
LIE MAPPINGS IN CHARACTERISTIC 2

I. N. HERSTEIN AND ERWIN KLEINFELD1

1* Introduction. In a previous paper [2] one of the authors proved
that Jordan homomorphism, that is, an additive mapping φ onto a prime
ring of characteristic not 2 or 3 which preserves squares, is either a
homomorphism or an anti-homomorphism. Smiley [6] then showed that
this was also true in the characteristic 3 case in the characteristic 2
case he showed that the same conclusion holds for φ if one assumes
φ(aba) = ψ(a)φ(b)φ(a) for all a and b.

We concern ourselves here with mappings φ onto a simple ring of
characteristic 2 which preserve commutators and cubes. This situation
is of interest for in characteristic 2 Jordan homomorphisms are the same
thing as Lie homomorphisms, that is, mappings which preserve commu-
tators. Lie mappings for matrices have been completely determined \5}.
However little information is known for general simple rings.

Of particular interest is the type of argument used to establish the
result for it uses the theory of Lie and Jordan ideals and substructures
of simple rings developed by Herstein |3].

2. Main section* As is customary the commutator ab-ba will be
denoted by [α, b].

Initially φ will be a mapping from a simple ring R onto a simple
ring Rr Φ 0 of characteristic 2 which satisfies

( i ) φ(χ + y) = <p(%) + ψ{y)

(ϋ)

(iii)

for all x, y, ze R. Later we weaken (ii) to the assumption that
φ(xy - yx) = φ(x)φ(y) - φ(y)φ(x).

Although we do not assume that the characteristic of R is 2, it can
be easily proved. Clearly φ(2x) = 0 for all xeR; but the kernel of φ
is a Jordan ideal of R, and if the characteristic of R is not 2, the only
non-zero Jordan ideal of R would be R itself [31 thus 2x — 0 for all
xe R and R has characteristic 2.

Assume that φ is a mapping satisfying (i), (iii) and (ii)' φ(xy + yx) =
φ(x)φ(y) + <p(y)ψ(x) for all x,yeR, and that R is a field. From (ii)',
R' is a field. On linearizing (iii) we find that

( 1 ) φ(xy(x + y)) = φ{x)φ(y)φ(x + y) f o r a l l x,y e R . L e t W =
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{z e RI φ{z) = 0}. Thus if 0 Φ z e W from (1), for all b e R, φ(zb(z + b)) = 0.
Putting b = z"1 in this yields 0 = φ(z) = φ{z~λ). If we replace b by z~2 we
obtain φ(l) = ^(z~3) = ^(z"1)3 = φ(z)3 = 0. Thus putting x — 1 in (1) leads
to ^(62) = φ(b) for all 6 6 R. In (1), putting a? = b~2 we arrive at φ(b~*) =
φ(l + 6-3) = φ(b-2)φ(b)(φ(b + b~2)). Since <P(6~3) = φ(b-ι)\ φ(b2) = φ{b),

( 2 ) cp(6-x)3 = φ{b-ι)ψ{b)φ{b + 6-1) = φ(δ + 6-1) from (1). By sym-
metry, φ(bf = φ(b + 6"1), and so φ(¥) = φ(bf = φφ'1)* = φ(b~z), whence
φ(¥ + 6"3) = 0. Thus, using this in (2) we have that φψ-*Y = φ(¥ + b-*) = 0,
and so φ(b~") = 0 thus φφ-1) = 0 for all b e R, that is, <p(x) = 0 for all
xeR, forcing Rf = 0. So we must assume that φ(z) = 0 implies that
z = 0.

