A REFINEMENT OF THE FUNDAMENTAL THEOREM ON THE DENSITY OF THE SUM OF TWO SETS OF INTEGERS

H. B. Mann

Let $A=\left\{a_{0}<a_{1}<\cdots\right\}$ be a set of integers and let $A(n)$ be the number of integers in A not exceeding n. If A, B are two such sets, we put $A+B=\{a+b\}$, where a denotes generically an element of A, b an element of B. It should be noted that A and B may contain negative numbers or zero and that these are counted in $A(n)$ and $B(n)$.

Erdoes in an unpublished paper proved:
If $\lim _{m \rightarrow \infty}(A(m) / m)=\lim _{m \rightarrow \infty}(B(m) / m)=0$, then for every $\varepsilon>0$ there are infinitely many x such that if $C=A+B$ then

$$
C(x) \geq A(x)(1-\varepsilon)+B(x) .
$$

Clearly there are then also infinitely many y such that

$$
C(y) \geq A(y)+B(y)(1-\varepsilon) .
$$

Erdoes conjectured that it is possible to choose infinitely many $x=y$.

At the Number Theory Conference in Boulder, Colorado, Erdoes proposed this problem to the author. It is clear that the Fundamental Theorem [3] is inadequate to deal with this problem, because it fails if $1 \notin C$. The search for a stronger theorem finally led the author to Theorem 2. Theorem 3 is a consequence of Theorem 2 and is considerably stronger than Erdoes conjecture.

Theorem 1. Let $a_{0}=b_{0}=0$. If $n \geq 0, n \notin C$ then there is an $m \notin C$, $m=n$ or $m<(n / 2)$, such that
(1)

$$
\frac{C(n)}{n+1} \geq \frac{A(m)+B(m)-1}{m+1}+\left(C(n-m-1)-\frac{C(n)}{n+1}(n-m)\right) \frac{1}{m+1}
$$

For the proof of Theorem 1, we consider the following transformation: Let $n_{1}<n_{2}<\cdots<n_{r}=n$ be the gaps in C. Form $d_{i}=n-n_{i}$. Choose, if possible, a fixed number $e \in B$ such that an equation

$$
\begin{equation*}
a+e+d_{i}=n_{j} \tag{2}
\end{equation*}
$$

holds for some i. Let the set B^{\prime} consist of all numbers $e+d_{s}$ for which
Received July 20, 1959.
an equation $a+e+d_{s}=n_{t}$ holds with some value of a. Form $B^{*}=$ $B^{*}(e)=B \cup B^{\prime}, C^{*}=A+B^{*}$. The following propositions are easily seen to hold.

Proposition 1. $n \notin C^{*}$.
Proof. The equation $a+e+d_{s}=n$ implies $a+e=n_{s}$, which is impossible since $e \in B$.

Proposition 2. $B^{\prime} \cap B$ is empty.
Proof. The equation $a+e+d_{s}=n_{t}$ shows that $e+d_{s} \notin B$.
Proposition 3. $\quad C^{*}(n)-C(n)=B^{*}(n)-B(n)$.
Proof. The equation $a+e+d_{s}=n_{t}$ implies $a+e+d_{t}=n_{s}$. Hence if $n_{s} \in C^{*}$ then $e+d_{s} \in B^{1}$ and vice versa.

Proposition 4. All numbers of B^{\prime} are larger than e.
Proof. $\quad B^{\prime}$ consists of numbers of the form $e+d_{s}, d_{s}>0$.
$B^{*}(e)$ is called the fundamental e transform of B.
We now construct numbers e_{1}, \cdots, e_{k} and sets $B=B_{0}, B_{1}, \cdots, B_{k}$, $C=C_{0}, C_{1}, \cdots, C_{k}$ by the following rules:

Rule 1. B_{j} is the fundamental e_{j} transform of B_{j-1}.
Rule 2. $A+B_{j}=C_{j}$.
Rule 3. e_{j} is the smallest number in B_{j-1} such that an equation

$$
a+e_{j}+d_{s}=n_{t}, \quad a \in A, n_{s}, n_{t} \notin C_{j-1}
$$

holds.
Rule 4. $a+e+d_{s} \neq n_{t}$ for any $a \in A, e \in B_{k}, n_{s}, n_{t} \notin C_{k}$.
We then have
PROPOSITION 5. $\quad e_{1}<e_{2}<\cdots<e_{k}$.
Proof. We have $a+e_{j}+d_{s}=n_{t} ; a \in A, n_{s}, n_{t} \notin C_{j-1}, e_{j} \in B_{j-1}$. If $e_{j} \notin B_{j-2}$ then $e_{j}>e_{j-1}$ (Prop. 4). If $e_{j} \in B_{j-2}$ then since $C_{j-1} \supset C_{j-2}$ the inequality $e_{j}<e_{j-1}$ contradicts rule 3 , while $e_{j}=e_{j-1}$ implies $n_{s}, n_{t} \in C_{j-1}$.

