AN ANALYTIC PROBLEM WHOSE SOLUTION FOLLOWS
FROM A SIMPLE ALGEBRAIC IDENTITY

GLEN BAXTER

1. Introduction. It is convenient to describe the point of view of
this paper in terms of a very simple example. The unique solution of

(L.1) 9 @y, ¥ =1,
where @(x) is a continuous function and )\ is a parameter, is given by
(1.2) — exp M p(eae}

For any continuous function ¢(xz) define

(1) P = pta) = | POt

After integrating both sides of the equation in (1.1) and using the
notation of (1.8), we find that

(1.4) y =1+ Moyt
has the solution
(1.5) Y =exp (M) =14+ rpT + N2 + Mo+ 3l + « ..

By the method of successive substitutions it is also possible to give
a unique solution to (1.4) in the form

(1.6) Yy =1+ rp* + N(@p™)* + N(p(pp*) )" + ---
Equating coefficients in (1.5) and (1.6) we arrive at the well-known
identities in @
(pp*)* = p*?/2!
(1.7 (PP = ¢*/3!

oooooooooo

We now wish to focus on the following fact: All of the identities
m (L.7) are a consequence of the first identity and the linear property
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of the operator,. For example, putting @ =+ + Y* and using only
the first identity and the linearity of +

P2 = @2 — P2 — (Yyp) T2
= (PP — (PP ) — (PP (rp))*
= (PP + W) = 3P (PPt

The fact in general is a special case of our Lemma 1. We observe that
the identities in (1.7) are necessary and sufficient for the simplification
of (1.6) to (1.5).

In this paper we are interested in certain sets of operator identities
like (1.7) which allow a striking simplification of the form of the solution
of a linear equation found by the method of successive substitution.
In every case the whole set of identities follows from the first identity
and the linear property of the operator. Our main theorems are as
follows:

THEOREM 1. Let A be a commutative Banach algebra of elements
@ on which a bounded, linear operator + of norm N is defined taking
A into A. Furthermore, let

(1.8) 2ppt)t = (69 + @+

be satisfied for every ¢ in A, where 0 is a fixed element of A. Then
the equation

(1.9) ¥ =1+ Mey)*
has a unique solution in A for | M| - ||| max(||€], N) <1 given by

© kK
(1.10) ¥ = exp 52091 |
k=1
Formula (1.10) arises out of a formal manipulation of the coefficients
in a certain power series. For this reason we state an alternative form
of Theorem 1 which emphasizes the algebraic character of our result.
We use notation more natural to algebra.

THEOREM 1*'. Let A be a commutative algebra over a field of
characteristic zero, let T be a group endomorphism of A into A, and
for every a in A let

1.8) 2a@T)T = (a*0) T + (aT)*,
where b is a fixed element in A. Define a, =1, a, = (aa, ,)T. Then

1 The author is indebted to the referee for suggesting this elegant reformulation of
Theorem 1.
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exp{f_‘, @l;(b"‘la")T} in A<lx) .

k=1

Il

(1.10") i a,5"
n=0

One of the most interesting special cases of (1.10) in the literature
was given by Frank Spitzer [4], Other special cases of (1.10) of inter-
est in probability theory were given by E. Sparre Andersen [1,2]. Our
proof of Theorem 1 is most similar to the proof of the case of (1.10)
given by Spitzer. A combinatorial lemma is proved and then applied to
prove Theorem 1. The combinatorial lemma behind (1.10) is actually
a consequence of a simple ‘‘algebraic’’ condition similar to (1.8).

Before the combinatorial lemma can be stated more notation must
be introduced. Let R be a commutative ring of elements @ on which
a linear mapping + taking R into R is defined. Furthermore, for any
two elements @, and @, in R let

(1.11) (P2t + (Pp)" = (0P 2)" + Pipy

where 6 is some fixed element in R. For any fixed set of elements
Yy, Yy, co 0, Y, in B and any permutation P = (05 «+* ) (Tmyta *** U,
*+* (tmys1 *** 1,) of the integers 1,2, -+, n written as a product of cycles
including 1-cycles with no integer in more than one cycle, we define

(112) "I"I’ — (67’”71‘["7:1‘!'%'2 oo 1‘[/\im1) } (gmg my "l‘l"imﬁl cee \ll‘imz) i

LY (6n*m}g_11[]\imk+l oo q{ptn)+
Lemma 1. Let \ry, ry, +++, 3, be fized elements in K. Then,
(1.13) % (‘]’il(‘/’iz o (1Pin—1‘!ri;)+ ce)H)t = % rp

where the summation on the left in (1.13) extends over all permutations
O: iy + o+ 1, Of the integers 1,2, «++, n and where the summation on the
right in (1.18) extends over all permutations P.

