A REFINEMENT OF THE FUNDAMENTAL THEOREM ON THE DENSITY OF THE SUM OF TWO SETS OF INTEGERS

H. B. MANN

Let $A = \{a_0 < a_1 < \cdots\}$ be a set of integers and let A(n) be the number of integers in A not exceeding n. If A, B are two such sets, we put $A + B = \{a + b\}$, where a denotes generically an element of A, b an element of B. It should be noted that A and B may contain negative numbers or zero and that these are counted in A(n) and B(n).

Erdoes in an unpublished paper proved:

If $\lim_{m\to\infty}(A(m)/m) = \lim_{m\to\infty}(B(m)/m) = 0$, then for every $\varepsilon > 0$ there are infinitely many x such that if C = A + B then

$$C(x) \geq A(x)(1-\varepsilon) + B(x)$$
.

Clearly there are then also infinitely many y such that

$$C(y) \ge A(y) + B(y)(1-\varepsilon)$$
.

Erdoes conjectured that it is possible to choose infinitely many x = y.

At the Number Theory Conference in Boulder, Colorado, Erdoes proposed this problem to the author. It is clear that the Fundamental Theorem [3] is inadequate to deal with this problem, because it fails if $1 \notin C$. The search for a stronger theorem finally led the author to Theorem 2. Theorem 3 is a consequence of Theorem 2 and is considerably stronger than Erdoes conjecture.

THEOREM 1. Let $a_0 = b_0 = 0$. If $n \ge 0$, $n \notin C$ then there is an $m \notin C$, m = n or m < (n/2), such that

(1)

$$\frac{C(n)}{n+1} \geq \frac{A(m) + B(m) - 1}{m+1} + (C(n-m-1) - \frac{C(n)}{n+1}(n-m))\frac{1}{m+1}.$$

For the proof of Theorem 1, we consider the following transformation: Let $n_1 < n_2 < \cdots < n_r = n$ be the gaps in C. Form $d_i = n - n_i$. Choose, if possible, a fixed number $e \in B$ such that an equation

$$(2) a + e + d_i = n_j$$

holds for some *i*. Let the set B' consist of all numbers $e + d_s$ for which

Received July 20, 1959.

an equation $a + e + d_s = n_t$ holds with some value of a. Form $B^* = B^*(e) = B \cup B'$, $C^* = A + B^*$. The following propositions are easily seen to hold.

Proposition 1. $n \notin C^*$.

Proof. The equation $a + e + d_s = n$ implies $a + e = n_s$, which is impossible since $e \in B$.

PROPOSITION 2. $B' \cap B$ is empty.

Proof. The equation $a + e + d_s = n_t$ shows that $e + d_s \notin B$.

PROPOSITION 3. $C^{*}(n) - C(n) = B^{*}(n) - B(n)$.

Proof. The equation $a + e + d_s = n_t$ implies $a + e + d_t = n_s$. Hence if $n_s \in C^*$ then $e + d_s \in B^1$ and vice versa.

PROPOSITION 4. All numbers of B' are larger than e.

Proof. B' consists of numbers of the form $e + d_s$, $d_s > 0$.

 $B^*(e)$ is called the fundamental e transform of B.

We now construct numbers e_1, \dots, e_k and sets $B = B_0, B_1, \dots, B_k$, $C = C_0, C_1, \dots, C_k$ by the following rules:

Rule 1. B_j is the fundamental e_j transform of B_{j-1} .

Rule 2.
$$A + B_j = C_j$$
.

Rule 3. e_j is the smallest number in B_{j-1} such that an equation

$$a + e_j + d_s = n_t$$
, $a \in A$, n_s , $n_t \notin C_{j-1}$

holds.

Rule 4. $a + e + d_s \neq n_t$ for any $a \in A$, $e \in B_k$, n_s , $n_t \notin C_k$. We then have

Proposition 5. $e_1 < e_2 < \cdots < e_k$.

Proof. We have $a+e_j+d_s = n_t$; $a \in A$, n_s , $n_t \notin C_{j-1}$, $e_j \in B_{j-1}$. If $e_j \notin B_{j-2}$ then $e_j > e_{j-1}$ (Prop. 4). If $e_j \in B_{j-2}$ then since $C_{j-1} \supset C_{j-2}$ the inequality $e_j < e_{j-1}$ contradicts rule 3, while $e_j = e_{j-1}$ implies n_s , $n_t \in C_{j-1}$. For any set A put

(3)
$$A(m, n) = A(n) - A(m-1)$$
.

