SOME CLASSES OF EQUIVALENT GAUSSIAN PROCESSES ON AN INTERVAL

Jacob Feldman

1. Introduction. Let T be an index set, R, S real-valued nonnegative definite functions of two variables in T, and m, n real-valued functions on T. Let Ω be the set of all real-valued functions on T, and \mathscr{S} the Borel field of cylinder sets. There are then unique measures μ, ν on \mathscr{S} such that the functions x_{t} on Ω defined by $x_{t}(\omega)=\omega(t)$ form Gaussian stochastic processes, with means respectively m and n, and covariances respectively R and S. It is shown in [2] that μ and ν are either mutually absolutely continuous or totally singular, and a necessary and sufficient condition for equivalence is given.

Suppose now that T is a subset of the real line, and $R(s, t)=s(s-t)$, $S(s, t)=\{(s-t)$, where , and $\&$ are continuous nonnegative-definite functions, and hence can be written as inverse Fourier transforms of finite measures $d \rho, d \sigma$. Thus, using respectively the measures μ and ν on $\Omega, x_{t}-m(t)$ and $x_{t}-n(t)$ are the restrictions to T of stationary Gaussian processes on the real line. For simplicity, only the case $m=$ $n=0$ will be considered.

When T is the entire real line, then it is easy to see, by looking at $d \rho$ and $d \sigma$, exactly when $\mu \sim \nu$, as is essentially known (see [3]). The precise conditions are:
a. ρ and σ must have identical non-atomic parts.
b. Their points of positive mass be the same, and if the masses are a_{i} and b_{i} at x_{i}, then $\sum\left\{\left(a_{i} / b_{i}\right)-1\right\}^{2}$ must be finite.

Now suppose T is a finite interval. The problem of determining from knowledge of ρ and σ whether μ and ν are equivalent becomes much more difficult. We here discuss only a certain class of cases. Because of stationarity, one need only consider an interval symmetric about 0 . Continuity of $\{$ and $\{$ implies that the Gaussian process is continuous with probability one at any given point, so that it makes no difference whether the interval is open or closed. There is no essential loss of generality, then, in considering only the closed interval $[-\pi, \pi]$. The following ${ }_{\text {i }}$ facts will then be proven:

ThEOREM. Let $d \rho(x)=\left\{d x /\left(1+x^{2}\right)^{u}\right\}$, where u is an integer $\geqq 1$, and let; σ be some other finite nonnegative measure on the real line. Write $\tau=\sigma-\rho$. The following conditions are necessary and sufficient that the Gaussian processes induced on $[-\pi, \pi]$ by the Fourier trans-

[^0]forms of ρ and σ have equivalent measures on path space:
(a) if k_{n} is a sequence of C_{∞} functions with support in $]-\pi, \pi[$ and K_{n} is the Fourier transform of k_{n}, then $\int\left|K_{n}\right|^{2} d \sigma \rightarrow 0$ implies $\int\left|K_{n}\right|^{2} d \rho \rightarrow 0$.
(b) The Fourier transform (in the sense of Schwartz distributions) of $\left(1+x^{2}\right)^{u} d \tau(x)$ agrees on $]-2 \pi, 2 \pi[$ with a function ψ such that
$$
\int_{-\pi}^{\pi} \int_{-\pi}^{\pi}|\psi(s-t)|^{2} d s d t<\infty
$$

Remark 1. It will be seen that sufficiency still holds if (a) is weakened to:
(a') $\int\left|K_{n}\right|^{2} d \sigma \rightarrow 0$ and $K_{n} \rightarrow K$ in $\mathscr{L}_{2}(\rho)$ implies that $K=0$ on some set of positive ρ-measure.

Remark 2. As a consequence of Remark 1, it is clear that if σ has a component which is absolutely continuous with respect to ρ, then Condition (a) automatically satisfied.

Retaining the notation of the theorem:
Corollary 1. If $d \sigma=\Phi d \rho$, where Φ is a function such that $\Phi-1$ is a finite linear combination of functions in various $L_{a}(-\infty, \infty)$ classes, $1 \leqq a \leqq 2$, then the Gaussian processes induced by ρ and σ have equivalent measures on path space.

One direction of the following corollary was proven by D. Slepian in [5], using techniques of G. Baxter in [1]:

Corollary 2. If A_{j} and B_{j} are polynomials, with degrees respectively a_{j} and $b_{j}, j=1,2$, and $b_{j}>a_{j}$, then the Gaussian processes whose spectral measures are $\left.\left|A_{j}(x)\right| B_{j}(x)\right|^{2} d x$ have equivalent measures on path space if and only if
(a) $b_{1}-a_{1}=b_{2}-a_{2}$
(b) the ratio of the leading coefficients of A_{1} and B_{1} has the same absolute value as the ratio of the leading coefficients of A_{2} and B_{2}.