For any set A put

$$
\begin{equation*}
A(m, n)=A(n)-A(m-1) \tag{3}
\end{equation*}
$$

Lemma 1. Let n_{s} be the least gap in C_{k}, then

$$
\begin{align*}
B_{k}\left(n_{s}\right)-B\left(n_{s}\right) & =C_{k}\left(d_{s}, n\right)-C\left(d_{s}, n\right) \tag{4}\\
& =n_{s}-C\left(d_{s}, n\right)
\end{align*}
$$

Proof. Let $d_{r-1}, \cdots, d_{r-q}, \leq n_{s}, d_{r-q-1}>n_{s}$ where we formally set $d_{0}=n+1$. If $d_{j} \leq n_{s}$ then $n_{s}-d_{j} \in C_{k}, n_{s}-d_{j}=a+b^{*}, b^{*} \in B_{k}$. Hence by rule 4 we have $n_{j} \in C_{k}$. But $d_{j} \leq n_{s}$ implies $d_{s} \leq n_{j}$ hence

$$
\begin{equation*}
C_{k}\left(d_{s}, n\right)-C\left(d_{s}, n\right)=q . \tag{5}
\end{equation*}
$$

Moreover C_{k} contains all numbers x for which $d_{s} \leq x<n$, but does not contain n so that $C_{k}\left(d_{s}, n\right)=n-\left(d_{s}-1\right)-1=n_{s}$.

On the other hand if $n_{j} \in C_{\alpha}, n_{j} \notin C_{\alpha-1}$ then $e_{\alpha}+d_{j} \in B_{\alpha}, e_{\alpha}+d_{,} \notin B_{\alpha-1}$, (Prop. 2). If $d_{j} \leq n_{s}$ and $e_{\alpha}+d_{j}>n_{s}$ then

$$
e_{a}>n_{s}-d_{j}=a+b^{*}, b^{*} \in B_{k}
$$

By Prop. 4 and $5, b^{*} \in B_{\alpha-1}$ and $e_{\alpha}>b^{*}$ contradicts rule 3. Hence

$$
\begin{equation*}
B_{k}\left(n_{s}\right)-B\left(n_{s}\right)=q \tag{6}
\end{equation*}
$$

This completes the proof of Lemma 1.
We are now prepared for the proof of Theorem 1. Since n_{s} is not in C_{k} no number of the form $n_{s}-a$ is in B_{k} and therefore

$$
\begin{equation*}
n_{s}+1 \geq A\left(n_{s}\right)+B_{k}\left(n_{s}\right) \tag{7}
\end{equation*}
$$

Subtracting 4 from 7 we get

$$
C(n) \geq C\left(d_{s}-1\right)+A\left(n_{s}\right)+B\left(n_{s}\right)-1
$$

which after some simple algebra gives

$$
\frac{C(n)}{n+1} \geq \frac{A\left(n_{s}\right)+B\left(n_{s}\right)-1}{n_{s}+1}+\left(C\left(d_{s}-1\right)-\frac{C(n)}{n+1} d_{s}\right) \frac{1}{n_{s}+1}
$$

Finally if $n_{s}<n$ then because of rule 4 we must have $n_{s}<d_{s}=$ $n-n_{s}, n_{s}<n / 2$. This completes the proof of Theorem 1.

Theorem II. Let $A+B=C, a_{0}=b_{0}=0, n \geq 0$. Then either $C(n)=$ $n+1$ or there exist numbers m, m_{1} satisfying the conditions

$$
\begin{aligned}
& \frac{C(n)}{n+1} \geq \frac{A(m)+B(m)-1}{m+1}+\left|\frac{C(n)}{n+1}-\frac{C\left(m_{1}\right)}{m_{1}+1}\right| \\
& m \notin C, m \leq n, m_{1} \notin C, m_{1} \leq \max (m, n-m-1)
\end{aligned}
$$

Proof. The theorem is true if $n=0$. Hence we can apply induction on n. If for any $m \notin C, m<n$ we have $C(n) /(n+1) \geq C(m) /(m+1)$ then by induction

$$
\begin{aligned}
\frac{C(n)}{n+1}= & \left|\frac{C(n)}{n+1}-\frac{C(m)}{m+1}\right|+\frac{C(m)}{m+1} \\
\geq & \left|\frac{C(n)}{n+1}\right|-\frac{C(m)}{m+1} \left\lvert\,+\frac{A\left(m_{1}\right)+B\left(m_{1}\right)-1}{m_{1}+1}\right. \\
& \quad+\left|\frac{C(m)}{m+1}-\frac{C\left(m_{2}\right)}{m_{2}+1}\right| \\
\geq & \left|\frac{C(n)}{n+1}-\frac{C\left(m_{2}\right)}{m_{2}+1}\right|+\frac{A\left(m_{1}\right)+B\left(m_{1}\right)-1}{m_{1}+1}
\end{aligned}
$$