LEMMA 1. Let n_s be the least gap in C_k , then

(4)
$$B_k(n_s) - B(n_s) = C_k(d_s, n) - C(d_s, n)$$

= $n_s - C(d_s, n)$.

Proof. Let $d_{r-1}, \dots, d_{r-q}, \leq n_s, d_{r-q-1} > n_s$ where we formally set $d_0 = n + 1$. If $d_j \leq n_s$ then $n_s - d_j \in C_k$, $n_s - d_j = a + b^*$, $b^* \in B_k$. Hence by rule 4 we have $n_j \in C_k$. But $d_j \leq n_s$ implies $d_s \leq n_j$ hence

(5)
$$C_k(d_s, n) - C(d_s, n) = q$$
.

Moreover C_k contains all numbers x for which $d_s \le x < n$, but does not contain n so that $C_k(d_s, n) = n - (d_s - 1) - 1 = n_s$.

On the other hand if $n_j \in C_{\alpha}$, $n_j \notin C_{\alpha-1}$ then $e_{\alpha} + d_j \in B_{\alpha}$, $e_{\alpha} + d_j \notin B_{\alpha-1}$, (Prop. 2). If $d_j \leq n_s$ and $e_{\alpha} + d_j > n_s$ then

$$e_lpha>n_s-d_j=a+b^st$$
 , $b^st\in B_k$.

By Prop. 4 and 5, $b^* \in B_{\alpha-1}$ and $e_{\alpha} > b^*$ contradicts rule 3. Hence

$$(6) B_k(n_s) - B(n_s) = q$$

This completes the proof of Lemma 1.

We are now prepared for the proof of Theorem 1. Since n_s is not in C_k no number of the form $n_s - a$ is in B_k and therefore

(7)
$$n_s + 1 \ge A(n_s) + B_k(n_s)$$
.

Subtracting 4 from 7 we get

$$C(n) \ge C(d_s - 1) + A(n_s) + B(n_s) - 1$$

which after some simple algebra gives

$$rac{C(n)}{n+1} \geq rac{A(n_s) + B(n_s) - 1}{n_s + 1} + \Big(C(d_s - 1) - rac{C(n)}{n+1}d_s\Big) rac{1}{n_s + 1} \; .$$

Finally if $n_s < n$ then because of rule 4 we must have $n_s < d_s = n - n_s$, $n_s < n/2$. This completes the proof of Theorem 1.

THEOREM II. Let A + B = C, $a_0 = b_0 = 0$, $n \ge 0$. Then either C(n) = n + 1 or there exist numbers m, m_1 satisfying the conditions

$$rac{C(n)}{n+1} \geq rac{A(m)+B(m)-1}{m+1} + \left|rac{C(n)}{n+1} - rac{C(m_1)}{m_1+1}
ight| \ m
otin C, \ m \leq n, \ m_1
otin C, \ m_1 \leq \max{(m,n-m-1)} \ .$$

Proof. The theorem is true if n = 0. Hence we can apply induction on n. If for any $m \notin C$, m < n we have $C(n)/(n+1) \ge C(m)/(m+1)$ then by induction

H. B. MANN

$$egin{aligned} rac{C(n)}{n+1} &= \left|rac{C(n)}{n+1} - rac{C(m)}{m+1}
ight| + rac{C(m)}{m+1} \ &= \left|rac{C(n)}{n+1}
ight| - rac{C(m)}{m+1}
ight| + rac{A(m_1) + B(m_1) - 1}{m_1 + 1} \ &+ \left|rac{C(m)}{m+1} - rac{C(m_2)}{m_2 + 1}
ight| \ &\geq \left|rac{C(n)}{n+1} - rac{C(m_2)}{m_2 + 1}
ight| + rac{A(m_1) + B(m_1) - 1}{m_1 + 1} \ , \end{aligned}$$

where $m_2 \notin C$, $m_1 \notin C$, $m_2 \leq \max(m_1, m - m_1 - 1) \leq \max(m_1, n - m_1 - 1)$. Now assume $C(n) \neq n + 1$ and