The author wishes to thank J. F. Trèves for several useful discussions about distributions.
2. Some preliminaries on functions of exponential type. First, some notation. Functions will be complex-valued functions of a real variable, unless otherwise stated. \widehat{F} will mean the Fourier transform of F (in various degrees of generalization, depending on context), and \check{F} the conjugate Fourier transform. $\sup (f)$ will mean the points where $f \neq 0 . \mathscr{E}_{a}=$ $\{F \mid F$ extends to an entire function of exponential type $\leqq a \pi\}$. $\mathscr{H}_{a}=$ $\mathscr{E}_{a} \cap \mathscr{L}_{2}(-\infty, \infty)$, or, by the Payley-Wiener theorem,

$$
\begin{aligned}
& =\left\{\hat{f} \mid f \in \mathscr{L}_{2}(-\infty, \infty), \sup (f) \subset[-a \pi, a \pi]\right\} \\
\hat{\mathscr{D}}_{a} & =\left\{f \mid f \in \mathscr{C}_{\infty}, \overline{\sup (f)} \subset\right]-a \pi, a \pi[\}, \mathscr{D}_{a}=\left\{\check{f} \mid f \in \hat{\mathscr{D}}_{a}\right\} .
\end{aligned}
$$

u will be a fixed integer $\geqq 1$, and $p(x)=(i+x)^{u} . \rho$ is the measure $d \rho(x)=\left\{1 /|p(x)|^{2}\right\} d x$. \mathscr{K} will denote the completion of \mathscr{D}_{1} in the inner product $\langle F, G\rangle=\int F \bar{G} d \rho$.

Naturally, \mathscr{K} really consists of equivalence classes of functions; but it will turn out that there is a continuous, in fact entire, member in each class. H_{1} will denote a fixed function of \mathscr{D}_{1} such that $h_{1}=\hat{H}_{1}$ is nonnegative and has integral 1. For $a>0, h_{a}(s)$ will be $(1 / a) h_{1}(s / a)$, $H_{a}(x)=H_{1}(a x)$, so that $h_{a}=\hat{H}^{a}$, and $H_{a} \in \mathscr{D}_{a}$. Then H_{a} vanishes faster than any polynomial, $\left|H_{a}(x)\right| \leqq 1$ for all x, and $\lim _{a \rightarrow 0} H_{a}(x)=1$ uniformly on any finite interval.

Lemma 1. If $F \in \mathscr{E}_{1}$ and $\int|F|^{2} d \rho<\infty$, then $F \in \mathscr{K}$.
Proof. If $(1 / 2)<c<1$, then

$$
\begin{aligned}
& \left(\int|F(c x)-F(x)|^{2} d \rho(x)\right)^{1 / 2} \leqq\left(\int_{-b}^{b}|F(c x)-F(x)|^{2} d \rho(x)\right)^{1 / 2} \\
& \quad+\left(\int_{|x|>b}|F(c x)|^{2} d \rho(x)\right)^{1 / 2}+\left(\int_{|x|>b}|F(x)|^{2} d \rho(x)\right)^{1 / 2}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\int_{|x|>b}|F(c x)|^{2} d \rho(x) & =\frac{1}{c} \int_{|x|>b c}|F(x)|^{2} \frac{1}{\left|p\left(\frac{x}{c}\right)^{2}\right|} d x \\
& \leqq 2 \int_{|x|<(b / 2)}|F(x)|^{2} \frac{1}{|p(x)|^{2}} d x .
\end{aligned}
$$

Choosing b large, and then choosing c close enough to 1 to make $|F(c x)-F(x)|$ small on $[-b, b]$, we see that it suffices to show that the function $G: x \rightarrow$ $F(c x)$ is in \mathscr{K}. Notice that $G \in \mathscr{E}_{1}$, as $c<1$.
$H_{a} G$ is square-integrable, since H_{a} vanishes faster than $\left(1 /|p|^{2}\right)$. So $H_{a} G$ is in \mathscr{H}_{a+c}, its Fourier transform being some g^{\prime} in $\mathscr{L}_{2}(-\infty, \infty)$ with support in $[-(a+c) \pi,(a+c) \pi]$. Thus $h_{a} * g^{\prime} \in \mathscr{D}_{2 a+c}$, and $H_{a}^{2} G \in \mathscr{D}_{2 a+c}$. Choosing a small causes $H_{a}^{2} G$ to be in \mathscr{D}_{1}, and simultaneously causes $\int\left|H_{a}^{2} G-G\right|^{2} d \rho$ to get small. This proves the lemma.

