
AN ANALYTIC PROBLEM WHOSE SOLUTION FOLLOWS

FROM A SIMPLE ALGEBRAIC IDENTITY

GLEN BAXTER

l Introduction. It is convenient to describe the point of view of
this paper in terms of a very simple example. The unique solution of

(1.1) ^ - *P(x)V , 1/(0) - 1 ,
ax

where φ(x) is a continuous function and λ is a parameter, is given by

(1.2) y

For any continuous function φ(x) define

(1.3) φ+

After integrating both sides of the equation in (1.1) and using the
notation of (1.3), we find that

(1.4) y = l + Hφy)+

has the solution

(1.5) y = exp (Xφ+) = 1 + Xφ+ + X2φ+2l2l + λ3^+8/3! + •

By the method of successive substitutions it is also possible to give
a unique solution to (1.4) in the form

(1.6) y = 1 + Xφ+ + X\φφ+)+ + X\φ(φφ+)+)+ +

Equating coefficients in (1.5) and (1.6) we arrive at the well-known
identities in φ

+ = φ+2/2l

(1.7)

We now wish to focus on the following fact: All of the identities
in (1.7) are a consequence of the first identity and the linear property
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of the operator+. For example, putting φ = ψ + τjnjτ+ and using only
the first identity and the linearity of +

ψ+η2 = φ+2j2 - ψ+2l2

The fact in general is a special case of our Lemma 1. We observe that
the identities in (1.7) are necessary and sufficient for the simplification
of (1.6) to (1.5).

In this paper we are interested in certain sets of operator identities
like (1.7) which allow a striking simplification of the form of the solution
of a linear equation found by the method of successive substitution.
In every case the whole set of identities follows from the first identity
and the linear property of the operator. Our main theorems are as
follows:

THEOREM 1. Let A be a commutative Banach algebra of elements
φ on which a bounded, linear operator + of norm N is defined taking
A into A. Furthermore, let

(1.8) 2(φφ+)+ = (θφψ + φ+2

be satisfied for every φ in A, where θ is a fixed element of A. Then
the equation

(1.9) ψ = l

has a unique solution in A for | λ | || φ || max (|| θ ||, N) < 1 given by

(1.10) ψ = e x p J Σ ^
U=i k

Formula (1.10) arises out of a formal manipulation of the coefficients
in a certain power series. For this reason we state an alternative form
of Theorem 1 which emphasizes the algebraic character of our result.
We use notation more natural to algebra.

THEOREM I*1. Let A be a commutative algebra over a field of
characteristic zero, let T be a group endomorphism of A into A, and
for every a in A let

(1.80 2(a(aT))T = (a2b)T + (αϊ7)2 ,

where b is a fixed element in A. Define a0 — 1, an = (aan-^T. Then
1 The author is indebted to the referee for suggesting this elegant reformulation of

Theorem 1.
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(1.10') Σ α»αn = expJΣ —φ^a^T] in A<x) .

One of the most interesting special cases of (1.10) in the literature
was given by Frank Spitzer [4], Other special cases of (1.10) of inter-
est in probability theory were given by E. Sparre Andersen [1, 2]. Our
proof of Theorem 1 is most similar to the proof of the case of (1.10)
given by Spitzer. A combinatorial lemma is proved and then applied to
prove Theorem 1. The combinatorial lemma behind (1.10) is actually
a consequence of a simple "algebraic" condition similar to (1.8).

Before the combinatorial lemma can be stated more notation must
be introduced. Let R be a commutative ring of elements φ on which
a linear mapping + taking R into R is defined. Furthermore, for any
two elements φx and φ2 in R let

(1.11) (ψiΨiy + {ψ.ΨtY = (θφ1φ2)
+ + ΨίΨϊ ,

where θ is some fixed element in R. For any fixed set of elements
ψu Ψa, , Ψn in R and any permutation P = (iλi2 imi)(imi+1 im)
• (i/ιfc+i * ' ' in) of the integers 1,2, , n written as a product of cycles
including 1-cycles with no integer in more than one cycle, we define

Lemma 1. Let ψlfψ2, *' >ψn be fixed elements in R. Then,

(σ) %1 * 2 %n~1 %U (P)

where the summation on the left in (1.13) extends over all permutations
σ: ix% in of the integers 1, 2, , n and where the summation on the
right in (1.13) extends over all permutations P.

We note that (1.11) is the special case of (1.13) for n = 2. It is a
simple exercise to show that if R is a ring of the type described above
with a linear mapping + satisfying (1.11), then φ~ — Θφ — φ+ defines
another linear mapping taking R into R for which (1.11) is true.

In the next theorem we consider a slightly more general equation
than (1.9). It is interesting to note that the results of Theorem 1 and
Theorem 2 do not in general overlap.

