NORMAL EXTENSIONS OF FORMALLY NORMAL OPERATORS

Earl A. Coddington

1. Introduction. Let \mathfrak{S} be a Hilbert space. If T is any operator in \mathfrak{F} its domain will be denoted by $\mathfrak{D}(T)$, its null space by $\mathfrak{R}(T)$. A formally normal operator N in \mathfrak{S} is a densely defined closed operator such that $\mathfrak{D}(N) \subset \mathfrak{D}\left(N^{*}\right)$, and $\|N f\|=\left\|N^{*} f\right\|$ for all $f \in \mathfrak{D}(N)$. Intimately associated with such an N is the operator \bar{N} which is the restriction of N^{*} to $\mathfrak{D}(N)$. The operator N is formally normal if and only if \bar{N} is. A normal operator N in \mathfrak{S} is a formally normal operator for which $\mathfrak{L}(N)=\mathfrak{D}\left(N^{*}\right)$; in this case $\bar{N}=N^{*}$. A densely defined closed operator N is normal if and only if $N^{*} N=N N^{*}$. ${ }^{1}$

Let N be formally normal in \mathfrak{N}. Since $\bar{N} \subset N^{*}$ we have $N \subset \bar{N}^{*}$, where $\bar{N}^{*}=(\bar{N})^{*}$. Thus we see that a closed symmetric operator is a formally normal operator such that $N=\bar{N}$, and a self-adjoint operator is a normal operator such that $N=\bar{N}\left(=N^{*}\right)$. If a closed symmetric operator has a normal extension in \mathfrak{K}, this extension is self-adjoint. It is known that a closed symmetric operator may not have a self-adjoint extension in \mathfrak{S}. Necessary and sufficient conditions for such extensions were given by von Neumann. ${ }^{2}$ However, until recently, conditions under which a formally normal operator N can be extended to a normal one in \mathfrak{S} were known only for certain special cases. ${ }^{3,4}$ Kilpi ${ }^{5}$ considered the problem in terms of the real and imaginary parts of N. It is the purpose of this note to characterize the normal extensions of N in a manner similar to the von Neumann solution for the symmetric case.

If N_{1} is a normal extension of a formally normal operator N in \mathfrak{N}, then it is easy to see that $N \subset N_{1} \subset \bar{N}^{*}$, and $\bar{N} \subset N_{1}^{*} \subset N^{*}$. In Theorem 1 we describe $\mathfrak{D}\left(\bar{N}^{*}\right)$ and $\mathfrak{D}\left(N^{*}\right)$ for any two operators N, \bar{N} satisfying $N \subset \bar{N}^{*}, \bar{N} \subset N^{*}$. With the aid of this result a characterization of the normal extensions N_{1} of a formally normal N in \mathfrak{W} is given in Theorem 2. It is indicated in Theorem 3 how the domains of normal extensions

[^0]can be described by abstract boundary conditions.
I would like to thank Ralph Phillips for instructive conversations during this work.

2. Domains.

Theorem 1. Let N, \bar{N} be two closed densely defined operators in a Hilbert space \mathfrak{S} such that $N \subset \bar{N}^{*}, \bar{N} \subset N^{*}$. Then

$$
\mathfrak{D}\left(\bar{N}^{*}\right)=\mathfrak{D}(N)+\mathfrak{M}, \quad \mathfrak{D}\left(N^{*}\right)=\mathfrak{D}(\bar{N})+\overline{\mathfrak{M}}
$$

where $\mathfrak{M}=\mathfrak{R}\left(I+N^{*} \bar{N}^{*}\right)$, $\overline{\mathfrak{M}}=\mathfrak{R}\left(I+\bar{N}^{*} N^{*}\right)$. Here I is the identity operator, and the sums are direct sums.

Proof. Let N, \bar{N} be any two closed densely defined operators in \mathfrak{S} such that $N \subset \bar{N}^{*}, \bar{N} \subset N^{*}$. Then $(N f, g)=(f, \bar{N} g)$ for all $f \in \mathscr{D}(N)$, $g \in \mathfrak{D}(\bar{N})$. Define an operator \mathscr{N} in the Hilbert space $\mathfrak{K}_{2}=\mathfrak{S} \bigoplus \mathscr{L}$ with domain $\mathfrak{D}(\mathscr{N})$ the set of all $\hat{f}=\left\{f_{1}, f_{2}\right\}$ with $f_{1} \in \mathfrak{D}(N), f_{2} \in \mathfrak{D}(\bar{N})$, and such that $\mathscr{N} \hat{f}=\left\{\bar{N} f_{2}, N f_{1}\right\}$. Then \mathscr{N} is closed symmetric. Indeed $\mathfrak{D}(\mathscr{N})$ is dense in $\mathfrak{S} \bigoplus \mathfrak{g}$, and, if $\hat{f}=\left\{f_{1}, f_{2}\right\}, \hat{g}=\left\{g_{1}, g_{2}\right\}$ are in $\mathfrak{D}\left(\mathscr{N}^{\sim}\right)$, we have