Let $\mathscr{H}=\left\{p F \mid F \in \mathscr{H}_{1}\right\}$, and $\mathscr{D}=\left\{p F \mid F \in \mathscr{D}_{1}\right\}$. Lemma 1 tells us $\mathscr{H} \subset \mathscr{K}$.

Lemma 2. \mathscr{H} is precisely the closure of \mathscr{D} in \mathscr{K}.

Proof. First, we see that \mathscr{H} is closed. If $F_{n} \in \mathscr{H}{ }_{1}$ and

$$
\int\left|p F_{n}-G\right|^{2} d \rho \rightarrow 0, \text { then } \int\left|F_{n}(x)-F_{m}(x)\right|^{2} d x \rightarrow 0
$$

Since \mathscr{H}_{1} is complete, there is some $F \in \mathscr{H}_{1}$ with $\int\left|F_{n}(x)-F(x)\right|^{2} d x \rightarrow 0$. So some subsequence of the $p F_{n}$ converges almost everywhere to $p F$. Thus $p F=G$ almost everywhere.

To approximate elements $p F$ in $\mathscr{\mathscr { C }}$ by elements in \mathscr{D}, just approximate F in $\mathscr{L}_{2}(-\infty, \infty)$ by elements in \mathscr{D}_{1}, using the technique of Lemma 1.

Lemma 3. $\mathscr{K} \Theta \mathscr{H}$ is precisely the finite-dimensional space \mathscr{L} of functions of the form $x \rightarrow e^{i x \pi} q(i-x)$, where q is a polynomial of degree $\leqq u-1$.

Proof. Suppose $F \in \mathscr{K} \ominus \mathscr{H}$. Then $\int F \overline{p G d} d \rho=0$ for all G in \mathscr{D}_{1}, i.e. $\int\{F(x) / p(x)\} \overline{G(x)} d x=0$ for all G in \mathscr{D}_{1}. Now, (F / p) is in $\mathscr{L}_{2}(-\infty, \infty)$, so it has a Fourier transform k which is likewise square-integrable, and, by Plancherel's theorem, $\int k(s) \overline{g(s)} d s=0$ for all g in $\hat{\mathscr{D}}_{1}$. So k vanishes in $]-\pi, \pi[$.

Since $F \in \mathscr{K}, F$ can be approximated in \mathscr{K} by functions F_{n} in \mathscr{D}_{1}. Each F_{n} is in $\mathscr{D}_{a_{n}}$ for some $a_{n}<1$, since $\left.\overline{\sup \left(F_{n}\right)} \subset\right]-\pi, \pi[$, and hence $\subset]-a_{n} \pi, a_{n} \pi\left[\right.$ for some $a_{n}<1$. Let k_{n} be the Fourier transform of F_{n} / p. Then $k_{n} \rightarrow k$ in $\mathscr{L}_{2}(-\infty, \infty)$, and k_{n} is in the domain of the \mathscr{L}_{2}-differential operator $p(-i D)=i^{u}(I-D)^{u}$. So $p(-i D) k_{n}=f_{n}$, where f_{n} is the Fourier transform of F_{n}. Since f_{n} vanishes outside some $\left[-a_{n} \pi, a_{n} \pi\right], a_{n}<1$, k_{n} must be of the form $\sum_{j} a_{i}^{(n)} s^{j} e^{s}$ in $]-\infty,-\pi\left[\right.$ and $\sum_{j} b_{j}^{(n)} s^{j} e^{s}$ in $] \pi, \infty[$, where j ranges between 0 and $u-1$. Since k_{n} is in $\mathscr{L}_{2}(-\infty, \infty)$, the $b_{j}^{(n)}$ are zero, and, letting φ be the indicator of $]-\infty,-\pi[$, we get $\rho k_{n}=\varphi \sum_{j} a_{j}^{(n)} s^{j} e^{s}$. This converges in $\mathscr{L}_{2}(-\infty, \infty)$, so the limit is of the form $\varphi \sum_{j} a_{j} s^{j} e^{s}$. Then $k_{n} \rightarrow 0$ in $] \pi, \infty\left[, 0\right.$ in $[-\pi, \pi]$, and $\sum_{j} a_{j} s^{j} e^{s}$ in $]-\infty,-\pi\left[\right.$, so $k=\phi \sum_{j} a_{j} s^{j} e^{s} . \quad F / p$ is then a linear combination of terms like $\int_{-\infty}^{-\pi} e^{-i x s} s^{j} e^{s} d s, 0 \leqq j \leqq u-1$, which is a linear combination of terms like $e^{-\infty x \pi}(i+x)^{-5}, 1 \leqq j \leqq u$. Multiplying by p gives the result.