We note that (1.11) is the special case of (1.18) for n =2. It isa
simple exercise to show that if R is a ring of the type described above
with a linear mapping + satisfying (1.11), then ¢~ = 6 — @ defines
another linear mapping taking R into R for which (1.11) is true.

In the next theorem we consider a slightly more general equation
than (1.9). It is interesting to note that the results of Theorem 1 and
Theorem 2 do not in general overlap.

THEOREM 2. Let A be a commutative Banach algebra with an
operator + satisfying the conditions of Theorem 1. Define
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. o Nk
p(\) = exp{ gl%(ﬁ"‘@"ﬁ} ,

(1.14)
N -
q\) = exp{;f((?" 'pF) } :
Then for (M- ([@([max (@], N) <1
(a) the equation f = @+ + NMPyr)*, where ¢, @ are in A, has the
unique solution r = p(@q)”,
(b) the equation +r = @ + \M@\r)*, where @, ® are in A, has the
unique solution | = @ + \p(edq)*,
and
() The equation r =1 + Mu(Py)™ + Mpy)~, where [u| <1 and
where ¢~ = 09 — @*, has unique solution \pr = p(Au)g(\).
In the next section proofs of the theorems and the lemma are given.
In § 3 we give three examples to illustrate the theorems.

2. Combinatorial lemmas and proofs. In this section A and R
will denote, respectively, a commutative Banach algebra and a com-
mutative ring of elements ¢ on which a linear mapping + (which is a
bounded operator in the case of the Banach algebra A) taking A into
A or R into R is defined satisfying, respectively, (1.8) or (1.11). As
mentioned in the introduction @~ = 9 — p* defines a linear mapping—
which also satisfies (1.8) or (1.11) as the case may be. In terms of the—
mapping we can give a slight but very convenient rewriting of (1.11).
For any @, in R

2.1) (PYr)" = @t + ()"
LEMMA 2. Let \ry, Yy, =+, r, be in R and define
P = ("‘1’1("[’2(1[’3 e (‘I"m—l"l’\;;)+ e )+)+)+ ’ Dy = 1 ’

Qnm = (q’n(\l’n—l et (‘l"m‘!—z‘l";bﬂ)— e )_)- ’ Qnn = 1 ’
Tom = (ﬂ’n("l’n—l et (‘I’m+2\b‘;z+1)— e )_)+ ’ Tanm = 0

Then,

(2'2) Pn = éopmrn,m ::z;lopmrn,m s

(2:3) 0" 1L = 3 Pallnn

Proof. TFirst, we prove (2.2) by induction on n. If n =1 p, =],
Fon =0, oo =1, and p, = 1. Relation (2.2) is clearly satisfied in this
case. Assume that (2.2) has been demonstrated for all sets of elements
«]er, «52, e, «Trn with n < N. Consider the set of elements r;, ¥r,, + <+, Yy
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in R. We apply (2.2) to the set ‘7’1 =y, ‘7’2 =gy v e, ‘7’1\74 = Yry-z and
Jryos = Yy and find that

N—-2
(2.4) Py = ?)N—l :mZ;OT)mTN—I,m

For all m < N — 1 relation (2.1) implies

Fyoim = (YyaVa(Wy—s oo (PP oo+ )7)F
(2.5) = Yy Py s (PosPmi)” 2o ))*
+ (‘)Z’N(‘l’Nﬂ(‘l’N—z et (‘1["1n+2“7l”n;»:1)_ °c ')_)_)+

= \P;TN~1.m + /rN,m .
Putting (2.4) and (2.5) together

N—2

N-—-2
(2'6) pN = Zopﬂbw;TN'lvﬂb + ZopﬂL/rN.?n .
From relation (2.2) applied to yrj, Y, -+, Yry_,, one finds

N—2
pN——l - Z_Jopmrlvvl.m .

Thus, (2.6) becomes

) N—2 N-—1

pN = '\;[/‘XTPN—I + 2_40 pm”'N,m - "LZ_JO pm,rz\ﬁm .

The proof of (2.2) follows by induction.

