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I. Introduction* The purpose of this paper is to study the follow-
ing integral equation:

(1) φ(x)

or the differential-difference equation

(1') φ\χ) = K(X + l)φ(x + 1) -K{X)Ψ{X)

with the boundary condition

( 2 ) lim φ{x) = 1 .

Equations of the type (1), (1') have been investigated in great gen-
erality by many authors. In particular, the interested reader is referred
to Yates [6], and Cooke [2], for recent developments, and a bibliography
of. significant earlier work. The equations of the form (1) which we shall
consider are related to the class of linear differential-difference equations
with asymptotically constant coefficients, a class treated thoroughly by
Wright [5], and Bellman [1].

The novelty of the results below arises from the boundary condition
(2) which appears not to have been studied before, and which gives re-
results of an essentially different character from those of the works
cited above. The system (1), (2) is of interest in some problems con-
nected with the theory of neutron slowing down (Placzek [3]).

A further departure from previous work is the fact that no use is
made of complex variable methods or the asymptotic characteristic equa-
tion of the kernel K(y).

Aside from some fairly obvious theorems concerning uniqueness,
boundedness and positivity, our main results are the following:

(a) necessary and sufficient conditions for the existence of a solution
of (1), (2); this is achieved by constructing a minorant for the solution.

(b) proof of the existence of φ( — oo) under fairly general conditions.
(c) an application of Fubini's theorem to exhibit a rather surpris-
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ing relation between an integral of the solution over the real axis and
its limits at ± oo. We assume

H1 K(x) is measurable ,

H 2 0 < K(x) ^ 1 , for almost all x ,

H 3 For x ^ M , K(x) increases ,

H4 limK(x) = l,

throughout the paper.
To summarize the results below, we shall give necessary and suffi-

cient conditions for the existence (Theorem 4), uniqueness (Theorem 1),
boundedness (Theorem 2), and positivity (Theorem 3) of the solution; a
a sufficient condition for its monotonicity (Theorem 5); a proof of the
existence of φ(—oo)(Theorem 6) and the evaluation of a definite integral
involving the solution (Theorem 7).

By "solution" we shall always mean a function φ(x) satisfying both
(1) and (2). All integrals are to be understood in the sense of Lebesgue.

II* Existence and uniqueness of solutions•

THEOREM 1. Under H I — H4, the solution φ(x), when it exists, is
unique.

Proof. If the theorem is false, there exists a function ψ(x) not
identically zero which satisfies (1) and for which

lim ψ(x) == 0 .

Then by the continuity of ψ(x) there exist numbers η and x0 such
that η > 0, I ψ(x0) | = η and for all x > x0, | ψ(x) | < η. But then

S XQ + l

I Ψ(V) \dy <η

a contradiction, which completes the proof.

THEOREM 2. With HI — H4 we have, for any solution φ(x) of (1),

(2),

(3) \<P(v)\ SI (-°o < x < oo)

Proof. For if | φ(x) | > 1 for some x, then by (2) and the continuity

of I φ(x) I there is a C > 1 and an x0 such that ] φ(x0) | = C, and for all

% > Xo,\ φ(%o) I < C B u t then

I φ(x0) I ̂  I ̂ °+1| φ(y) 1 dy
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implies C < C, which is a contradiction.

THEOREM 3. Supposing HI — H4, the solution <p(x) of (1) and (2),
when it exists, is positive for all x, and is non-decreasing for x^M.

Proof. We prove positivity first. If φ(x) is not >0 for all x, then
by (2) and the continuity of φ(x) there is an xQ such that φ(x0) = 0 and
for all x > xQ, φ(x) > 0. Then

S X O + 1

K(y)φ(y)dy ,
z0

which is a contradiction by H2.
To prove the monotonicity part, we define

(4)

and

( 5 )

Since 0 < K(y) S 1, ψi(x) ^ ψo(x), and since

(6) φn(%) — Ψn+i(ρ) = \ κ(y) lΨn-i(v) — ψn(y)]dy ,

we see by induction that {ψn(x)} is a decreasing sequence. But since
φ(x) ^ 1 = ψo(x), we see by a second induction that ψn(x) ^ φ{x) for all
x. Hence the ψn(x) decrease to a limit function ψ(x) satisfying (1) by
Lebesgue's dominated convergence theorem, and

lim ψ(x) = 1
X—»oo

since φ(x) ^ ψ(x) ^ 1. Now ψo(x) is non-decreasing for x ^ Mf and thus
so is faty), and again by induction, ψn(x) and hence ^(α;). But by
Theorem 1, ψ(x) — φ(%), which proves the theorem.