Combining information from lemmas $1,2,3$ we get a description of \mathscr{K} :

Proposition. \mathscr{K} is the orthogonal direct sum of \mathscr{H} and \mathscr{L}.
Lemma 4. $\quad \mathscr{D}=\mathscr{H} \cap \mathscr{D}_{1}$.
Proof. $\mathscr{D} \subset \mathscr{H}$, by definition, since $\mathscr{D}_{1} \subset \mathscr{H}_{1}$. Also $\mathscr{D} \subset \mathscr{D}_{1}$, since \mathscr{D}_{1} is closed under multiplication by polynomials (because $\mathscr{\mathscr { D }}_{1}$ is
closed under differentiation). So $\mathscr{D} \subset \mathscr{H} \cap \mathscr{D}_{1}$, and it remains to show $\mathscr{D} \supset \mathscr{C} \cap \mathscr{D}_{1}$.

Suppose $G \in \mathscr{H}$. Then G is a \langle,$\rangle limit of elements G_{n}$ in \mathscr{D}, by Lemma 2. G_{n} then has the form $p F_{n}, F_{n}$ in \mathscr{D}_{1}. Thus F_{n} is an $\mathscr{L}_{2}(-\infty, \infty)$ Cauchy sequence, hence has a limit F. Then $p F=G$.

Suppose G is also in $\hat{\mathscr{D}}_{1}$. Then G is infinitely differentiable. Since $\widehat{G}=p \hat{F}=p(-i D) \hat{F}$, we conclude that \hat{F} is infinitely differentiable. Now it must be shown that \hat{F} vanishes outsides some interval $[-a \pi, a \pi]$, $0<a<1$. But $\hat{G}=p(-i D) \hat{F}$ vanishes outside such on interval, so \hat{F} is analytic outside $[-a \pi, a \pi]$. Also, \hat{F} vanishes outside $[-\pi, \pi]$, since each \hat{F}_{n} has support in $]-\pi, \pi[$. Therefore, \hat{F} vanishes outside $[-a \pi$, $a \pi]$. So \hat{F} is in \mathscr{D}_{1}, and F is in \mathscr{D}_{1}.

Lemma 5. $\mathscr{D}_{1} / \mathscr{D}$ is finite dimensional.
Proof. $\quad \mathscr{D}_{1}\left|\mathscr{D}=\mathscr{D}_{1}\right| \mathscr{V}_{1} \cap \mathscr{H} \approx\left(\mathscr{D}_{1}+\mathscr{H}\right)\left|\mathscr{C} \subset \mathscr{X}^{\mathcal{Y}}\right| \mathscr{H} \approx \mathscr{C}$.
3. Proof of theorem. In [2] it is shown that a necessary and sufficient condition for equivalence of μ and ν is that there be an equivalence operator from the closed linear span of $\left\{x_{t} \mid t \in T\right\}$ in $\mathscr{L}_{2}(\mu)$ to their closed linear span in $\mathscr{L}_{2}(\nu)$, sending the μ-equivalence class of x_{t} to the ν-equivalence class of x_{t} for each $t \in T$. (An equivalence operator, as defined in [2], is a linear homeomorphism H between two Hilbert spaces such that $I-H^{*} H$ is Hilbert Schmidt). Actually, we shall want the condition in complex \mathscr{L}_{2}, while the proof in [2] is for real \mathscr{L}_{2}; however, the transition from the one to the other is immediate.

Under this condition, H would map $\int_{-\pi}^{\pi} f\left(x_{t}\right) d t$ as an $\mathscr{L}_{2}(\mu)-$ valued integral to $\int_{-\pi}^{\pi} f(t) x_{t} d t$ as an $\mathscr{L}_{2}(\nu)$-valued integral, for each $f \in \hat{\mathscr{D}}_{1}$; and conversely, if H had this effect on all such $\int_{-\pi}^{\pi} f(t) x_{t} d t$, then by choosing a sequence of f approximating a delta function, one could verify that H sent the equivalence class of x_{t} in $\mathscr{L}_{2}(\mu)$ to the equivalence class of x_{t} in $\mathscr{L}_{2}(\nu)$. Therefore, putting inner products (,) and (,) on $\hat{\mathscr{D}}_{1}$ by the rules

$$
\begin{aligned}
& (f, g)=\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \lambda(s-t) f(s) \overline{g(t)} d s d t \\
& (f, g) \cdot=\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \cdot \partial(s-t) f(s) g(\overline{t)} d s d t
\end{aligned}
$$

and noting that $(f, g)=\int\left(\int_{-\pi}^{\pi} f(s) x_{s} d s\right)\left(\int_{-\pi}^{\pi} g(t) x_{t} d t\right) d \mu$ and

$$
(f, g)=\int\left(\int_{-\pi}^{\pi} f(s) x_{s} d s\right)\left(\int_{-\pi}^{\pi} g(t) x_{t} d t\right) d v
$$

it follows that a necessary and sufficient condition for the equivalence of μ and ν is the existence of an equivalence operator from the (,) com-
pletion of $\hat{\mathscr{D}}_{1}$ to its (,) completion, and sending the (,)-equivalence class of f to its $($,$) -equivalence class.$

