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Let A — {aQ < ax < •} be a set of integers and let A(ri) be the
number of integers in A not exceeding n. If A, B are two such sets,
we put A + B = {α + b}, where a denotes generically an element of A,
b an element of B. It should be noted that A and B may contain
negative numbers or zero and that these are counted in A(n) and B(n).

Erdoes in an unpublished paper proved:
If limm^oo(A(m)/m) — limm^oo(B(m)lm) = 0, then for every e > 0 there

are infinitely many x such that if C — A + B then

C(x) >A(x)(l -ε) + B(x) .

Clearly there are then also infinitely many y such that

C(y)>A(y)

Erdoes conjectured that it is possible to choose infinitely many
x = y.

At the Number Theory Conference in Boulder, Colorado, Erdoes pro-
posed this problem to the author. It is clear that the Fundamental
Theorem [3] is inadequate to deal with this problem, because it fails if
10 C. The search for a stronger theorem finally led the author to
Theorem 2. Theorem 3 is a consequence of Theorem 2 and is consider-
ably stronger than Erdoes conjecture.

THEOREM 1. Let a0 — bQ = 0. If n > 0, n φ C then there is an mφ C,
m = n or m < (nj2), such that

(1)

> + ( C ( , m i ) ( ^
n + l ~ m + 1 n + Γ

For the proof of Theorem 1, we consider the following transforma-
tion: Let nx < n2 < <nr = n be the gaps in C. Form di — n — nt.
Choose, if possible, a fixed number e e B such that an equation

( 2 ) a + e + di = nj

holds for some i. Let the set Bf consist of all numbers e + ds for which
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an equation a + e + ds = nt holds with some value of α. Form I?* =
J3*(e) = B\JB', C* = A + 2?*. The following propositions are easily seen
to hold.

PROPOSITION 1. n$C%.

Proof. The equation a + e + ds ^ n implies a + e ~ nSJ which is
impossible since ee B.

PROPOSITION 2. B'nB is empty.

Proof. The equation a + e + ds — nt shows that e + ds.$ B.

PROPOSITION 3. C*(n) - C(n) = B*(n) - B(n).

Proof. The equation a + e + ds = nt implies a + e + dt — ns. Hence
if w s e C * then e + dseBι and vice versa.

PROPOSITION 4. All numbers of B' are larger than e.

Proof. Bf consists of numbers of the form e + ds, ds > 0.
2?*(e) is called the fundamental e transform of B.
We now construct numbers e19 , ek and sets B — Bo, Blf , Bk,

C = C0,C19 tCk by the following rules:
Rule 1. Bj is the fundamental e5 transform of B^λ.
Rule 2. A + Bj = C .̂
Rule 3. βj is the smallest number in JB̂ _! such that an equation

s=nt9 α e i , ns, ntφC}-λ

holds.

Rule 4. a + e + dsΦ nt for any ae A, e eBk, nsy nt$ Ck

We then have

PROPOSITION 5. eι < e2 < <ek .

Proof. We have a + ej+ds = nt; aeA, ns, nt$Cj-19 ejeBj^. If
βj^Bj^ then e, > ^^(Prop. 4). If e3eB^2 then since Cj^ιZ)Cj^2 the
inequality e, < e ^ contradicts rule 3, while e5 — e^λ implies ns,nteC5-λ.

For any set A put

( 3 ) A(m, n) = A(n) - A(m - 1) .

LEMMA 1. Let ns be the least gap in Ck, then

( 4 ) Bk(ns) - B(ns) - Ck{ds, n) - C(ds, n)

= ns — C(ds, n) .
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Proof, Let dr_1, , dr_q, < ns, dr^q^ > ns where we formally set
e£0 = w + 1. If cίj < ns then ns — djβCk, ns — dj = a + &*, 5*eB f c. Hence
by rule 4 we have njβCk. But ei, < ws implies cZs < n, hence

( 5 ) C1t(d8,n)-C(d8,n) = q.