LEMMA 1. Under HI — H4 and

H5: 1 - K(x)e£?(M, oo)

ίfoerβ is α function S(x) such that S(x) ^ 0, S(x) is non-decreasing,

.Six) - 1,

( 7 )

Proof. Define

(0
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where the Cn are constants to be determined, and define

S M+(n+ll2)
K(y)dy .

M + (nl2)

Now, requiring that S(x) satisfy (1) at the points M + (n/2) gives

CnQn + Cn+1qn+1 = Cn

that is

r — r Γ 1 ~ Qn Ί

and

(10) Cn+1 = I

But since

1 — ffj — 1 = -*- ~ " (V* ~^~ H i + l ) > 0

we see that the Cw form a non-decreasing sequence. Also

ί j + 1 - K(M)

since iί(?/) increases. But then H5 implies that

K[M +

converges, and so the limit of the product in (10) exists. We can then
choose Co so that

lim Cn = 1 .
W-»oo

It remains to show that (7) is everywhere satisfied. If x0 > M and xQΦ
M+(nj2) for any n, let M +(nJ2) be the largest of the M + (w/2) which
is less than a?0. Then

* 0

jM+(nQl2)

Λf+(ίl0

= S(x0),
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since K and S are positive and non-decreasing.
We can now prove

THEOREM 4. Let HI — H4 hold. Then, necessary and sufficient for
the existence of a solution of (1), (2) is H5.

Proof. Suppose φ(x) exists, then

S x+1
K(y)φ(y)dy

X

+\l - K(y)]φ(y)dy .

Choose ε between 0 and 1 and x0 > M such that φ(x) > 1 — ε for
x ^ a?o Then

S XQ + l

[1 - K(y)]dy ^ <P(£0 + 1) - φ(x0)
XQ

since φ{x) is non-decreasing (Theorem 3) for x ^ M. Replacing x0 by
xQ + 1, etc., and adding

Γ [1 - K(y)]dy rg 1 - 9>(a?o) < °° .

On the other hand, if H5 holds, consider again the ψn(x) of (4)-(5).
Since {ψn(x)} is a decreasing sequence, and

ψn+1(x) - S(x) ^ \ αjK:(2/)[^w(^) - S(y)]dy

we see that ψn{x) ^ S(x) for all n and x. Hence ^w(x) decreases to a
a limit φ(#), satisfying (1), and since

^ S(x)

we have (2) also.

IIL Monotonicity. The solution <p(x) of (1), (2), when it exists,
need not to be monotone on the whole real axis. In this section we will
first illustrate the above statement, and then give sufficient conditions
for the monotonicity of the solution. A lemma that will be of use in
the illustration is

LEMMA 2. Let Ka(x) and Kh{x) each satisfy H1-H5, and in additon
suppose that for all x

Ka(x) ^ Kt(x) .
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Then if <pa(x), <pb(x) are the corresponding solutions of (1), (2), we
have

for all x.

Proof. First,

φa(x) = I Ka(y)φa{y)dy
Jx

Now let ψaAx) = Φaiώ), and define

= \
Jx

Then {φa,n(χ)} In and is bounded above by 1. Hence the sequence
converges to a solution of

(φ(x) = \ Kυ(y)φ{y)dy
I Jx

lim φ(x) = 1 .

The result then follows from Theorem 1 .
Now consider the family

Ka(x) = 4 ΐ4ΐτ (O^a^l).
x2 + 1

Clearly each Ka(x) satisfies H1-H5. Let φo(x) satisfy (1), (2) with
K(x) = K0(x). Then

9>ί(-l) = - K0(-l)φ0(-l) = - (1/2W-1) < 0

by Theorem 3. Hence <pQ(x) is not monotone. In fact we can invoke
Lemma 2 to show that there exists a number α*ε(0,1) such that for
a < α* £>α(#) is not monotone. For if not, there exists a sequence {αJjO
such that <Pan(%) satisfies (1), (2) with K(x) = I ζ ^ ) and 9>αJ#) is mono-
tone for each n. Since {φaj,%)} decreases to a solution of (1), (2) with
K(x) = Zo(^)(by Lemma 2 and Theorem 1) we must have φo(x) monotone
which is a contradiction.