Now let $\langle F, G\rangle \cdot=\int F \bar{G} d \sigma$, where F and G are in \mathscr{D}_{1} (and hence continuous and bounded, so that the integral exists). Let $\dot{\mathscr{K}}$ be the closure of \mathscr{D}_{1} in $\mathscr{L}_{2}(\sigma)$. Let J be the map assigning to F in \mathscr{D}_{1} its equivalence class in $\dot{\mathscr{K}}$. Since $\langle F, G\rangle=(\hat{F}, \widehat{G})$, and $\langle F, G\rangle=(\hat{F}, \widehat{G})^{\cdot}$, the necessary and sufficient condition for the equivalence of μ and ν in the theorem is that J be the restriction to \mathscr{D}_{1} of an equivalence map from \mathscr{K} to $\dot{\mathscr{K}}$.

To prove sufficiency of the conditions in the theorem, suppose first that $|p(x)|^{2} d \tau(x)$ has a generalized Fourier transform (see [4]) which agrees on $]-2 \pi, 2 \pi\left[\right.$ with a function ψ such that $\int_{-\pi}^{\pi} \int_{-\pi}^{\pi}|\psi(s-t)|^{2} d s d t=$ $a^{2}<\infty$. We extend ψ by making it 0 outside $]-2 \pi, 2 \pi[$.

Lemma 6. If $F \in \mathscr{D}$, then $\langle F, F\rangle \cdot \leqq(1+a)\langle F, F\rangle$.
Proof. Write $F=p G, G \in \mathscr{D}_{1}$. Then $\int|F|^{2} d \sigma=\int|F|^{2} d \rho+\int|G|^{2}|p|^{2} d \tau$. Now, \hat{G} is in $\hat{\mathscr{D}}_{1}$, so $\hat{G} * \hat{G}$ is infinitely differentiable with support in $]-2 \pi, 2 \pi[$. Then, by Schwartz's definition of generalized Fourier transform, we get $\int|G|^{2}|p|^{2} d \tau=\int_{-2 \pi}^{2 \pi} \widehat{G} * \widehat{G}(s) \psi(s) d s=\int_{-2 \pi}^{2 \pi} \int_{a(s)}^{b(s)} \widehat{G}(s-t) \overline{\hat{G}}(1-t)$ $\psi(s) d t d s$, where $a(s)=\max (-\pi, s-\pi)$ and $b(s)=\min (\pi, s+\pi)$. Letting $s-t=s^{\prime}$, and $t=-t^{\prime}$ gives $\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \widehat{G}\left(s^{\prime}\right) \widehat{G}\left(t^{\prime}\right) \psi\left(s^{\prime}-t^{\prime}\right) d s^{\prime} d t^{\prime}$, whose absolute value, by the Schwartz inequality, is

$$
\begin{aligned}
& \leqq\left[\int_{-\pi}^{\pi} \int_{-\pi}^{\pi}|\hat{G}(s) \overline{\hat{G}(t)}|^{2} d s d t \int_{-\pi}^{\pi} \int_{-\pi}^{\pi}|\psi(s-t)|^{2} d s d t\right]^{1 / 2} \\
& =\left(\int_{-\pi}^{\pi}|\hat{G}(s)|^{2} d s\right) a=\left(\int|F|^{2} d \rho\right) a .
\end{aligned}
$$

Pick a complete orthonormal set (c.o.n.s.) f_{1}, f_{2}, \cdots for $\mathscr{L}_{2}(-\pi, \pi)$ out of the dense subset $\hat{\mathscr{D}}_{1}$. Let $F_{n}=\check{f}_{n}$, and $G_{n}=p F_{n}$. Then the G_{n} form a c.o.n.s. for \mathscr{H} (in \langle,$\rangle) consisting of elements of \mathscr{D}$, because the F_{n} are a c.o.n.s. for \mathscr{L}_{1} consisting of elements of \mathscr{D}_{1}.