Moreover Ck contains all numbers x for which ds < x < n, but does not
contain n so that Ck(ds, n) = t& — (cZ, — 1) — 1 — ns.

On the other hand if % e C^, nό$ Ca^λ then ea+dj eBa, ea + dfφ BΛ-lr

(Prop. 2). If d5 < ns and eΛ + d3 > ns then

eΛ > ns - dj = a + 6*, 6* e Bk .

By Prop. 4 and 5, 6* e #*_! and eΛ > δ* contradicts rule 3. Hence

( 6 ) Bk(ns) - B(ns) - q .

This completes the proof of Lemma 1.

We are now prepared for the proof of Theorem 1. Since ns is not

in Ck no number of the form ns — a is in Bk and therefore

( 7) ns + 1 > A(ns) + Bk(ns) .

Subtracting 4 from 7 we get

C(w) > C(ds - 1) + A(n,) + B(wβ) - 1

which after some simple algebra gives

C(n) ^ A(ns) + B(n8) - 1 , (ΓM Λ, __ C(n) , \ 1

^ + 1

Finally if ns < n then because of rule 4 we must have ns < ds =
n — ns, ns < w/2. This completes the proof of Theorem 1.

THEOREM II. Let A + B = C, α0 = 60 = 0, n > 0.

+ 1 or there exist numbers m, mι satisfying the conditions

C(n) A(m) + B(m) - 1
n + 1 ~~ m + 1

C(n) _ Cjm,)

n + 1 mx + 1

m 0 C', m < w, mx 0 C', mx < max (m, w — m — 1) .

Proof. The theorem is true if w = 0. Hence we can apply induc-
tion on n. If for any m$C, m<n we have C(n)l(n+l)>C(m)j(m + l)
then by induction
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C(n) _
n+1

C(n)
n+1

C(n)
n + 1

C(m)
m + 1

C(ro)
m + 1

C(m)
m + 1

m1 + 1

C(m) _ C(m2)
m + 1 m2 + 1

C(n) C(m2)

n + 1 m2 + 1
+ B{mλ) - 1

where m 2 $C,m x $ C, m2 < max(m}, m — mγ — 1) < max(m ι f n — m1 — 1).
Now assume C(n) Φ n + 1 and

( 9 )
m + 1

for all m < n, m $ C. If w e C then C(n)\(n + 1) > C(^ - l)/w hence (9)
implies n$ C. We apply Theorem 1. If in Theorem 1 m = n then Theo-
rem 2 holds with n = m = ml9 If m<nl2 in Theorem 1, then w—m — 1 > m,
hence there is a largest m1 < n — m — 1, mxφ C. We then have

C(n- m- C{mλ)
>

n — m ~ m1 + 1

Moreover since (w — m)l(m + 1) > 1 we get from Theorem 1

C(n) ^ Cjm,) _ C(n) , A(m) + g(m) - 1

and

7

Theorem

H - l

2 is

- ̂ TOj + 1

C(n)
n + 1

proved.

m + 1
C{mx)

m'x + 1 m + 1

Theorems 1 and 2 can easily be generalized for arbitrary ao,bo. One
simply applies the two theorems to the set A' = (A — a0), Bf = (B — b0).
If ao+bo=co then C'{ri) = C(w + c0), A'(m)=A(m + α0), β'(m) = £(m + δ0).
After some fairly obvious transformation Theorem 2 then reads

THEOREM 2a. Let A = {aQ < aλ < •}, B = {b0 < bx < •},

C = {c0 < c± < }. Let ^ > c0. Either C(n) = n — c0 + 1 or there exist
m, m1 satisfying the conditions:

C(n)
n - c0 + 1

A(m - 60) — α 0 ) —
m - c0 + 1

n — — c 0
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c0 < m < n, m$C, mι$C, c0 < mλ < max(m, n — m + c0 — 1).
It is worth noting that Theorem 2 implies the Fundamental theorem

proved in [3]. We shall prove the following

COROLLARY TO THEOREM 2. Let a0 = bQ = 0, n $ C, y(n) =

σ{m) — A(m) + B(m) — 2. 7%ew either y(n) > σ(n) or y(n)/n > σ(m)/m
for some m $ C, 0 < m < n.