THEOREM 2. Let A be a commutative Banach algebra with an
operator + satisfying the conditions of Theorem 1. Define
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U=i k
(1.14)

Then for \\\ . | | φ 1| max 1(0 |(, AT) < 1
(a) the equation ψ = Φ+ + X(<pψ)+, where <p, Φ are in A, has the

unique solution ψ = p(Φq)+,
(b) the equation ψ — Φ + X(φψ)+, where φ, Φ are in A, has the

unique solution ψ = Φ + Xp(φΦq)+,
and

(c) The equation ψ = 1 + Xu(φψ)+ + X(φψ)~f where | u \ < 1 αraZ
where φ~ — Θφ — <p+, has unique solution ψ — p(Xu)q(X).

In the next section proofs of the theorems and the lemma are given.
In § 3 we give three examples to illustrate the theorems.

2. Combinatorial lemmas and proofs. In this section A and R
will denote, respectively, a commutative Banach algebra and a com-
mutative ring of elements ψ on which a linear mapping + (which is a
bounded operator in the case of the Banach algebra A) taking A into
A or R into R is defined satisfying, respectively, (1.8) or (1.11). As
mentioned in the introduction φ~ = θφ — φ+ defines a linear mapping—
which also satisfies (1.8) or (1.11) as the case may be. In terms of the—
mapping we can give a slight but very convenient rewriting of (1.11).
For any φ, ψ in R

(2.1)

LEMMA 2. Let ψlfψ2f » ψn be in R and define

Po = 1 ,
Ί -I

ln,n •*• >

n n—i

yΔ Δ) Pn — 2-k jPm'n,m 2ij Pm'n.m t
m=0 OT=0

(2.3) ^"Πf» = Σ P»9».»
Wl = 1 ϊίΐ — 0

Proof. First, we prove (2.2) by induction on w. If w = 1 p n = ψΐ,

rn,n = 0, rw>0 = ΨΪ, and p0 = 1. Relation (2.2) is clearly satisfied in this

case. Assume that (2.2) has been demonstrated for all sets of elements

ψi> Ψ21 9 ψn with n < N. Consider the set of elements ψu ψ2, , ψN
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in R. We apply (2.2) to the set ψλ = ψl9 ψ2 = ψ2, , ψN-2 = ψv-2> a n ( i
ψN_λ — ψjy-iψx and find that

(2.4) vN - P^-i = Σ ) Λ - I , »

For all m < N — 1 relation (2.1) implies

Putting (2.4) and (2.5) together

N-2 iV-2

(2 6) v — ^ v ^ + τ 4- V v rN

From relation (2.2) applied to ψ19 ψ2 , ψN-l9 one finds

PN—1 ~ Z-X PmTN-l,m '
m — 0

Thus, (2.6) becomes

N-2 N-l

PN — YNPN-1 \ 2-i Pm' N,m — 2-Λ Pm' iV,m

The proof of (2.2) follows by induction.
To prove (2.3) we first note that qn,m — θψnqn-ltm — rWiTO for all

n > m ^ 0. Thus

Σ PmQn.m = Pn + Σ Mn,m
ra=0 W--0

(2.7) = ^ + θψn Σ PmQn-l.m ~ Σ
0 0

n-i

= ΰψn Σ PmQn-l.m

Relation (2.3) follows from (2.7) by the obvious induction. This proves
Lemma 2.

Proof of Lemma 1. We refer the reader to the notation introduced
prior to the statement of Lemma 1. The proof is by induction on n.
For the case n = 1, both sides of (1.13) equal ψt- Assume that (1.13)
has been demonstrated for all n = 1, 2, , N — 1, and let ψ19 ψ2, , ψN

be fixed elements in R. Let P ' be a permulation in which the cycle
containing the integer N is ( M ^ ik)9 k ^ 0. We assume that in all
permutations P the cycle containing N is written so that N appears
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first. For the time, being i19 ί2, , ik are fixed and iu i2, , iN_x is a
fixed permutation of 1,2, •••, N — 1. There are many permutations P '
containing the fixed cycle (Nix% ik). In fact, there is one such per-
mutation P ' for every permutation (as a product of cycles or otherwise)
of ijb+i, iΛ+2, •• ,ΐtf_i Applying the induction hypothesis we find

(2.8) Σ Ψ*' = Σ

where P ' is any permutation of 1,2, •• ,ΛΓ containing the fixed cycle
(Nifa ik) and where σ': i fc+1i fc+2 i^_i is any permutation of
ik+iik+2 - * i*-i. We concentrate for a moment on the factor
(θkψNψh Ψij)+- Applying (2.3) to the elements ψh, ψh9 , φijB, we
deduce that

(θ*φNφtl ψik)
+

(2.9)

= Σ o

Now, any permutation of ί19i29

9mm

9% changes the cycle ( M x ik).
Any change in k or any change in the set of integers i19 i29 , ίk also
changes the cycle (Niλi2 ίk). Thus, the summation on the right in
(1.13) is equal to the sum of all sums of the type on the left in (2.8)
over all possible choices of fe = 0, 1, •••AT— 1, over all sets of k integers,
and over all permutations of these integers. Combining (2.8) and (2.9)
this implies that the right side of (1.13) is equal to the sum of all terms
of the form

(2 10) N %1 H lm l1c lk~x lm+1

over all permutations i19 ί29 , iN-x of 1, 2, , N — 1 and over all inte-
gers m and k satisfying 0<m<k<N— 1.