To prove (2.3) we first note that ¢,,, = 0V,Qu1m — Tam Tfor all
n>m =0. Thus

3 n—1
2 Pnam = Pat 3 Pulon
n—1 n—1
(2°7) = DPun + H‘}rnéopinQn—l.m - Zﬂpmrn,m

n—1
= 0, ﬂgopmqn_l,m

Relation (2.3) follows from (2.7) by the obvious induction. This proves
Lemma 2.

Proof of Lemma 1. We refer the reader to the notation introduced
prior to the statement of Lemma 1. The proof is by induction on x.
For the case n = 1, both sides of (1.13) equal . Assume that (1.13)
has been demonstrated foralln = 1,2, ---, N— 1, and let v, \ry, <+, Yy
be fixed elements in R. Let P’ be a permulation in which the cycle
containing the integer N is (N#,4,--- ), k = 0. We assume that in all
permutations P the cycle containing N is written so that N appears
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first. For the time. being 1, 4,, « -, %, are fixed and %, %, *++, Iy, IS a
Jfized permutation of 1,2, ---, N — 1. There are many permutations P’
containing the fixed cycle (Ni i, «+- %,). In fact, there is one such per-
mutation P’ for every permutation (as a product of cycles or otherwise)
of Tyi1, Tptsr ***, Iy Applying the induction hypothesis we find

(2.8) (;-) Ve = (;) (‘I’Jk+1(‘l”1k+2 T (‘[’JN_z‘PZV_l)+ o ')+)+(0k‘l’zv‘l'zl tte ‘l’i,c)+

where P’ is any permutation of 1,2, .-, N containing the fixed cycle
(Niyi, -+ 4,) and where 0': Jy1Jz4e°*Jy—1 1S any permutation of
Tpsrlpss *** ty—s. We concentrate for a moment on the factor
(g, =+ + Yy, )*.  Applying (2.3) to the elements ar,, Yy, + -+, Py, We
deduce that

(Hk‘l’zv‘[’z'l et ‘}’zk)Jr

(2.9) .
= mZ‘O {NI,N(\%(“;% e \l,;:n)Jr . .)+(\hk(4pik_l . "I’i—mﬂ)_ cee) 3t
Now, any permutation of 4,4, -+, 4, changes the cycle (Ni, «-- ).
Any change in k or any change in the set of integers ¢, 4,, -+, %, also
changes the cycle (Ni, -+ ;). Thus, the summation on the right in
(1.13) is equal to the sum of all sums of the type on the left in (2.8)
over all possible choices of £ = 0,1, --- N — 1, over all sets of k integers,
and over all permutations of these integers. Combining (2.8) and (2.9)
this implies that the right side of (1.13) is equal to the sum of all terms
of the form

{w(ri, (fray oo e )T o) (W (s oy )7 )}

(2.10) s, (e, e ) )

over all permutations %,, %,, +++, 2y, of 1,2, ---, N — 1 and over all inte-
gers m and k satisfying 0 < m <k < N-—1.

We finish the proof by showing that the left side of (1.13) is equal
to the same sum of terms in (2.10). For any permutation 4,4, -+ 7, of
1,2, .-+, N, there exists an integer m with 1 <m +1 < N such that
ty-m = N. To the term

(Pay(ray = o Wrayy (i, vee Pl )T eee)D)T ee)t)?
on the left side of (1.13) we apply (2.2) where
=1,

Vy-m—1 = ‘Pibpm_l

~

Foom = e, iy o i) o))
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This yields the equality
Wiy = oo ) o)t = (G e Pha) e )t

VR OO (O CER 8 LETE &\ SR ERY SR T pRTD b A
« (o (Yray =0 ("hN_k_z i;,,k_[ﬁ 2 )T
Thus, the sum on the left in (1.13) is equal to the sum of terms

{‘I’N(\(’iN_mﬂ (e ‘;{’g—N)Jr ° ‘)+(‘IftN7mA1 o ‘(‘[’zN#Hﬂ’;N_k)* <o)}

(2.11) Wy e Oy )T )

over all permutations %, %, ***, Ty—m-1, ty-ms1 ** ", by Of the integers
1,2, -+-, N— 1, and over all integers m and k which satisfy 0 < m <
k< N—1. It is easy to see that the terms of type (2.10) and those
of type (2.11) are actually the same by means of the change of subscript

Vv-m+1—J1 Vy—m—1 % » v T Jg+1

(753 —> Jm Tyv— = Jm+vr UN—r—1 > In-1 .