where $m_{2} \notin C, m_{1} \notin C, m_{2} \leq \max \left(m_{1}, m-m_{1}-1\right) \leq \max \left(m_{1}, n-m_{1}-1\right)$.
Now assume $C(n) \neq n+1$ and

$$
\begin{equation*}
\frac{C(n)}{n+1}<\frac{C(m)}{m+1} \tag{9}
\end{equation*}
$$

for all $m<n, m \notin C$. If $n \in C$ then $C(n) /(n+1)>C(n-1) / n$ hence (9) implies $n \notin C$. We apply Theorem 1. If in Theorem $1 m=n$ then Theorem 2 holds with $n=m=m_{1}$. If $m<n / 2$ in Theorem 1 , then $n-m-1 \geq m$, hence there is a largest $m_{1} \leq n-m-1, m_{1} \notin C$. We then have

$$
\frac{C(n-m-1)}{n-m} \geq \frac{C\left(m_{1}\right)}{m_{1}+1}
$$

Moreover since $(n-m) /(m+1) \geq 1$ we get from Theorem 1

$$
\begin{aligned}
\frac{C(n)}{n+1} & \geq \frac{C\left(m_{1}\right)}{m_{1}+1}-\frac{C(n)}{n+1}+\frac{A(m)+B(m)-1}{m+1} \\
& =\left|\frac{C(n)}{n+1}-\frac{C\left(m_{1}\right)}{m_{1}+1}\right|+\frac{A(m)+B(m)-1}{m+1}
\end{aligned}
$$

and Theorem 2 is proved.
Theorems 1 and 2 can easily be generalized for arbitrary a_{0}, b_{0}. One simply applies the two theorems to the set $A^{\prime}=\left(A-a_{0}\right), B^{\prime}=\left(B-b_{0}\right)$. If $a_{0}+b_{0}=c_{0}$ then $C^{\prime}(n)=C\left(n+c_{0}\right), A^{\prime}(m)=A\left(m+a_{0}\right), B^{\prime}(m)=B\left(m+b_{0}\right)$. After some fairly obvious transformation Theorem 2 then reads

Theorem 2a. Let $A=\left\{a_{0}<a_{1}<\cdots\right\}, B=\left\{b_{0}<b_{1}<\cdots\right\}, A+B=$ $C=\left\{c_{0}<c_{1}<\cdots\right\}$. Let $n \geq c_{0}$. Either $C(n)=n-c_{0}+1$ or there exist m, m_{1} satisfying the conditions:

$$
\begin{aligned}
\frac{C(n)}{n-c_{0}+1} \geq & \frac{A\left(m-b_{0}\right)+B\left(m-a_{0}\right)-1}{m-c_{0}+1} \\
& +\left|\frac{C(n)}{n-c_{0}+1}-\frac{C\left(m_{1}\right)}{m_{1}-c_{0}+1}\right|
\end{aligned}
$$

$c_{0}<m \leq n, m \notin C, m_{1} \notin C, c_{0}<m_{1} \leq \max \left(m, n-m+c_{0}-1\right)$.
It is worth noting that Theorem 2 implies the Fundamental theorem proved in [3]. We shall prove the following

Corollary to Theorem 2. Let $a_{0}=b_{0}=0, n \notin C, \gamma(n)=C(n)-1$, $\sigma(m)=A(m)+B(m)-2$. Then either $\gamma(n) \geq \sigma(n)$ or $\gamma(n) / n>\sigma(m) / m$ for some $m \notin C, 0<m<n$.

Proof. Let m be the integer of Theorem 2. If $\mathrm{n}=m$ then Theorem 2 reads $\gamma(n) \geq \sigma(n)$. If $\gamma(n)<\sigma(n)$ then Theorem 2 yields

$$
\gamma(n) m+\gamma(n)+m \geq \sigma(m) n+\sigma(m)+n
$$

If $\gamma(n) m \leq \sigma(m) n$ then we obtain from this $\gamma(n)+m \geq \sigma(m)+n$, $\sigma(m) n+m^{2} \geq \sigma(m) m+n m$ and therefore $\sigma(m) \geq(m)$. Hence $C(n) \geq n+1$, which is impossible since $n \notin C$. This proves the corollary.