$$(9) \qquad \qquad \frac{C(n)}{n+1} < \frac{C(m)}{m+1}$$

for all $m < n, m \notin C$. If $n \in C$ then C(n)/(n+1) > C(n-1)/n hence (9) implies $n \notin C$. We apply Theorem 1. If in Theorem 1 m = n then Theorem 2 holds with $n=m=m_1$. If m < n/2 in Theorem 1, then $n-m-1 \ge m$, hence there is a largest $m_1 \le n - m - 1, m_1 \notin C$. We then have

$$rac{C(n-m-1)}{n-m} \geq rac{C(m_{\scriptscriptstyle 1})}{m_{\scriptscriptstyle 1}+1}$$
 .

Moreover since $(n-m)/(m+1) \ge 1$ we get from Theorem 1

$$\frac{C(n)}{n+1} \ge \frac{C(m_1)}{m_1+1} - \frac{C(n)}{n+1} + \frac{A(m) + B(m) - 1}{m+1}$$
$$= \left| \frac{C(n)}{n+1} - \frac{C(m_1)}{m_1+1} \right| + \frac{A(m) + B(m) - 1}{m+1}$$

and Theorem 2 is proved.

Theorems 1 and 2 can easily be generalized for arbitrary a_0 , b_0 . One simply applies the two theorems to the set $A' = (A - a_0)$, $B' = (B - b_0)$. If $a_0 + b_0 = c_0$ then $C'(n) = C(n + c_0)$, $A'(m) = A(m + a_0)$, $B'(m) = B(m + b_0)$. After some fairly obvious transformation Theorem 2 then reads

THEOREM 2a. Let $A = \{a_0 < a_1 < \cdots\}$, $B = \{b_0 < b_1 < \cdots\}$, $A+B = C = \{c_0 < c_1 < \cdots\}$. Let $n \ge c_0$. Either $C(n) = n - c_0 + 1$ or there exist m, m_1 satisfying the conditions:

$$egin{aligned} rac{C(n)}{n-c_{\scriptscriptstyle 0}+1} \geq rac{A(m-b_{\scriptscriptstyle 0})+B(m-a_{\scriptscriptstyle 0})-1}{m-c_{\scriptscriptstyle 0}+1} \ &+ \Big|rac{C(n)}{n-c_{\scriptscriptstyle 0}+1} - rac{C(m_{\scriptscriptstyle 1})}{m_{\scriptscriptstyle 1}-c_{\scriptscriptstyle 0}+1}\Big| \ , \end{aligned}$$

912

 $c_0 < m \le n, m \notin C, m_1 \notin C, c_0 < m_1 \le \max(m, n - m + c_0 - 1).$

It is worth noting that Theorem 2 implies the Fundamental theorem proved in [3]. We shall prove the following

COROLLARY TO THEOREM 2. Let $a_0 = b_0 = 0$, $n \notin C$, $\gamma(n) = C(n) - 1$, $\sigma(m) = A(m) + B(m) - 2$. Then either $\gamma(n) \ge \sigma(n)$ or $\gamma(n)/n > \sigma(m)/m$ for some $m \notin C$, 0 < m < n.

Proof. Let *m* be the integer of Theorem 2. If n = m then Theorem 2 reads $\gamma(n) \ge \sigma(n)$. If $\gamma(n) < \sigma(n)$ then Theorem 2 yields

$$\gamma(n)m+\gamma(n)+m\geq\sigma(m)n+\sigma(m)+n\;.$$

If $\gamma(n)m \leq \sigma(m)n$ then we obtain from this $\gamma(n) + m \geq \sigma(m) + n$, $\sigma(m)n + m^2 \geq \sigma(m)m + nm$ and therefore $\sigma(m) \geq (m)$. Hence $C(n) \geq n+1$, which is impossible since $n \notin C$. This proves the corollary.

We shall now prove Theorem 3. If $\underline{\lim} ((A(m) + B(m))/m = 0$, then there are infinitely many m such that

(10)
$$C(m) \ge A(m - b_0) + B(m - a_0) - 1$$
.