In (1) let x ψ 0, 1 be arbitrary, y = a?"1. Then

^(tf + ar1) = φ(x)φ(χ-1)φ(x + X'1) ,

and since a? + x"1 Φ 0, we have that φ(x)φ(x~1) = 1. Since 0 ^ ^(1) =
φ(Y) = ^(l) 3, 9 (̂1)2 = 1, and since i2' is a field of characteristic 2, this
forces φ(l) — 1. Thus φ{x~λ) — φ(^)"1 for all x Φ OeR. By a result of
Hua [4] ψ must be an isomorphism. If R — GF(2), then since <p(0) = 0,
9̂ (1) = 1 it is trivial that ψ is an isomorphism. Therefore the special
case that R is a field is disposed of, and we assume henceforth in the
paper that R is a simple ring which is not a field.

Suppose that R is simple and has a unit element and φ satisfies (i),
(ii)' and (iii). Suppose φ(l) = a. By (ii)', a is in Z', the center of R'.
Also α3 = φ(lf — φ{Y) = α, and so a — 0 or a2 = 1. If α2 = 1, since a
is in Z', and i2' is simple of characteristic 2, α = 1. Suppose that a —
φ(l) = 0. Thus for all x e R, φ{xf = ψ(x +1) 8 = φ((x +1)3) = φ(x* + x2 + x +1).
Thus ^(#2) = φ(x) replacing a? by x + y in this yields φ(xy + yx) — 0
for all x,yeR, and so Rf is a field. Now

φ(x* + x2y + xyx + ?/x2 + τ/2x + yxy + xy2 + y3) = φ((x + yf)

= {<p(v) + φ(y)f = ^O) 3 + φ(xfφ(y) + φ(yfψ(χ) + φ(yf .

This leads, using φ(ab + 6α) = 0 to

( 2 ) ψ{x2y + ?/2x) = φ(xfφ(y) + φ(yfφ(x) f o r a l l x , y e R .

In this replace a? by x + 2. A simple computation then shows that
φ((xz + zx)y) = 0 for all x,y,ze R. From this we get that φ(R(xz + zx)R) = 0
for all x, z e R if #2 + za? =£ 0 by the simplicity of R, R(xz + zx)R =R.
Since iZ' =£ 0 we are forced to assume that xz + zx = 0 for all as, ze R.
But then iϋ is a field and from the case already disposed of we know
that φ is an isomorphism and so φ(l) = 1, contradicting φ(l) = 0. Thus
we have shown that if φ is an additive mapping preserving cubes and
commutators and if R has a unit element, then φ(l) = 1. Now consider-
ing φ(x + If we readily see that φ(x2) = ^(^) 2. Thus (ii)' and (iii) imply
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(ii). Thus it would suffice in this case to assume that φ preserves cubes
and commutators.

We begin with

LEMMA 1. For all x,yeR,

φ(xyx + yxy) = φ(χ)ψ(y)φ(χ) + φ(y)φ(x)φ(y) .

Proof. Linearizing (ii) it is clear that φ(ab + ba) = ψ(a)φ(b) + φ(b)φ(a).
In (iii) replace z by x + y. Then

φ(x* + x2y + xyx + yx2 + y2x + yxy + xy2 + y*) = φ(xf + φ(x)2φ(y)

+ <p{χ)φ(y)φ(χ) + φ{y)φ{%Y + <p(yf<p(x)

+ φ(yf .

Because of (iii) φ{xz) = ψ{xfy φ{yz) = φ(yf Also from (ii) and its linear-
ized form, φ(x2y + yx2) = φ{xfφ{y) + φ(y)φ(xf and <p(̂ /2a; + xy2) =
ψ(vT<P(u) + ΨiΦΦivY! Substituting these results into the above linearized
form of (iii) we obtain the result of the lemma.

Lemma 1 will now be strengthened to

LEMMA 2. For αϊi x,y, ze R,

ψ(xyz + 32/αj) = <p(x)φ(y)φ(z) + ψ(z)<p(y)φ(x) .

Proof. In the result of lemma 1 replace x hγ x + z. Carrying out
the linearization and using Lemma 1 on the resulting expressions we are
left with the expression in Lemma 2.

LEMMA 3. // φ(z) = 0 then z = 0.

