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ORDERED SEMIGROUPS
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In this note we establish a local version of the following result:
a locally compact connected partially ordered non-degenerate semigroup
S with unit contains a non-degenerate linearly ordered local subsemi-
group (containing the unit). This is an extension of a result of Gleason
[2; 664] who proved a similar theorem under the additional hypotheses
that

(1) S is a semigroup with right invariant uniform structure and

(2) for any compact neighborhood U of the identity there are nets
{x;} in S and {n;} integers such that x, —e¢ and z ¢ U. A consequence
of our theorem is the fact that a nondegenerate compact connected
partially ordered semigroup with unit contains a standard thread join-
ing the unit to the minimal ideal.

By a local semigroup S we mean a Hausdorff space with an open
subset U and a multiplication m: U x U— S which is continuous and
associative insofar as is meaningful. A unit is an (unique, if it exists)
element w of U satisfying ux = 2u = x for all xe U. A local subsemi-
group of S is a subset L containing the unit such that for some open
set V about the unit, (V N L) © L. We say that the local semigroup
S is partially ordered if the relation < defined by a < b if and only if
a = be is reflexive and antisymmetric. In case S is a semigroup, S is
partially ordered if and only if each principal right ideal has a unique
generator, i.e. (assuming a unit) that aS = bS implies @ =b. In this
case, = is also transitive.

Closure is denoted by *, the null set by [J, the boundary of V by
F(V), and the complement of B in A by A\B.

As in [4] we use the following topolopy for the space .&”(X) of non-
empty closed subsets of the space X: for open sets U and V of X, let
NU,V)={A|Ae s (X),AcU, AnV + [1}; take {N(U,V)| U,V open}
for a sub-basis for the open sets of &~(X). It is easy to see that if
X is compact Hausdorff, so is &7(X).

THEOREM 1. Let S be a locally compact partially ordered local
semigroup with unit w, and let U, be a non-degenerate open connected
set about u with U defined. Then S contains a mon-degenerate com-
pact connected linearly ordered local sub-semigroup L with we L C U,.
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Proof. Let U, be an open set containing w with U} compact and
Uf c U, Define < on Uf x U} by: @ £b if and only if a = bc for
some ce UF. From the compactness of U} it is easily seen that Graph
(=) is closed in Uf x Uf. We show first that < is transitive on some
neighborhood of . Let U, be an open set about u with Uz c U,. We
claim there is an open set U containing u, U C U,, such that if a,be U*
with @ = bc for some ce U}, then ce U,. If this is false, then for any
open set U with we U c U,, there are elements a and b of U* with
a = be for some ce UF\U,. Hence there are nets a, and b, converging
to w with a, = b,-c, where c,e UX\U,. It follows that ¢, must also
converge to u, a contradiction. Since U c U, it follows that < is
transitive on U™*. Also the restriction of < on U* x U* is closed and
hence U* is locally convex [6]. We show next that there exists an
open set V, with ue V, c U such that ¢* = e€ V, implies eUg +# e. Sup-
pose the contrary; we can then find a net of idempotents e, — u with
e, Ue, = e,. Let xe U; then e, = e,xe, converges to uxu = x, so that
x =u and U, is degenerate, a contradiction. Let V be a convex open
set with ueVc V*c (V*?*c V,. Then ¢ =ee V implies eUge + e.

Let & denote the collection of all closed chains C in U* with uwe C,
CNS\V=01, and (C N V)*c C. Note that & +# [, for if a e F(V),
then the elements w and a constitute an element of & .

(i) & s closed in <~(U*). We will show that & is an intersec-
tion of closed set. Since the collection of all closed chains which con-
tain w and meet S\V is closed [4], it remains to show that the collection
of closed chains C satisfying (C N V)* < C is closed. Suppose A is a
closed chain with (AN V)* & A; then there are elements a and b of
ANV with abe S\A. Hence there exist open sets U,, U,, and W con-
taining a, b, and A respectively, with U,-U, N W =[]. Now N(W,U,)N
N(W, U,) is an open set about A, and contains no chain C with (C N
V) < C. This establishes (i).

As in [4], we define L(x)={y |y <z}, M(x) ={y |2z < v}, and (z,y) =
{z]x <z<y}. Let & be an open cover of U*, and define a subset M;
of &#(U*) by: Ce M; if and only if C is a closed chain in U*, and for
any 2 and ¥ in C with 2 <y and (x,y) N C =[], there exists Ded
such that D* meets both L(z) N C.