We finish the proof by showing that the left side of (1.13) is equal
to the same sum of terms in (2.10). For any permutation ixi2 iN of
1, 2, , JV, there exists an integer m with 1 < m 4- 1 < N such that
iN_m = N. To the term

on the left side of (1.13) we apply (2.2) where

f „-* = (ΨΛΨv^ίΨw, f v)+ )+)+
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This yields the equality

Thus, the sum on the left in (1.13) is equal to the sum of terms

{ψΛψ^m+1 ( ψtNy ) + ( ψ W l •(K-.Λ-)" « +

( 2 U ) •(ψ.1 ( ψ . , _ M K — ^ - ^

over all permutations iu i2, , ίj»--TO-i, ^_m+i, , ̂  of the integers
1, 2, , JV— 1, and over all integers m and k which satisfy 0 < m <
k < N — 1. It is easy to see that the terms of type (2.10) and those
of type (2.11) are actually the same by means of the change of subscript

•
•

This completes the proof of Lemma 1.
Before proving Theorems 1, 1*, and 2, we observe a fact. The

elements of the Banach algebra (or algebra) A satisfy condition (1.11).
To see this one simply puts φ ~ φγ + φ2 into (1.8).

Proof of Theorem 1. It is known that for | λ | || φ || TV < 1,

ψ = 1 + \φ+ + \%φφψ +

is a unique solution of the equation

By the remark preceding this proof we know that Lemma 1 applies.
From Lemma 1 with φ = ψx = ψ2 = = ψn, we get the relation (see
for example [1] or [4])

(2.12)

The summation in (2.12) extends over all sets of non-negative integers
alf a2, --,an for which lα:1 + 2α2+ t-nan=n, Now if [λ
then

= Σ w I ^ Γ(g*-V)+Ί»* 1
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can be expanded in a power series in λ. Furthermore, the coefficient
of Xn is exactly the right side of (2.12) divided by nl This implies that

ψ = 1 + Xφ+ + X2(φφψ + X%φ(φφ+)+)+ + •

U=i k

and Theorem 1 is proved.

Proof of Theorem 1*. Once again by Lemma 1 we have (in the

new notation)

where the summation extends over all sets of non-negative integers

aί9 •••,«„ for which lax + + nan = n. Relation (2.13) is equivalent

to (1.10'), proving Theorem 1*.

Proof of Theorem 2. Consider first the equation

ψ = φ+

where φ and Φ are elements of A. For | λ | | | ^ | | Λ Γ < l a unique

solution of the above equation is

(2.14) ψ = Φ+ + X(φΦ+)+ + X\φ(φΦ+)+)+ + X\φ(φ(φΦ+)+)+)+ +

We denote by ρm and qm9 respectively, the coefficients of λm in p and

q as defined in (1.14). By Theorem 1 we see that

m

m

We now apply (2.2), where ψx= = ψn = φ and ψ n + 1 = (?. In the
notation of Lemma 2, the coefficients of Xn in (2.14) are

Σ
m=0

(2.15) pn+1 = Σ i r B + l m = Σ pm{ΦQn-m)+ .
m=0 m=0

Thus,

(2.16) ψ = 3»Σ

Next, consider the equation

ψ = φ
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A unique solution for | λ | | |<p| | Λ Γ < l is given in this case by

(2.17) ψ = Φ + x(<pΦ)+ + x\φ(φΦyy + x\φ{φ(φφyyy + . . .

One sees easily that ψ — Φ in (2.17) is similar to (2.14) except that the
Φ+ in (2.14) has been replaced by X{φΦ)+ in (2.17). Thus, we have the
indicated solution.

Finally, there is a unique solution to

ψ = 1 + Xu(φψy + X(φψy .

From Theorem 1 applied to both + and to —,

(2.18) pu = P(λ>u) = 1 + Xu(φpuy, 9 = 1 + X(φq)~ .

From (1.11) it follows that for any two elements ψ19 ψ2 of A

(2.19) (ψ^y

Thus, by (2.19) and (2.18)

puq = 1 + Xu(φpu)
+ + X(φq)- +

= 1 + Xu{φpu[l + X(φqy]}+ + X{ψq[l + Xu(φpu)
+]}-

= 1 + Xu(φpuqy + X(φpuq)~.