If C has only finitely many gaps above c_0 , then Theorem 3 is obvious. There is an infinite sequence of m_i such that

$$rac{A(m_i-b_{\scriptscriptstyle 0})+B(m_i-a_{\scriptscriptstyle 0})-1}{m_i-c_{\scriptscriptstyle 0}+1} < rac{A(m-b_{\scriptscriptstyle 0})+B(m-a_{\scriptscriptstyle 0})-1}{m-c_{\scriptscriptstyle 0}+1}$$

for $c_0 \leq m < m_i$. It follows from Theorem 2a that

$$C(m_i) \geq A(m_i - b_{\scriptscriptstyle 0}) + B(m_i - a_{\scriptscriptstyle 0}) - 1$$
 .

(If $m_i \notin C$ this follows directly from Theorem 2a. If $m_i \in C$ take the next gap in C below m_i .)

THEOREM 4. If A + B = C and $\underline{\lim} (C(n)/n = 0$, then

$$\underline{\lim}_{m \in \sigma} \frac{A(m) + B(m)}{m} = 0$$

and 10 holds for infinitely many $m \notin C$.

Proof. Without loss of generality we may assume $a_0 = b_0 = 0$. There is an infinite sequence $\{n_i\}$ such that $C(n_i)/(n_i+1) < C(m)/(m+1)$ for $m < n_i$. Clearly $n_i \notin C$. Let m_i be the value of m of Theorem 1 corresponding to n_i . From Theorem 1 we see that the values m_i also form an infinite sequence, since A(m) + B(m) - 1 cannot vanish and since

by assumption $C(n_i-m-1)-C(n_i)(n_i-m)/(m+1)\geq 0$ for $m\leq n_i$. Now

$$rac{C(m)}{m+1} > rac{C(n_i)}{n_i+1}$$
 , $rac{C(n_i-m-1)}{n_i-m} > rac{C(n_i)}{n_i+1}$

for $0 \le m < n_i$ implies $C(m) + C(n_i - m - 1) \ge C(n_i)$ for $0 \le m \le n_i$ and this together with (1) implies

$$C(m_i) \geq A(m_i) + B(m_i) - 1$$
.

Modifications analogous to those applied in the present paper to the proof of the authors Fundamental Theorem [3] can also be applied to Dyson's [1] proof of its generalization to more than two sets. The special case of Dyson's Theorem considered here then reads:

If $C = A_1 + \cdots + A_g$ and if c_0, a_{0i} are the smallest elements in Cand A_i respectively, then for $n \ge c_0$, there is an m such that

(11)
$$\frac{C(n)}{n-c_0+1} \ge \frac{\sum A_i(m-c_0+a_{0i})-(g-1)}{m-c_0+1}$$
$$c_0 \le m \le n \; .$$

This inequality with $a_0 = b_0 = 0$ was first obtained by Kneser [4, Theorem VII]. Inequality (11) for g = 2 already known to van der Corput [5] is somewhat weaker than Theorem 2, because the minimum is not restricted to $m \notin C$. This weakening is necessary if g > 2. The relation (11) with $g \ge 3$ becomes false, if m is not restricted to elements not in C. It is not known to the author if $C(n)/(n + 1) \neq C(m)/(m + 1)$ for $c_0 \le m < n$ and

$$C(n) < \sum_{j} A_{j}(n - c_{0} + a_{0i}) - (g - 1)$$

implies strict inequality in (11) when $g \geq 3$.

Clearly on account of (11), Theorems 3 and 4, the latter without the condition $m \notin C$, carry over to the sum of an arbitrary number of sets.

The author takes the opportunity to refute Khintchine's [2] assertion that the methods used in his exposition are altogether different from those introduced in [3]. Anybody acquainted with the authors first proof must see that the basic ideas are exactly the same.

References

1. F. J. Dyson, A theorem on the densities of sets of integers, J. London Math. Soc. 20, (1945), 8-14.

2. A. Y. Khinchin, *Three pearls of number theory*, Graylock Press, Rochester, New York (1952).

3. H. B. Mann, A proof of the fundamental theorem on the density of sums of sets of positive integers, Ann. of Math. 43, (1942), 523-527.

4. Kneser Martin Abschaetzung der asymptotischen Dichte von Summen mengen, Math. Zeitschrift. Bd. **58**, (1953), 459-484.

5. J. G. Van der Corput, On sets of integers I II III, Proc. Akad. Wet. Amsterdam 50, (1947), 252-261, 340-350, 429-435.

THE OHIO STATE UNIVERSITY