(i) Ms; N & # ] for any open cover & of U*. Let & be an open
cover of U*, and let & be the collection of all closed chains C with
ueCc U CeM; and (VNC)YcC. Let v be a maximal tower in &,
and let 7= Uz. Then T* is a closed chain, ue T* cU™*, and (VN T*)* C
T*. As in [4], T* e M;, and it remains to show that T* e &, i.e., that
T* N S\V = []. Suppose T* C V; (note then that T'= T*) then since
(TNV)Y*c T, Tis a compact chain and a semigroup. Let e = inf 7.
Since e < e and e¢’c T we have ¢ = ¢. We show next that e is a zero
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for T. Let ye T, then eye T and ey < ¢, so ey = ¢ and e is a left zero
for 7. Hence the minimal ideal K of T consists of left zeros for 7T
[1]. Let fe K; then e < f so there exists ce U with e = fe. There-
fore f = fe = ¢, and e is the unique left zero, and hence a zero for T.
Let Wed with ee W. If eUe N W N V contains an idempotent g + e,
then T U ¢ is a semigroup: for if xe T then zg = x(eg) = eg = g and
gx = (ge)x = g(ex) = ge = ¢g. Also T U ¢ is a chain, so by the maximali-
ty of 7, T= T U g, a contradiction.

Hence we may assume that eUge N W N V has a unique idempotent
e. Since = is antisymmetric, the maximal subgroup of S containing e
is e. Also eUge is a local semigroup with unit e, eUse * ¢, and e is not
isolated in eUge which is the continuous image of U, and hence con-
nected. Hence [5; 122] there is a non-degenerate one parameter local
semigroup A withee ACeUeNWNV; let ae A with a # ¢ and a*e A.
Define @’ =e¢ and let B, = UL a"e, ¢], B. = Us.a"a, e] where [a, €]
denotes the sub-arc of A from a to e. We assume temporarily that all
products involved in forming B, and B. are defined. Each of the sets
a"[a, e] is a compact connected chain (hence an arc) with minimal ele-
ment "' and maximal element a®. Hence B, is a compact connected
chain from a**' to e. Also B, is a connected chain, hence BZ is a closed
connected chain. Using the easily established commutativity of B, and
B it follows that for xe T and be B, (or B}) then xb = x(eb) = (xe)b =
eb =10, and similarly b =b. Hence [(TUB)Y)NVIPcCc TUB:NV)
and similarly with B, replaced by BX. We distinguish two cases:

Case 1: For some k£ = 0, a*** e V and a*** ¢ V. Then since V is con-
vex, a’, a, «+-, " are in ¥V and all products involved in forming B, are
defined, so that B, V and B,,, ¢ V. We show first that B: N VC
B,. Let zeB: N V; then z = xy with 2,y € B,, so £ = o™’ and ¥y = a™y’
with ¢’ and %’ in [a, e]. Hence zy = a™"x'y’. If z'y’'e€ A, then since
ze V it follows that m +n < k. If 2y’ ¢ A, then 2’y = at for some
teA, so xy = a™™"*"'t and m +n + 1 < k. In either case, then, z € B,.
Note that (T' U B;)* € M; since B2 is a connected chain. Also [(T' U B%) N
VEIcTUBnNV)Yc TUB:, so that T U Bie &». This contradicts
the maximality of .

Case 2: a*e V for each &k = 0. Using the convexity of V we see
that all products involved in forming B.. are defined, and B, = B% cC V,
hence BX = BX*. Since B is a connected chain, it follows that T U
BieM;. Also [(TUBX N V]Fc TU B% so that TU Bte v, a con-
tradiction to the maximality of . The proof of (ii) is now complete.

(iii) M; Nz 1s closed for each finite open cover 8 of U*.

This proof is similar to that in [4], and is omitted.

For any finite open cover & of U*, let P; = M; N & . The collec-
tion of sets {P;} is a descending family, so NP # []. If CeNPs,
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then as shown in [4], C is an arc. Clearly C is a local semigroup, and
the proof is complete.

In what follows, a standard thread is a compact connected semi-
group irreducibly connected between a zero and a unit. The structure
of standard threads is known [5; 130]. The example in [4] shows that
a compact connected semigroup with zero and unit need not contain
a standard thread joining the zero to the unit. The problem of finding
standard threads joining zero to unit has an affirmative solution in case
either

(1) S is compact, connected, and one-dimensional [3], or

(2) S is compact, connected, and each element is idempotent [4].
A third solution is given by the following corollary.

COROLLARY 1. If S 4s a mon-degenerate compact conmected par-
tially ordered semigroup with unit uw, then the minimal ideal K con-
sists of left zeros for S, K consists of the set of minimal elements,
and some elements of K can be joined by a standard thread to the

unit.

Proof. Note that Graph (=) is closed since S is compact. Let G
be a compact group in S, with unit e. Since 2> < x for each zeS,
then for x€G we have e=x=2"= .-, and {x"} clusters at an
idempotent, which must be e. We conclude that # = e, and hence that
each compact group in S is trivial. From this fact it is clear that K
is proper, for otherwise K = S would be a compact group [1]. From
the fact that aS = bS implies @ =b we conclude that each minimal
right ideal is a single element, hence each element of K is a left zero
for S [1]. Since a minimal element x of S is characterized by the
equality S = z, it is clear that K consists of the set of minimal ele-
ments of S, and hence that S\K is convex. In the proof of the Theorem,
we take S=U,= U, = U,= U, and V = S\K. Hence there is a com-
pact connected linearly ordered local semigroup L containing u, with
L N S\V = []. Since the elements of K are minimal it follows that L
is a semigroup, and hence a standard thread.
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