We shall now prove Theorem 3. If $\underline{\lim }((A(m)+B(m)) / m=0$, then there are infinitely many m such that

$$
\begin{equation*}
C(m) \geq A\left(m-b_{0}\right)+B\left(m-a_{0}\right)-1 \tag{10}
\end{equation*}
$$

If C has only finitely many gaps above c_{0}, then Theorem 3 is obvious. There is an infinite sequence of m_{i} such that

$$
\frac{A\left(m_{i}-b_{0}\right)+B\left(m_{i}-a_{0}\right)-1}{m_{i}-c_{0}+1}<\frac{A\left(m-b_{0}\right)+B\left(m-a_{0}\right)-1}{m-c_{0}+1}
$$

for $c_{0} \leq m<m_{i}$. It follows from Theorem 2 a that

$$
C\left(m_{i}\right) \geq A\left(m_{i}-b_{0}\right)+B\left(m_{i}-a_{0}\right)-1 .
$$

(If $m_{i} \notin C$ this follows directly from Theorem $2 a$. If $m_{i} \in C$ take the next gap in C below m_{i}.)

Theorem 4. If $A+B=C$ and $\underline{\lim (C(n) / n=0 \text {, then }}$

$$
\underline{\lim }_{m \in \sigma} \frac{A(m)+B(m)}{m}=0
$$

and 10 holds for infinitely many $m \notin C$.
Proof. Without loss of generality we may assume $a_{0}=b_{0}=0$. There is an infinite sequence $\left\{n_{i}\right\}$ such that $C\left(n_{i}\right) /\left(n_{i}+1\right)<C(m) /(m+1)$ for $m<n_{i}$. Clearly $n_{i} \notin C$. Let m_{i} be the value of m of Theorem 1 corresponding to n_{i}. From Theorem 1 we see that the values m_{i} also form an infinite sequence, since $A(m)+B(m)-1$ cannot vanish and since
by assumption $C\left(n_{i}-m-1\right)-C\left(n_{i}\right)\left(n_{i}-m\right) /(m+1) \geq 0$ for $m \leq n_{i}$. Now

$$
\frac{C(m)}{m+1}>\frac{C\left(n_{i}\right)}{n_{i}+1}, \frac{C\left(n_{i}-m-1\right)}{n_{i}-m}>\frac{C\left(n_{i}\right)}{n_{i}+1}
$$

for $0 \leq m<n_{i}$ implies $C(m)+C\left(n_{i}-m-1\right) \geq C\left(n_{i}\right)$ for $0 \leq m \leq n_{i}$ and this together with (1) implies

$$
C\left(m_{i}\right) \geqq A\left(m_{i}\right)+B\left(m_{i}\right)-1
$$

Modifications analogous to those applied in the present paper to the proof of the authors Fundamental Theorem [3] can also be applied to Dyson's [1] proof of its generalization to more than two sets. The special case of Dyson's Theorem considered here then reads:

If $C=A_{1}+\cdots+A_{g}$ and if $c_{0}, a_{0 i}$ are the smallest elements in C and A_{i} respectively, then for $n \geq c_{0}$, there is an m such that

$$
\begin{align*}
& \frac{C(n)}{n-c_{0}+1} \geq \frac{\sum A_{i}\left(m-c_{0}+a_{0 i}\right)-(g-1)}{m-c_{0}+1} \tag{11}\\
& c_{0} \leq m \leq n
\end{align*}
$$

This inequality with $a_{0}=b_{0}=0$ was first obtained by Kneser [4, Theorem VII]. Inequality (11) for $g=2$ already known to van der Corput [5] is somewhat weaker than Theorem 2, because the minimum is not restricted to $m \notin C$. This weakening is necessary if $g>2$. The relation (11) with $g \geq 3$ becomes false, if m is not restricted to elements not in C. It is not known to the author if $C(n) /(n+1) \neq C(m) /(m+1)$ for $c_{0} \leq m<n$ and

$$
C(n)<\sum_{j} A_{j}\left(n-c_{0}+a_{0 i}\right)-(g-1)
$$

implies strict inequality in (11) when $g \geq 3$.
Clearly on account of (11), Theorems 3 and 4, the latter without the condition $m \notin C$, carry over to the sum of an arbitrary number of sets.

The author takes the opportunity to refute Khintchine's [2] assertion that the methods used in his exposition are altogether different from those introduced in [3]. Anybody acquainted with the authors first proof must see that the basic ideas are exactly the same.

References

1. F. J. Dyson, A theorem on the densities of sets of integers, J. London Math. Soc. 20, (1945), 8-14.
2. A. Y. Khinchin, Three pearls of number theory, Graylock Press, Rochester, New York (1952).
3. H. B. Mann, A proof of the fundamental theorem on the density of sums of sets of positive integers, Ann. of Math. 43, (1942), 523-527.
4. Kneser Martin Abschaetzung der asymptotischen Dichte von Summen mengen, Math. Zeitschrift. Bd. 58, (1953), 459-484.
5. J. G. Van der Corput, On sets of integers I II III, Proc. Akad. Wet. Aṃsterdam 50, (1947), 252-261, 340-350, 429-435.

The Ohio State University