This completes the proof of Lemma 1.

Before proving Theorems 1, 1%, and 2, we observe a fact. The
elements of the Banach algebra (or algebra) A satisfy condition (1.11).
To see this one simply puts @ = @, + @, into (1.8).

Proof of Theorem 1. It is known that for || ||®|| N <1,
Y =1+42" + M@ + M(p(pe) ) + -

is a unique solution of the equation

P=1+ MpPy)©.
By the remark preceding this proof we know that Lemma 1 applies.
From Lemma 1 with ¢ =+, =, = -+ = 4, we get the relation (see

for example [1] or [4])
n! (¢(¢) cee (<P(P+)+ . .)+)+
(2.12) .. [(f)’“‘lgak)+ Tk 1
= n! =TT =,
2 1l k a,!
The summation in (2.12) extends over all sets of non-negative integers

@, @, « -+, &, for which 1a,+2q,+ -« - +na,=n, Now if |[\[-[[[|-]]0]<]1,
then

181+ ney=n k=1

exp {i‘. —77”;(0"“@"? }

k=1
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can be expanded in a power series in A. Furthermore, the coefficient
of \* is exactly the right side of (2.12) divided by »! This implies that

¥ =14+ 2" + N(@pH) + M (@(ppt) )t + -
= exp {i X-k(ﬁ"‘@")*}
=1 k )

and Theorem 1 is proved.

Proof of Theorem 1*. Once again by Lemma 1 we have (in the
new notation)

(2.13) nla, = S ! ﬁ[(bk—lak)TTkJ—,

1o+ Fnap=n k=1 k okl

where the summation extends over all sets of non-negative integers
a, +++, a, for which 1o, + +-+ + na, = n. Relation (2.13) is equivalent
to (1.10), proving Theorem 1*.

Proof of Theorem 2. Consider first the equation
V=07 + MP¥)*,

where @ and @ are elements of A. For |\|:||®]|l-N<1 a unique
solution of the above equation is

(2.14) ,\1/\ :@+ + )\,(¢¢+)+ + )\,2(¢(¢¢+)+)+ + )\13(47(¢(¢@+)+)+)+ + see

We denote by p,, and q.., respectively, the coefficients of A\ in p and
q as defined in (1.14). By Theorem 1 we see that

D = (PP -+ (PPF)T - 2)F)*

m

U = (PP ==+ (PPT) ++2)7) .

~——————
m

We now apply (2.2), where «ﬁl = eee = «F” =@ and V.. =®. In the
notation of Lemma 2, the coefficients of \* in (2.14) are
(2’15) T)n+1 = m% ﬁm?‘ni—l.m = m2=‘0 pm(@qn—m)+ .
Thus,
(2.16) V=0 5 N(@g,)" = p(Pg)”

Next, consider the equation
P=0 + MPP)*t .
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A unique solution for |\|-||@]||- N <1 is given in this case by
(2.17) '\I/‘ =Q + )\,(Q)@)' -+ )\,Z(¢)(q)¢)!)k + X%((p(¢((p@)+)4)| 4o

One sees easily that 4 — @ in (2.17) is similar to (2.14) except that the
O in (2.14) has been replaced by Me®@)* in (2.17). Thus, we have the
indicated solution.

Finally, there is a unique solution to

¥o=1+ MPP)" + Mep)™ .
From Theorem 1 applied to both + and to —,

(2.18) Py = p(Mu) = 1 + Mu(Pp.)*, ¢ = 1 + Meq)~ .
From (1.11) it follows that for any two elements +, Y, of A
(2.19) (Y fr)* A+ (Pfrl)™ = S enfry

Thus, by (2.19) and (2.18)

P9 =1 + 2Mu(Pp.)* + MPq)~ -+ Nu(Pp.) (Pq)”
=1+ Me{pp,[l + Mee) 1} + Meq[l 4+ Mu(ep,) '}~
=1+ MuPp.g)T + MPp.9)~.

3. Examples. In this section we illustrate the use of the previous
results by means of three simple examples.

ExAMPLE 1. Symmetric functions. Let x, %, +-+, %, +++ be a
sequence of commuting symbols and let B be the commutative ring
generated by the rationals and 2, %, %, --- . Finally let A be the
commutative algebra of all sequences a, = (7, 73, 73, *++), A;=(Sy, Sy, Sg, ***)
etc., where 7, s, are in R, and for which addition and multiplication
are defined by

ra, = (17, 1y, 175 <+ )
a, + a, = (7'1 T8, Pyt 8y 1y TSy, e )
@y = (Tlsly T3Say 1383y = ') .