Lemma 7. $\sum_{n, m=1}^{\infty}\left|\left\langle G_{n}, G_{m}\right\rangle-\left\langle G_{n}, G_{m}\right\rangle \cdot\right|^{2}=a^{2}$.
Proof. $\int G_{n}(x) \overline{G_{m}(x)} d \tau(x)=\int_{-2 \pi}^{2 \pi} \hat{F}_{n} * \hat{F}_{m}(s) \psi(s) d s$. By using a change of variable as in the previous lemma, this equals $\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f_{n}(s) \overline{f_{m}(t)} \psi(s-t) d s d t$. But the functions $(s, t) \rightarrow \overline{\left(f_{n} s\right)} f_{m}(t)$ form a c.o.n.s. in $\mathscr{L}_{2}([-\pi, \pi] \times[-\pi, \pi])$, so that $\sum_{n, m=1}^{\infty}\left|\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f_{n}(s) \overline{f_{m}(t)} \psi(s-t) d s d t\right|^{2}$ is exactly $\int_{-\pi}^{\pi} \int_{-\pi}^{\pi}|\psi(s-t)|^{2} d s d t$.

Now consider the map J from \mathscr{D}_{1} to $\dot{\mathscr{K}}$. Lemma 6 implies that its restriction to \mathscr{D} is bounded, and, since $\mathscr{D}_{1} / \mathscr{D}$ is finite-dimensional (Lemma 5), J is bounded as an operator from \mathscr{D}_{1} to $\dot{\mathscr{K}}$ (a finite-dimensional
extension of a bounded operator is bounded, as is readily seen). So J extends uniquely to a bounded operator A from \mathscr{K} to $\dot{\mathscr{K}}$.

Lemma 8. $I-A^{*} A$ is a Hilbert-Schmidt operator.
Proof. Complete the o.n.s. G_{1}, G_{2}, \cdots by adding to it a c.o.n.s. $G_{0}, G_{-1}, \cdots, G_{1-u}$ in \mathscr{L}. Then, letting $k=u-1$,

$$
\begin{aligned}
& \sum_{n, m=-k}^{\infty}\left|\left\langle\left(I-A^{*} A\right) G_{n}, G_{m}\right\rangle\right|^{2} \\
& =\sum_{n, m=1}^{\infty}\left|\left\langle\left(I-A^{*} A\right) G_{n}, G_{m}\right\rangle\right|^{2} \\
& \quad+\sum_{n=-k}^{\infty} \sum_{m=-k}^{\infty}\left|\left\langle\left(I-A^{*} A\right) G_{n}, G_{m}\right\rangle\right|^{2} \\
& \quad+\sum_{n=-k}^{\infty} \sum_{m=-k}^{\infty}\left|\left\langle G_{n},\left(I-A^{*} A\right) G_{m}\right\rangle\right|^{2} \\
& =\sum_{n, m=1}^{\infty}\left|\left\langle G_{n}, G_{m}\right\rangle-\left\langle A G_{n}, A G_{m}\right\rangle\right|^{2} \\
& \quad+\left.2 \sum_{n=-k}^{\infty}\left|\left\langle I-A^{*} A\right) G_{n},\left(I-A^{*} A\right) G_{n}\right\rangle\right|^{2},
\end{aligned}
$$

using Parseval's equality. But $\left\langle A G_{n}, A G_{m}\right\rangle=\left\langle G_{n}, G_{m}\right\rangle$ for $\left.n, m\right\rangle 0$, since such G_{n} are in \mathscr{D}_{1}, so that the sum is exactly

$$
a^{2}+2 \sum_{n=-k}^{0}\left\langle\left(I-A^{*} A\right) G_{n},\left(I-A^{*} A\right) G_{n}\right\rangle .
$$

In order to complete the proof, it must be shown that A is a homeomorphism from \mathscr{K} onto $\dot{\mathscr{K}}$. Since $I-A^{*} A$ is completely continuous, it will suffice to show
(1) that the range of A is dense in $\dot{\mathscr{L}}$.
(2) that A sends no nonzero element to zero.
(1) is clear, since the range of A contains the range of J, which is dense by the very definition of $\dot{\mathscr{C}}$.

We now make use of (a), or rather of the weaker (a^{\prime}), to prove (2). Suppose, in fact, that $A(K)$ is zero in $\dot{\mathscr{K}}$ for some K in \mathscr{K}. Let K_{n} be a sequence of members of $\mathscr{\mathscr { D }}_{1}$ converging to K in \mathscr{K}. Then K_{n} converges to zero in \dot{K}, since $A\left(K_{n}\right)=J\left(K_{n}\right)$. Then, by (a^{\prime}), $K=0$ on a set of positive ρ measure. But the Proposition of the previous section tells us that K is analytic. Thus $K=0$.