Proof. Suppose φ{z) = 0. From Lemma 2 it follows that

φ(xyz + 2?/x) = φ(x)φ(y)φ(z) + ψ{z)φ{y)φ{x) = 0

for all x,y e R.
However, φ(xyz + zxy) = φ(xy)φ(z) + φ(z)φ(xy) = 0. Adding these two

to we obtain φ(z(xy + yx)) = 0 for all x,yeR. Letting z'=z(xy + yx)
and repeating the argument used above, φ(zf(uv+vu) = 0, that is,
φ(z(xy + yx)(uv + vu)) — 0. Continuing in this manner, φ(za) = 0 for all
α in the subring generated by all the elements xy + yx with x, y e R.
Since 12 is simple and not a field, by a result of Herstein [3], the subring
generated by all the xy + yx is R itself. Thus φ(zR) = 0. By a
symmetrical argument, <p(ifc) = 0. But then, replacing z by Rz we obtain
that φ(RzR) = 0. If s ^ 0, by the simplicity of R, RzR = J?, and so
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ψ{R) = 0, whence Rf = 0, contrary to assumption. Hence we can
conclude that z = 0.

We now prove

LEMMA 4. For all x, y e R φ{xyx) — φ(x)φ(y)φ(x) + λ where λ com-
mutes with φ(x) and with φ(y).

Proof. Since x2yx + xyx2 = x(xyx) + (xyx)x we know that φ(x2yx + #?/#2) —
φ(x)φ(xyx) + ψ(xyx)ψ(x). But, on the other hand, by Lemma 2

φ(x2yx + xyx2) = φ(xfφ(y)φ(x) + φ(χ)φ(y)φ(χY .

Equating these two expressions it follows that

φ(χ)(φ(xyx) + ψ(x)ψ(y)ψ(χ)) = (φ(χyx) + <p(χ)<p(y)φ(χ))<p(χ) .

From Lemma 1,

φ(y)<p{χ)φ(y) = ^ ( x ^ ) + φ(χ)<p(y)<p(χ)

and so it also commutes with <p(?/), proving the lemma.
Of central importance in our subsequent arguments is the

Lemma 5. If xy = τ/x £feew ψ{xy) = Φ{%)ψ{y).

Proof. Note that 0 — ̂ (0) = <p(ίπ/ + 2/») = ψ{x)ψ{y) + <p(y)φ(x) ,
φ(x)φ(y) - φ(y)φ(χ).

From Lemma 2 we have that

<p(ί»2/2 + 2i/a;) = φ(x)φ(y)φ(z) + φ(z)φ(y)φ(x) ,

while from our assumptions on φ, φ(xyz + zxy) — ψ(xy)φ(z) + φ(z)φ(xy).
Since 2:̂ 7/ = zyx9 we deduce that p = φ(xy) + φ(x)φ(y) has the property
that [p, φ(z)] = 0 for all z.

On the other hand, x(xy) = (α?2/)a?, and so by a similar argument
<ry = φ(x2y) + φ(x)ψ{xy) has the property that [σ, ̂ (2)] = 0. Moreover,
since x2 and y commute, by the same argument as above φ(x2y) —
φ(x)2φ(y) + T where [r, φ(z)] = 0. Thus

σ = τ + <p(^)(^(^) + <p(x)φ(y)) = r + ^p(̂ )iθ .

But then [9>(ίc)jθ, <p(z)] = 0 and so [φ(x), φ(z)]p = 0. Since /O is in the
center of R' and JF2' is a prime ring we must have either p — 0 or
[<£>(#), ̂ («)] = 0 . If p — 0 we have proved our contention. If p Φ 0,
[^(ίc), 90(2)] = 0 for all z, and so ψ[x9 z] — 0. Using Lemma 3, we deduce
that [x, z] = 0, hence α? is in the center of R. Similary y is in the
center of R. Since R is not a field there is an element w not in the
center of R. Since # is in the center, xw — wx. As we have just seen,
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either φ(xιv) = φ(x)φ(w) or both x and w are in the center of R. Since
w is out of the center, φ(xw) = φ(x)φ(w). Since y is in the center of
R,y + w is not in the center so

φ{xy) + φ{x)φ(w) — φ(xy) + φ(xw) — φ(xy + xw)

φ(x(y + w)) = ψ(x)φ{y + w) = φ{x)φ{y) + φ(x)φ(w) .

