tag{3.6}
\end{equation*}
$$

for some $\alpha \in F$ and some linear transformation $P: U \rightarrow U$. The fundamental theorem of projective geometry states that there is a one-to-one semi-linear transformation $Q: U \rightarrow U$ such that

$$
\begin{equation*}
T^{\prime \prime}(\langle x, y\rangle)=\langle Q x, Q y\rangle . \tag{3.7}
\end{equation*}
$$

Let x_{1}, \cdots, x_{n} be a basis of U and let $Q x_{i}=y_{i}$. Then

$$
\begin{aligned}
& T\left(x_{i} \wedge x_{j}\right)=\alpha_{i j} y_{i} \wedge y_{j} \quad \alpha_{i j} \in F \\
& 1 \leq i, \quad j \leq n, \quad i \neq j
\end{aligned}
$$

Then for s, k, t distinct integers in $1, \cdots, n$ and $K \in F$.

$$
\begin{aligned}
T\left(\left(x_{s}+x_{t}\right) \wedge x_{k}\right) & =K\left(Q\left(x_{s}+x_{t}\right) \wedge Q x_{k}\right) \\
& =K\left(y_{s}+y_{t}\right) \wedge y_{k}
\end{aligned}
$$

But

$$
\begin{aligned}
T\left(\left(x_{s}+x_{t}\right) \wedge x_{k}\right) & =T\left(x_{s} \wedge x_{k}\right)+T\left(x_{t} \wedge x_{k}\right) \\
& =\left(\alpha_{s k} y_{s}+\alpha_{t k} y_{t}\right) \wedge y_{k}
\end{aligned}
$$

Hence $\alpha_{s k}=\alpha_{t k}$ and thus $\alpha_{s k}=\alpha_{t k}=\alpha_{k t}=\alpha_{r t}=\alpha$ for any four distinct integers s, k, r, t. Hence

$$
T\left(x_{i} \wedge x_{j}\right)=\alpha y_{i} \wedge y_{j}=\alpha C_{2}(P) x_{i} \wedge x_{j}
$$

where $P: U \rightarrow U$ is a linear transformation with $P x_{j}=y_{i}$. Since $\left\{x_{i} \wedge x_{j} \mid 1 \leq\right.$ $i<j \leq n\}$ is a basis of $\Lambda^{2} U, T=\alpha C_{2}(P)$.
Now by Theorem 1,

$$
S(A)=\alpha P A P^{\prime} \text { for all } A \in S_{n}
$$

for $n \geq 5$ where P is an n-square non-singular matrix. If $2 k=n$ then clearly $\alpha P P^{\prime}$ is unimodular. Hence assume $2 k<n$.
We next show that

$$
\alpha P P^{\prime}=I
$$

From the hypothesis,

$$
E_{2 k}\left(\alpha P A P^{\prime}\right)=E_{2 k}(A), A \in S_{n}
$$

and hence

$$
\alpha^{2 k} \operatorname{tr}\left\{C_{2 k}\left(P P^{\prime}\right) C_{2 k}(A)\right\}=\operatorname{tr} C_{2 k}(A) .
$$

By the polar factorization theorem let $P=U B$, where U is real orthogonal and B is positive definite symmetric. Let $B=V D V^{\prime}, D$ diagonal with positive entries and V real orthogonal. Then since $V^{\prime} A V$ runs through all of S_{n} as A does we have

$$
\begin{equation*}
\alpha^{2 k} \operatorname{tr}\left\{C_{2 k}\left(D^{2}\right) C_{2 k}(A)\right\}=\operatorname{tr} C_{2 k}(A) . \tag{3.9}
\end{equation*}
$$

We assert that any diagonal $\binom{n}{2 k}$-square matrix is a linear combination of matrices $C_{2 k}(A)$ for $A \in S_{n}$. For, let $1 \leq i_{1},<\cdots<i_{2 k} \leq n$. Let $A \in S_{n}$ and consider the $2 k$-square principal submatrix B of A where

$$
B_{\alpha \beta}=A_{i_{a^{i}}{ }^{\frac{1}{\beta}}} ;
$$

and suppose A has 0 entries outside of B. Then define B as follows:

$$
\begin{array}{ll}
B_{2 k-\alpha, \alpha+1}=-1, & \alpha=0, \cdots, k-1 \\
B_{2 k-\alpha, \alpha+1}=1, & \alpha=k, \cdots, 2 k
\end{array}
$$

and $B_{i j}=0$ elsewhere. Then $C_{2 k}(A)= \pm E_{i_{1} \cdots i_{2 k}}$, where $E_{i_{1} \cdots i_{2 k}}$ is the $\binom{n}{2 k}$-square matrix with the single non-zero entry 1 in the $\left(\left(i_{1}, \cdots, i_{2 k}\right)\right.$, $\left(i_{1}, \cdots, i_{2 k}\right)$) position ordered doubly lexicographically in the indices of the rows and columns of A. Returning to (3.9) we have

$$
\operatorname{tr}\left\{C_{2 k}\left(\alpha D^{2}\right) X\right\}=\operatorname{tr} X
$$

for all $\binom{n}{2 k}$-square diagonal matrices X and hence $C_{2 k}\left(\alpha D^{2}\right)=I, \alpha D^{2}=$ $\pm I$. From this we easily see that

$$
\alpha P P^{\prime}=I,
$$

and (3.3) follows. The mapping T_{1} on $\Lambda^{2} U$ induces the map S^{1} on S_{4} where

$$
S^{1}\left(\begin{array}{cccc}
0 & a_{12} & a_{13} & a_{14} \\
-a_{12} & 0 & a_{23} & a_{24} \\
-a_{13} & -a_{23} & 0 & a_{34} \\
-a_{14} & -a_{24} & -a_{34} & 0
\end{array}\right)=\left(\begin{array}{cccc}
0 & a_{34} & a_{24} & a_{23} \\
-a_{34} & 0 & a_{14} & a_{13} \\
-a_{24} & -a_{12} & 0 & a_{12} \\
-a_{23} & -a_{13} & -a_{12} & 0
\end{array}\right)
$$

This completes the proof.
We remark that Theorem 3 is no longer valid if $k=1$: for consider the transformation which interchanges positions (i, j) and (j, i) in A for a fixed pair of integers $1 \leq i<j \leq n$. This clearly preserves $E_{2}(A)$ but
does not have the form in Theorem 3. For example

$$
\left(\begin{array}{rrrr}
0 & 1 & 0 & 1 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
-1 & 0 & -1 & 0
\end{array}\right)
$$

is non-singular but interchanging the 1,2 and 2,1 entries results in a singular matrix.

References

1. Wei-Liang. Chow, On the Geometry of Algebraic Homogeneous Spaces, Annals of Math., 50 (1949), 32-67.
2. K. Morita, Schwarz's Lemma in a Homogeneous Space of Higher Dimensions, Japanese J. of Math. 19, (1944), 45-56.

The University of British Columbia, Vancouver, Canada

[^0]: Received March 26, 1959. This research was supported by United States National Science Foundation Research Grant NSF G-5416.