To show the necessity of condition (a), suppose J has an extension to an equivalence operator from \mathscr{K} to $\dot{\mathscr{K}}$, which we call A. Then (a) is immediate from the fact that A is continuously invertible.

Since $I-A^{*} A$ is an equivalence operator, $\sum_{n, m=1}^{\infty} \mid\left\langle G_{n}, G_{m}\right\rangle-$ $\left.\left\langle G_{n} G_{m}\right\rangle^{\cdot}\right|^{2}<\infty$, where G_{1}, G_{2}, \cdots is the c.o.n.s. in \mathscr{D} for \mathscr{C} previously constructed. Define an operator Z on $\mathscr{L}_{2}([-\pi, \pi] \times[-\pi, \pi])$ as follows: let $f_{n, m}(s, t)=f_{n}(s) f_{m}(t)$, where $G_{n}=p \check{f_{n}}$. For $Q=\sum_{n, m} a_{n, m} f_{n, m}$, Let $Z(Q)=\sum_{n, m} a_{n, m}\left\langle\left\langle G_{n}, G_{m}\right\rangle-\left\langle G_{n}, G_{m}\right\rangle \cdot\right)$. Then

$$
|Z(Q)|^{2} \leqq \sum_{n, m}\left|a_{n, m}\right|^{2} \sum_{n, m}\left|\left\langle G_{n}, G_{m}\right\rangle-\left\langle G_{n}, G_{m}\right\rangle \cdot\right|^{2} .
$$

So $Z(Q)$ has the form $\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} Q(s, t) \Psi(s, t) d s d t$ for some Ψ such that
$\left.\int^{\pi} \int^{\pi}|\Psi(s, t)|^{2} d s d t<\right)^{\pi}$ $\int_{-\pi}^{\pi} \int_{-\pi}^{\pi}|\Psi(s, t)|^{2} d s d t<\infty$. In particular, consider $f, g \in \mathscr{D}_{1}$, and let $f=$
$\sum_{n} a_{n} f_{n}, g=\sum b_{m} f_{m}$. Let $Q(s, t)=f(s) \overline{g(t) .}$ Then $Z(Q)=\sum_{n . m} a_{n} b_{m}\left\langle\left\langle G_{n}, G_{m}\right\rangle\right.$ $\left.-\left\langle G_{n}, G_{m}\right\rangle\right)=\sum_{n, m} a_{n} \bar{b}_{m} \int\left(p F_{n}\right)\left(\overline{p F_{m}}\right) d t=\int \check{f} \stackrel{g}{g}|p|^{2} d t$.

Let $0<r<2 \pi$, and let f, g have the closure of their supports in in $]-\pi+r, \pi\left[\right.$. Let $f^{\prime}(s)=f(s+r), g^{\prime}(s)=g(s+r)$. Then f^{\prime}, g^{\prime} are in \mathscr{D}_{1}, and their inverse Fourier transforms satisfy $\breve{f}^{\prime}(x)=e^{i r x} \check{f}(x)=e^{i r x} \check{g}(x)$. Then

$$
\begin{aligned}
\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f^{\prime}(s) \overline{g^{\prime}(t)} \Psi(s, t) d s d t=\int \tilde{f}^{\prime} \bar{g}^{\prime}|p|^{2} d t \\
\quad=\int f \bar{g}|p|^{2} d t=\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(s) \overline{g(t)} \Psi(s, t) d s d t
\end{aligned}
$$

But

$$
\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(s+r) \overline{g(t+r)} \Psi(s, t) d s d t=\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(s) \overline{g(t)} \psi(s-r, t-r) d s d t
$$

in view of the restrictions on the support of f and g. Since this holds for all such f, g, the equality $\Psi(s-r, t-r)=\Psi(s, t)$ holds for almost all (s, t) for which $s, t, s-r, t-r$ are in $]-\pi, \pi$ [(r being fixed). Thus, $\{(r, s, t) \mid s, t, s-r$, are in $]-\pi, \pi[$ and $\Psi(s-r, t-r) \neq \Psi(s, t)\}$ has measure zero.

Applying Fubini's theorem, we get: for almost all pairs s, t in $]-\pi, \pi[$ the set $\{r \mid s-r, t-r$ lie in $]-\pi, \pi[$ and $\Psi(s-r, t-r) \neq \Psi(s, r)\}$ has measure 0 . Denote by Δ the exceptional set of pairs (s, t).