Thus φ(xy) — φ(x)φ(y), and so p = 0, contrary to the assumption that
p Φ 0. Thus in any case we conclude that p — 0 and so that φ(xy) —
φ(x)φ(y), thereby proving the lemma.

LEMMA 6. // the center of R contains an element X Φ 0, 1 then
φ(xyx) — <p(x)φ(y)φ(x) for all x, y e R.

Proof. Substituting Xx for x in Lemma 1 we see that

φ(X2xyx + Xyxy) = φ(Xx)φ(y)φ(Xx) + φ(y) φ(Xx)φ(y) .

In light of Lemma 5, φ(X2xyx) — φ(Xfφ(xyx) ,

φ(Xx) = φ(x)φ(x) and φ(Xyxy) = φ(x)φ(yxy) .

Thus

φ(x)2φ(xyx) + φ(x)φ(yχy) = φ(xfφ(χ)φ(y)φ(χ) + φ{x)ψ{y)φ{χ)ψ{y).

Multiplying the identity of Lemma 1 by φ(X) and subtracting from the
above we have

(<p(λ)2 + φ(x))(φ(χyχ) + φ(χ)φ(y)φ(χ)) = 0 .

However, φ(X)2 + φ(X) = φ(X2 + λ), and since X Φ 0, 1 λ2 + λ =£ 0, hence
by Lemma 3, <p(λ2 + λ) Φ 0. Thus ^(λ)2 + φ(X) is a non-zero element in
the center of a prime ring i?'; since it is annihilated by φ(xyx) + φ(x)φ{y)φ(x),
it must be that φ(xyx) + φ(x)φ(y)φ(x) — 0. This completes the proof of
the lemma.

LEMMA 7. For any x, y e R define z by

φ(z) = φ(xyx) + φ(x)φ(y)φ(x). Then φ(zA) = φ(z2).

Proof. From Lemma 4 it follows that [φ(z), φ(x)]—0 and [φ(z), φ(y)] =
0. But then φ[z, x] = 0 and «p[̂ , 2/] = 0 consequently by Lemma 3,
[zf x] — 0 and [z, y] = 0. Substituting zx for x in Lemma 1 and repeat-
ing the argument used in the proof of Lemma 6 it can be shown that

(φ(z2 - Z))(φ(xyx) + ψ(x)φ(y)<p(x)) = 0 .

But then φ(z2 — z)φ(z) — 0 since z2 — z commutes with z, Lemma 5 im-
plies that φ((z2 — z)z) — 0, that is, φ(zd) — φ(z2). The lemma is thus
proved.
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This lemma allows us to generate idempotents. It is thus natural
to examine the behavior of an idempotent under ψ. We do this in the
next two lemmas.

LEMMA 8. If e is an idempotent in R then for all x R,

φ(exe) — φ(e)φ(x)φ(e) and φ(xex) — φ(x)φ(e)φ(x) .

Proof. Since e commutes with x + ex + xe, by applying Lemma 5
we obtain

φ(exe) = ψ(e(x + ex + xe)) = φ(e)φ(x + ex + xe)

= <P(e)(φ(x) + φ(e)φ(x) + φ(x)φ(e)) .

Since exe commutes with e, and since ψ{ef = <p(e2) = φ(e), right-multiply-
ing the relation obtained by φ(e) we have that

φ(exe) = φ(exe)φ(e) = φ(e)(φ(x) + φ(e)φ(x) + φ(x)φ(e))φ(e)

= <p(e)φ(x)φ(e) .

The second part of the lemma follows from this and Lemma 1.