Proof. Let m be the integer of Theorem 2. If n = m then Theorem
2 reads γ(n) > σ(n). If γ(w) < σ(n) then Theorem 2 yields

y(n)m + τ(n) + m > σ(m)n + σ(m) + w .

If y{n)m < σ{m)n then we obtain from this y(n) + m > σ(m) + n,
σ(m)n + m2 > σ(m)m + nm and therefore σ(m) > (m). Hence C(^)>^ + 1,
which is impossible since n$C. This proves the corollary.

We shall now prove Theorem 3. If lim ((A(m) + B(m))lm = 0, then
there are infinitely many m such that

(10) C(m) > A(m - b0) + B(m - α0) - 1 .

If C has only finitely many gaps above c0, then Theorem 3 is ob-
vious. There is an infinite sequence of mi such that

Ajwij — b0) + B{mi — α0) — 1 A(m — 60) + B(m — α0) — 1
mj — c0 + 1 m — c0 + 1

for c0 < m < mt. It follows from Theorem 2a that

Cim,) > Aim, - b0) + B(mt - α0) - 1 .

(If m^C this follows directly from Theorem 2a. If mteC take the
next gap in C below mL.)

THEOREM 4. // A + S = C and lim (C(n)/n = 0,

m

and 10 holds for infinitely many mφC.

Proof. Without loss of generality we may assume αo = ί>o=O. There
is an infinite sequence {%} such that C(^)/(% + l) < C(m)l(m + 1) for
m < nt. Clearly n% 0 C. Let mt be the value of m of Theorem 1
corresponding to n%. From Theorem 1 we see that the values mt also
form an infinite sequence, since A(m) + B(m) — 1 cannot vanish and since
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by assumption C(n% — m — 1) — C(^)(% — m)j{m + 1) > 0 for m <nt.
Now

C(m) > C(nt) ^ Cjn, - m - 1) > C(nt)
m + 1 Ύti + 1 nt — m nt + 1

for 0 < m < n% implies C(m) + C(Ui — m — 1) > C(w4) for 0 < m < % and
this together with (1) implies

Cim,) ^ Aim,) + B(mt) - 1 .

Modifications analogous to those applied in the present paper to the
proof of the authors Fundamental Theorem [3] can also be applied to
Dyson's [1] proof of its generalization to more than two sets. The
special case of Dyson's Theorem considered here then reads:

If C = Aλ + ••• +Ag and if c09 aoi are the smallest elements in C
and At respectively, then for n > c0, there is an m such that

C(n) ^ ΣΛ(m - Cp + αot) - (g - 1)
n — c0 + 1 ~ m — c0 + 1

c0 < m < n .

This inequality with α0 = &0 = 0 was first obtained by Kneser [4,
Theorem VII]. Inequality (11) for g = 2 already known to van der Cor-
put [5] is somewhat weaker than Theorem 2, because the minimum is
not restricted to m$C. This weakening is necessary if g > 2. The re-
lation (11) with g > 3 becomes false, if m is not restricted to elements
not in C. It is not known to the author if C{n)j(n + 1) φ C(m)l(m + 1)
f or c0 < m < n and

C(n) < ΣAj(n -co + aoί) - (g - 1)

implies strict inequality in (11) when g > 3.
Clearly on account of (11), Theorems 3 and 4, the latter without the

condition m$C, carry over to the sum of an arbitrary number of sets.
The author takes the opportunity to refute Khintchine's [2] assertion

that the methods used in his exposition are altogether different from
those introduced in [3]. Anybody acquainted with the authors first proof
must see that the basic ideas are exactly the same.
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