Now let Γ_{s} be the line of slope 1 which passes through $(s,-s)$, where $-\pi<s<\pi$. Let Γ be the set of s for which $\Gamma_{s} \cap \Delta$ is not a set of measure 0 . Then Γ has measure 0 , again by Fubini's theorem, and by rotation-invariance of Lebesgue measure. If s is in $]-\pi, \pi[$ but not in Γ, then almost all points on that portion of L_{s} which lies in $]-\pi, \pi[\times]-\pi, \pi[$ assign to Ψ a common value; thus, if the function Ψ^{\prime} is defined on $]-\pi, \pi\left[\right.$ by $\Psi^{\prime}(s, t)=\int_{a(s, t)}^{b(s, t)} \Psi(s-r, t-r) d r$, where $a(s, t)=$ $\max (s-\pi, t-\pi)$ and $b(s, t)=\min (s+\pi, t+\pi)$, then, for (s, t) on Γ_{r}, $\Psi^{\prime}(s, t)$ has this common value. Thus, for almost all $r, \Psi^{\prime}(s, t)=\Psi(s, t)$ for almost all (in linear measure) points (s, t) with $-\pi<s, t<\pi$ and s, t on Γ_{r}. Then $\Psi^{\prime}(s, t)$ is equal almost everywhere to $\Psi(s, t)$. Now set $\psi(r)=\Psi(-r / 2, r / 2),-2 \pi<r<2 \pi$.
Then

$$
\begin{aligned}
\Psi^{\prime}(s, t)= & \Psi^{\prime}(s-(s+t) / 2, t-(s+t) / 2) \\
& =\Psi^{\prime}(-(t-s) / 2,(t-s) / 2)=\psi(t-s)
\end{aligned}
$$

for s, t in $]-\pi, \pi[$. This completes the proof.
Corollary 1 is just a consequence of the fact (proven in [4]) that if
Φ is as in the statement, then $(\bar{\Phi}-1) d x$ has a generalized Fourier transform which is a function φ square-summable in any finite interval, so that

$$
\int_{-\pi}^{\pi} \int_{-\pi}^{\pi}|\varphi(s-t)|^{2} d s d t \leqq\left.\left|\int_{-\pi}^{\pi} \int_{-2 \pi}^{2 \pi}\right| \varphi(r)\right|^{2} d r \leqq 2 \pi \int_{-2 \pi}^{2 \pi}|\varphi(r)|^{2} d r .
$$

To prove corollary 2: let c_{j} be the absolute value of the ratio of the leading terms of A_{j} and B_{j}, and let $u_{j}=b_{j}-a_{j}=\operatorname{deg}\left(B_{j}\right)-\operatorname{deg}\left(A_{j}\right)$. It is clear in general that equivalence of the Gaussian processes induced by given covariances is unaffected if both covariances are multiplied by the same constant. Thus, we find that the process whose spectral measure is

$$
\left|\frac{A_{j}(x)}{B_{j}(x)}\right|^{2} d x
$$

has measure on path space equivalent to that whose spectral measure is

$$
\frac{c_{j}}{\left(1+x^{2}\right)^{u_{j}}} d x
$$

because the quotient of

$$
\left|\frac{A_{j}(x)}{B_{j}(x)}\right|^{2} \quad \text { by } \quad \frac{c_{j}}{\left(1+x^{2}\right)^{u_{i}}}
$$

is of the form: 1 plus a function in $\mathscr{L}_{2}(-\infty, \infty)$. So the problem is reduced to whether or not the processes with spectral measures

$$
\frac{1}{\left(1+x^{2}\right)^{u_{1}}} \quad d x \text { and } \frac{c_{2} c_{1}^{-1}}{\left(1+x^{2}\right)^{u_{2}}} d x
$$

are equivalent. The criterion is that

$$
\left(1-\frac{c_{2} c_{1}^{-1}}{\left(1+x^{2}\right)^{u_{2}-u_{1}}}\right) d x
$$

have a generalized Fourier transform which agrees with a function on $]-2 \pi, 2 \pi[$ having certain properties. But this generalized Fourier transform is explicitly calculated (see [4]), and is of the required form when and only when $c_{2}=c_{1}$ and $u_{2}=u_{1}$.

Bibliography

1. G. Baxter, A strong limit theorem for Gaussian processes, Proc. Amer. Math. Soc., (1956).
2. J. Feldman, Equivalence and perpendicularity of Gaussian Processes, Pacific J. Math., 8, No. 4, (1958).
3. U. Grenander, Stochastic processes and statistical inference, Arkiv furti Matemak, Band 1, nr. 17.
4. L. Schwartz, Théorie des distributions: Hermann and Cie, Paris, 1951.
5. D. Slepian, Some comments on the detections of Gaussian signals in Gaussian noise:
I. R. E. Transactions on Information Theory, Vol. I-4, June, 1958.

University of California, Berkeley

[^0]: Received December 21, 1959, Research partly supported by Contract NONR-222 (60).