LEMMA 9. If R contains an idempotent e Φ 0,1 then φ(xyx) =
φ(x)φ(y)φ(x) for all x,yeR.

Proof. If e and / are any two idempotents then

Ψ({e + f)x(e+f)) = φ(exe) + φ(fxf) + φ(exf + fxe)

= φ(e)φ(x)φ(e) + φ(f)φ(x)φ(f) + <p(e)φ(x)φ(f) + φ(f)φ(x)φ(e)

by Lemmas 8 and 2. Thus φ((e + f)x(e + /)) = φ{e + f)φ(x)φ(e + f) for
all xeR. By the main result of Amitsur [1] and a direct verification
for 2 x 2 matrics over GF(2), in a simple ring having a non-trivial
idempotent every commutator v can be written as a sum of idempotents,
so that φ(vxv) —φ{v)φ(x)φ(v), consequently ψ(xvx) — φ(x)φ(v)φ(x) by
Lemma 1. Now

[φ(xyx)9 φ(z)] = φ[xyx, z] = ψ(zxyx + xyxz) .

But

zxyx + xyxz — (xz + zx)yx + xy(xz + zx) + x(yz + zy)x .

Since yz + zy is a commutator,

φ(x(yz + zy)x) = φ(x)φ(yz + zy)φ(x)

= <p(x)<p(y)<p(z)φ(x) + φ{x)φ(z)φ(y)φ{x) .

Also, by Lemma 2,
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φ{(xz + zx)yx + xy(xz + zx)}

= φ{χ)ψ{z)φ{y)φ(χ) + φ(z)φ(χ)φ(y)φ(x) + φ{χ)φ{y)φ(χ)φ{z)

Combining all these relations we have that

φ{zxyx + xyxz) = φ(z)φ(x)φ(y)φ(x) + ψ{x)ψ{y)φ{x)ψ(z)

As a consequence,

[ψ(xyx), φ(z)] = [φ(x)φ(y)φ(x)9 φ(z)] ,

and so

λ = φ{xyx) + φ(x)φ(y)φ(x)

must be in the center of R'. If λ = 0 we would have proved the lemma.
If, on the other hand, λ Φ 1, by Lemma 6 it would follow that λ = 0.
Thus, for some x,yeR, suppose that φ(xyx) + φ(x)φ(y)φ(x) = 1. Then

φ(x2yx2) = φ(x)φ(xyx)φ(x) + μ = (̂̂ )V(τ/)<p(α;)2 + ^(^)2 + A«

where μ is in the center of Rf. On the other hand, φ(x2yx2) —
ψ(xfψ{y)ψ{xf + p where p is in the center of Rf. Comparing these
equalities we see that φ(xf is in the center of Rf. Thus x2 must be in
the center of R. But then x commutes with xy + yx by Lemma 5,

φ(x(xy + yx)) = φ(x)φ(xy + 2/E) = φ(x)(φ(x)φ(y) + φ{y)φ(χ))

= φ(xfφ(y) + φ(x)φ(y)φ(x) .

Since x2 and 7/ commute, φ(x2y) = φ{x)2φ{y). Thus by subtraction, φ(xyx) =
<p(x)<p(y)φ(x), contradicting φ(xyx) + φ{x)ψ(y)φ{x) = 1. Hence ψ(xyx) =
φ(x)φ(y)φ(x) for all x,y e R, proving the lemma.

We now are in a position to show that products of the form aba
are preserved by φ; this will allow us to use Smiley's result thus
characterizing φ. We do this in.

LEMMA 10. For all x,yeR, φ(xyx) — φ(x)φ{y)φ{x).