If a,=(r, 7y 7, -++) we define T by
7n—1
a/lT: (07 Ty T + Tas "'7;7'10 "') .

It is an easy exercise to show that for any @ in A, condition (1.8") is
satisfied where b =(—1, —1, —1, ---). Consider in particular the element

(31) a = (wl! Lgy L3y ** ‘)
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Set

1

OF =0, + By + @y e e e+ X

0 = @, & + B8y + oo+ B A Ty e T,

ai®

ol(ck) = XXy %3 ¢ 00 Xy
o =0mn=>k+1).

It is easy to show by an inductive argument that for the a in (8.1)

B2) a,=(a - (@WaT)T .-« THT = (a7, 03, 07, ==+, 077", =)
—————

n
Using Theorem 1*
(3.3) S5 a,0" = exp {— S (—1)k£lc'°_(akT)}eA<x> :
n= k=1

But, if we set

) — Ok
s, mg.l vy, ,
then for the element in (3.1)
(3'4) a*T = (Or s{k)9 sék)’ ety 8;1‘217 M ') .

Equating (n 4+ 1)th components on both sides of (3.3)

S s = exp {— 5 (—1)kx_'°s;,k>}eR<x> :
%=0 k=1 k

Example 2. Distribution of max (0, .S, ---, S,)’. Let A be the Banach
algebra of functions

(3.5) o = S“ ¢5dG(x) with ||@ | = S‘” 1dG()| < o ,
with pointwise multiplication for product. Let
Pt = S“ G5 dG(w) + G(0) — G(— oo) .
0

Condition (1.8) is satisfied in this case with ¢ = 1. Thus
(3.6) ¥ =1+ M)t
has the unique solution

2 The author is indebted to E. Sparre Andersen for this example. A similar general
Banach algebra approach to this example can also be found in Wendel [6].
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(3.7) r=exm{S @, (<l

Let {X,} be a sequence of independent, identically distributed random
variables with characteristic function

(3.8) @ = Sf = (x)

andlet S, =0,S, =X, + .-+ + X,. Define M, = max(0,S, ---,S,) and
let

%=rwmmm<w, (n>0),
(3.9) 0
Y= D P\, (In <1).

We now introduce M,, = max(0,S,—S,S;— S, -+, S,.s — S;). Since
the X,’s are identically distributed, M, , also has the characteristic
function ¢, given in (3.9). Moreover, we note that

(3.10) M,,, = max (0, X, + M,.,) .

If % is the characteristic function of any random variable X, then &*

is the characteristic function of max (0, X). In the notation of 3.8)
and (3.9) and using (3.10),

(3'11) Pp+1 = ((P‘Pn)+ .
Thus, the - of (3.9) satisfies (3.6) with @ given by (3.8). This means

S re“xde{Mn < o}
n=0 0

(3.12) _ ;Xp { 2%‘_““ ¢*d,P{S, <} + P{S, < 0} J} '

Equation (3.12) is the original Spitzer’s identity in [4]. A connection
between this example and the Wiener-Hopf equation can be found in [5].

Example 3. Number of positive partial sums. Let A be as defined
in example 2. Set

(3.13) Pt = r e dG() .
O+

Condition (1.8) is satisfied where # = 1, and the norm of + is N = 1.
Let {X,} be a sequence of independent, identically distributed random
variables with characteristic function

(3.14) =" evare
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andlet §,=0,S, =X, + --- + X,. Let N, denote the number of positive
partial sums among S,, S,, -+, S,, and set

Py = r ¢=d,P{N, = m, S, < @} , (m <),
(3.15) Joe
V=230 S PN (Jul, IV <1).

Now, for the @ in (3.14)

@ran)® = | AP Ny = m + 1, 8,0 < 0} = Yl

o

(3.16)
0+
@)= | PNy =M, S <0} = Vi

Thus, by (3.16)

M

il

o= nzjo éowmumv + é‘,ﬁ Prntl™\ = 1 4+ uMPP) + MP)- .

n=0

By Theorem 2 part (¢), we have the generating function + for the
number of positive partial sums S, =X, + .-+ + X,

p=exp (52" evaps, <o} + | emars, <o |}
k —oo o+

This example was considered previously by the author in [3] and
by Andersen in [1].
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