The following theorem, however, gives a sufficient condition for the
monotonicity of φ(x):

THEOREM 5. With H1-H5, suppose that for almost all x,
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(11) K(x + 1) ^ K{x) \X+1K(y)dy .
Jx

Then φ(x) is non-decreasing on the real axis.

Proof. Let S0(x) be the function S(x) of (8). Define

(12) Sn+1(x) = \x+1K(y)Sn(y)dy (n = 0 , 1 , . . .) .

Then, for all w,

(a) 0^Sn(x)^l

(13) (b) limSn(a?) = l

(c) J

We show next that with (11), the subsequence {S2n(x)} is a sequence
•of non-decreasing functions. Clearly SQ(x)]x for all x. Now suppose that
for all k<>n, S2fc(a0ΐ* for all x. Then

Sίn+2(x) = K(x + l)S2n+1(x + 1) - K(x)S2n+1(x)

a.e.
Now by (13) (c),

O (/y* j "1 \ "^> Cf (/yt I "1 \

and since

S x+l

K(y)S2n(y)dy ,

it follows from the inductive hypothesis that

S2n+1(x) rg S2n(x + 1) (X + 1if(i/)# .
Jx

Hence

^ 0 a.e.

by (11), which proves the theorem, since S2n+2(x) is absolutely continuous.

IV Behaviour for large negative values of x. We wish now to
explore the limiting behaviour of the solution φ(x) as x —> — oo. We have
seen that the solution will in general oscillate. We will establish below
a sufficient condition for the existence of φ(—oo).
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THEOREM 6. Suppose φ(x) is a solution o/(l), (2). Let K(x) satisfy
H1-H4, and further suppose that

(14) lim Γ + | K{t + 1) - K(t) \ dt = 0 .
X-*— oo J X

Then

(15) lim φ(x) = φ(— oo)
03-»— oo

exists.

Proof. Let m (resp. M) be the lim inf (resp. lim sup) of φ(x) as
x —> — oo, and write

x+l

IS
X

Let ε > 0 be given. Let — x0 > 0 be chosen so that 9>(cc0) < m + e

S X+l

I 9>'(ί) I dt < A; + ε. Let xx be the first point to the left
X

of x0 at which 9>(θ51) = Λf— ε, so that φ(x) < M — ε on the interval
xλ < x ^ a?0. It follows that a?0 < ^ + 1 for otherwise a ' 'proper" maxi-
mum for φ(x) on a?! ̂  x ^ ^ + 1 occurs at xlt which is impossible. For
the same reason there is a point x2 satisfying xx < x0 < x2 ^ xx + 1 at
which φ(x2) = ikf — ε. Hence

+ ε ̂  Γ1 + 11 9>'(ί) I dt ̂  Γ° I φ'(t) I dί + Γ 2 | φ'{t) I rfί
J a?! J aj χ J xQ

^ I p?>'(ί)dί I + I \\'(t)dt
I JXi JXQ

Hence k ^ 2(M — m) .
However, since

= ( M — m — ε) + (ikf — m — ε) .

φ'(x) = K(X + l)[φ(x + 1) - φ(x)] + <p(x)[K(x + 1) - K(x)] ,

we find, using (14) k g M — m. Thus M = m, which proves the theo-
rem, and incidently, fc = 0.

REMARK. Γ + 1 | K(t + 1) - jBΓ(t) | dt ^ Γ + 2 | 1 - K{t) \ dt; thus in the
JX JX

above theorem, (14) may be replaced be 1 — K(x) e ^f(—^f c»), and the
conclusion is still valid.

We are now able to prove the following integral relationship.
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THEOREM 7. Suppose ψ(x) is a solution o/(l), (2). Let K(x) satisfy
H1-H4, and suppose further

(16) 1

Then

(17) Γ [1 - K(y)]φ(y)dy =

Proof. Put

Then

r i ri

F\x) = ψ\x - y)ydy = -φ(x - 1) + \ φ(x - y)dy
Jo Jo

= \φ(x - y)[l - K(x - y)]dy .
Jo

Since φ(x) is bounded and 1 — K(x) e ^ ί 7 ( — oo, oo), it follows from
Fubini's theorem (see reference 4, p. 87) that F\x) e £f(— &>, oo), and

But since φ(x) satisfies (2), F(co) = (1/2), and by the remark follow-
ing Theorem 6, F(— oo) = (l/2)^>(—oo). This completes the proof.
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