Proof. If R contains an idempotent e Φ 0, 1 then the lemma is true
as a consequence of Lemma 9. Hence we assume that R has no non-
trivial idempotents; since φ preserves squares and has only 0 in its kernel,
Rr also has no non-trivial idempotents. Let φ(z) = φ(xyx) + φ(x)φ(y)φ(x).
As we have seen in Lemma 7, φ(zf = φ(zf thus

φ(z4) = ψ(zf = ψ(zfψ(z) = ψ{z)2φ{z)
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Consequently z4 — z2, and so z2 is an idempotent. But then, either z2 = 0
or z2 = 1. Suppose that z2 = l; then φ(z2) = l. and since φ(zf = φ(zfφ(z) =
φ{zf = 1, it follows that φ(z) = 1, and so 2 = 1.

Now let x be any fixed element of R and let S' be the set of all
elements r'e R' such that r = φ(xyx) + φ(x)φ(y)φ(x) for all j/eiZ. £ '
is clearly closed under subtraction. Also, for all zeR,

[r', <p(s)] = φ[xyx, z] + φ(z)φ(x)φ(y)φ(x) + φ(x)φ(y)φ(x)φ(z).

Since [xyx9 z] — [x, z]yx + x[y, z\x + xy[x, z],

φ[xyx, z] = φ(x[y, z\x) + φ([x, z])φ(y)φ(x) + ψ(x)φ(y)φ[x, z]

= <p(χ[y, Φ) + <p(χ)<p(z)<p(y)<p(χ) + (p{^)ψ{^)φ{y)(p{^)
+ φ(χ)φ(y)φ(z)φ(χ)

from Lemma 2.
Thus [r', 95(2)] = φ(x[y, z]x) + φ(x)φ[y, z]φ(x)9 and so is in S'. Thus

S' is a Lie ideal of R'. Suppose that r, s 6 S'. We claim that they must
commute. If either is equal to 1 this of course is true. Suppose other-
wise. Then ra = s2 = 0. If it is also true that (r + s)2 = 0, then
rs + sr — 0, and r and s do commute. So it must be that r + s = 1,
but then trivially r and s commute. Thus in all cases rs = sr.

By a theorem of Herstein [3], since S' is a Lie ideal of R\ either
Sf is contained in the center of R' or Sf contains all commutators, ex-
cept if i ί ' is 4-dimensional over its center. In the last instance, Rf has
a non-trivial idempotent, which we have ruled out. So indeed either S'
is in the center of R' or contains all commutators.

However any two elements of S' commute, so the ring generated
by S' is commutative; however by a result of Herstein [31, the ring
generated by the commutators is all of Rf unless Rr is a field, (but in
that case R is a field, contrary to assumption). So S' can not generate
all of R', whence S' is contained in the center of Rf.

If S' is contained in the center of Rf, it can have non-zero nilpo-
tent elements. Thus Sf consists only of 0 and 1.

If the lemma is false, for some yeR, φ(xyx) — φ(x)φ(y)φ(x) + 1.
Now φ(x2yx2) = ψ{x)2φ{y)φ{xf + β for β in center of R'. But φ(x2yx2) —
φ(x xyx x) — φ(x*xyx x) — φ(x)φ(xyx)φ(x) + a (where a is in the center
of Rf) — φ(xf + φ{x)2ψ{y)φ{xf + α. Comparing the two results leads to
the fact that φ(xf lies in the center of R\ and so x2 is in the center
of R. But then x commutes with xy + yx and so, by Lemma 5

φ(x(xy + yx)) = φ(x)φ(xy + yx) = φ(x)(φ(x)φ(y) + <p(y)φ(x)) .

Since x2 is in the center of R, φ(x2y) — φ(xfφ(y). The above relation
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then reduces to φ(xyx) = φ(x)φ(y)φ(x)9 contrary to the fact that φ(xyx) —
φ(x)φ(y)φ(x) + 1. This contradiction leads to the proof of Lemma 10.

From this point on the proof given by Smiley [6] can be used to
show that

THEOREM 1. If φ is an additive mapping from a simple ring R
onto a simple ring Rf Φ 0 of characteristic 2 and if φ(x2) = φ(xf,
φ(xs) = φ(χf for all x e R then φ is either an isomorphism or an anti-
isomorphism.