3 Examples* In this section we illustrate the use of the previous
results by means of three simple examples.

EXAMPLE 1. Symmetric functions. Let xlf x2, , xn, be a
sequence of commuting symbols and let R be the commutative ring
generated by the rationale and x19 x2, x3, . Finally let A be the
commutative algebra of all sequences aλ — (rlf r2, r3, •), a2 = (s1, s2, s3, •)
etc., where ri9 st are in R, and for which addition and multiplication
are defined by

r a x = ( r r l y rr2, rr3, •••)

«i + ^2 = ( n + s19 r2 + s2, r 3 + s3, )

α ^ = (nsj, r2s2, r3s3, ••) .

If aλ = (r 1 ? r2, r3, •) we define Γ by

a λ T = ( 0 , n , n + r 2 , -.., Σ r f c , •••) .
fc = l

It is an easy exercise to show that for any α in A, condition (1.8') is
satisfied where 6 = ( — 1 , — 1 , — 1 , •)• Consider in particular the element

(3.1) a = ( x l f x 2 9 x 3 9 •••)
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Set

σ{

2

k) = χx x2 + xxx3 + . + xxxh + χ2χ3 + . + xk.xxk

•••
σ{k) = xxx2x3 xk

σ{k) = 0 (n > k + 1) .
It is easy to show by an inductive argument that for the a in (3.1)

(3.2) an = (α(α . . . (o(αΓ))Γ_v- T))T = « 0 ) , < f σi2), , σ^\ . . . )

Using Theorem 1*

(3.3) Σ an%n = exp | - Σ (-l) f c—(α f c2

But, if we set

n

then for the element in (3.1)

(3.4) a*T = (0, s|fc), slfc), . . . , ŝ Λ, •) .

Equating (n + l)th components on both sides of (3.3)

fc=0
»^f> = exp

Example 2. Distribution of max (0, XS, , Sw)\ Let A be the Banach
algebra of functions

(3.5) φ - ί°° eίtxdG(x) with \\φ\\ = [°° \dG(x)\ < oo ,

with point wise multiplication for product. Let

φ+ s Γ- eu*dG{x) + G(0) -G(-oo) .
Jo

Condition (1.8) is satisfied in this case with θ = 1. Thus

(3.6) ψ = l

has the unique solution
2 The author is indebted to E. Sparre Andersen for this example. A similar general

Banach algebra approach to this example can also be found in Wendel [6].
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(3.7)
=i k

Let {Xk} be a sequence of independent, identically distributed random
variables with characteristic function

(3.8) φ=\" eu*dF{x)

a n d l e t So = 0, Sk = X, + + Xh. Define Λf» = m a x (0, Su •••, Sn) a n d
l e t

Ψn = [" e'^d^ίM,, < x} , (n > 0) ,
(3.9) J o

Ψ = Σ 9>.λ , (I λ | < l ) .

We now introduce ΛfW)1 = max (0, S2 — S1? S3 — Slf , Sw+1 — SJ. Since
the Xfc

?s are identically distributed, MnΛ also has the characteristic
function φn given in (3.9). Moreover, we note that

(3.10) Mn+1 = max (0, X, + MnΛ) .

If φ is the characteristic function of any random variable X, then φ+

is the characteristic function of max(0, X). In the notation of (3.8)

and (3.9) and using (3.10),

(3.11) φn+1 =

Thus, the ψ of (3.9) satisfies (3.6) with φ given by (3.8). This means

( 3 . 1 2 ) / oo >vfc Γfco -i)

Σ L UdPίS > P ^ < 0} J(
Equation (3.12) is the original Spitzer's identity in [4]. A connection
between this example and the Wiener-Hopf equation can be found in [51.

Example 3. Number of positive partial sums. Let A be as defined

in example 2. Set

(3.13) φ+ = [°° eitxdG(x) .

Condition (1.8) is satisfied where 0 = 1, and the norm of + is N — 1.
Let {XJ be a sequence of independent, identically distributed random

variables with characteristic function

(3.14) φ = f" e"
J —°9
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and let So = 0, S^ = X^ + + Xk. Let Nn denote the number of positive
partial sums among So, Su , Sn, and set

(3.15)

^ Σ Σ i Λ , ( |w |
n=0 m=0

Now, for the φ in (3.14)

(<Pψnm)+ = Γ eu*dxP{Nn+1 = m + 1, S w + 1 < x} = ψ ί+ l l

(3.16) J o +

- o o

Thus, by (3.16)

• Σ Σ ψnn
n—0 wι=O

By Theorem 2 part (c), we have the generating function ψ for the
number of positive partial sums Sk = X2 + + Xfc

= exp {Σ-^[j°_+ eu*dP{Sk < x} + u« ί"

This example was considered previously by the author in [3] and
by Andersen in [1],
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