The following remark is in order. The assumption (ii) may be weak-
ened to

(ii)* φ(χy - yx) = φ(χ)φ{y) — φ(y)φ{χ) .

For then

<p(χf + φ(yf + <p(χ)2(p(y) + φ(χ)φ{y)φ(χ) + φ(y)φ(χY + <p(yY<p(χ)

+<p(y)<p(χ)<p(y) + <p(%)<p(y)2

= φ((χ + yf) = Φ{XZ + y* + χ2y + xyx + yχ2 + y2χ + y%y + xy1) -

Since

φ(x'6) = φ(yό), φ{y*) = φ{y)\ and φ[x\ y] = [φ(x*), φ(y)]

= φ[x, xy + yx] = [φ(x), <p(χ)φ(y)+φ(y)φ(χ)] = [φ{χ)\ φ{y)] .

Thus φ(x2) — φ(xf — X is in the center of R'. But then

φ(y)φ(χ2) + φ(x2)φ(y) = φ{y)ψ{xf + φ(xfφ(y),

and

φ(χ)φ(y2) + φ(y2)φ(x) = <p(χ)φ(yf + φ(yfφ(χ) .

Substituting these in the linearized form above of φ((x + y)3), we obtain

φ(xyx + yxy) = φ(x)φ(y)φ(x) + φ(y)φ(x)φ(y) .

If the center of R' consists only of 0 then from above, φ(x2) — φ(xf
follows and so the theorem would follow from Theorem 1. Suppose that
R' has a non-trivial center. Then 1 e R'. Let a e R be such that φ(a) = l.
Thus for all xeR, φ(ax + xa) = 0. Let K = {ueR\ φ(u) = 0}. i£ is a
Lie ideal of R. If R is 4-dimensional over its center, then R has a unit
element and by the remark made earlier in the paper this would imply
that φ(x2) = φ(x)2 for all x e R, which by Theorem 1 would imply the
theorem. If R is more than 4-dimensional over its center by the main
result of [3], since if is a Lie ideal of R, either K if contained in Z the
center of R or K z> [R, R].

In the first case, since ax + xaeK for all xeR, if w —
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then Z Φ 0, and so R has a unit element and the result would follow.
If ax + xa = 0 then again 0 Φ ae Z and the result follows.

So suppose K z>[R, R], Thus R' is a field. But then as we have
previously seen in [2], φ(x2y + y2x) = φ{x)φ{y)φ{x + y). Putting a? — α
where φ(a) = 1, we obtain that φ(a2y+y2a) = φ(y) + φ(y)2. Let ίei?,
such that <p(£) = o Then ^(t'j/ + ?/2ί) = 0. Also ^(α + ί) = 1, so

9>((α + tfy + y\a + t)) = φ(y) + φ{yf

=<p(a2y + y2a + (at + ta)y + t2y + y2t) .

Using the results obtained above this relation simplifies to φ((at + ta)y) = 0
for all y. But then φ(R(at + ία)i2) = 0; if at + ta Φ 0, by the simplicity
of R this yields R' = φ(R) — 0. So we must assume that at = ta for
all t such that £>(£) = 0. In particular a must commute with all com-
mutators. Thus a(ax + xa) = (ax + xa)a, and so a2 is in the center. If
a2 = 0 then α3 = 0 and so 0 = φ(a*) — φ(af = 1, a contradiction. Thus
α2 =̂  0 and so ϋΓ Φ 0. Thus 1 e Z and so 99 must preserve squares. Thus
using Theorem 1 again we would be done. Thus we have seen that at
all times (i), (ii) and (iii) are satisfied and the conclusion of Theorem 1
still holds. This establishes

THEOREM 2. If φ is an additive mapping from a simple ring R
onto a simple ring Rf Φ 0 of characteristic 2 and if ψ(xy — yx) —
<p(x)φ(y) — φ(y)φ(x) and φ(xz) — φ(xf for all x,yeR then φ is either
an isomorphism or an anti-isomorphism.
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