$$
(\mathscr{N} \hat{f}, \hat{g})=\left(\bar{N} f_{2}, g_{1}\right)+\left(N f_{1}, g_{2}\right)=\left(f_{1}, \bar{N} g_{2}\right)+\left(f_{2}, N g_{1}\right)=(\hat{f}, \mathscr{N} \hat{g})
$$

Since N and \bar{N} are closed, so is \mathscr{N}. The adjoint \mathscr{N}^{*} of \mathscr{N} has domain $\mathfrak{D}\left(\mathscr{N}^{*}\right)$ the set of all $\widehat{g}=\left\{g_{1}, g_{2}\right\}$ such that $g_{1} \in \mathscr{D}\left(\bar{N}^{*}\right), g_{2} \in \mathfrak{D}\left(N^{*}\right)$; and $\mathscr{N}^{*} \hat{g}=\left\{N^{*} g_{2}, \bar{N}^{*} g_{1}\right\}$.

We now show that the defect spaces of \mathscr{N}, namely,

$$
\begin{aligned}
& \mathfrak{F}(+i)=\left\{\hat{\phi} \in \mathfrak{D}\left(\mathscr{N}^{*}\right): \mathscr{N}^{*} \hat{\phi}=i \hat{\phi}\right\} \\
& \mathfrak{F}(-i)=\left\{\hat{\psi} \in \mathfrak{D}\left(\mathscr{N}^{*}\right): \mathscr{N}^{*} \hat{\psi}=-i \hat{\psi}\right\},
\end{aligned}
$$

have the same dimension. We have $\hat{\phi}=\left\{\phi_{1}, \phi_{2}\right\} \in \mathscr{F}(+i)$ if and only if $\phi_{1} \in \mathfrak{D}\left(\bar{N}^{*}\right), \quad \phi_{2} \in \mathfrak{D}\left(N^{*}\right), N^{*} \phi_{2}=i \phi_{1}, \bar{N}^{*} \phi_{1}=i \phi_{2}$. The latter is true if and only if $N^{*}\left(-\phi_{2}\right)=-i \phi_{1}, \bar{N}^{*} \phi_{1}=-i\left(-\phi_{2}\right)$. Thus we see that the unitary map \mathscr{U} of \mathscr{E}_{2} onto itself given by $\mathscr{U}\left\{f_{1}, f_{2}\right\}=\left\{f_{1},-f_{2}\right\}$ carries $\mathfrak{F}(-i)$ onto $\mathfrak{F}(+i)$ in an isometric way. This proves $\operatorname{dim} \mathbb{E}(+i)=\operatorname{dim} \mathbb{E}(-i)$.

We note that $\left\{\phi_{1}, \phi_{2}\right\} \in \mathscr{F}(+i)$ if and only if $\phi_{1} \in \mathfrak{D}\left(N^{*} \bar{N}^{*}\right)$, . $\left(I+N^{*} \bar{N}^{*}\right) \phi_{1}=0$, and $\phi_{2}=-i \bar{N}^{*} \phi_{1}$. Alternatively $\left\{\phi_{1}, \phi_{2}\right\} \in \mathfrak{F}(+i)$ if and only of $\phi_{2} \in \mathscr{D}\left(\bar{N}^{*} N^{*}\right),\left(I+\bar{N}^{*} N^{*}\right) \phi_{2}=0$, and $\phi_{1}=-i N^{*} \phi_{2}$. Thus we see that the algebraic dimensions of the spaces $\mathfrak{M}=\mathfrak{R}\left(I+N^{*} \bar{N}^{*}\right)$, $\overline{\mathfrak{M}}=\mathfrak{M}\left(I+\bar{N}^{*} N^{*}\right), \mathscr{E}(+i)$, and $\mathscr{E}(-i)$ are all the same. Further it is easy to see that \bar{N}^{*} maps \mathfrak{M} one-to-one onto $\overline{\mathfrak{M}}$, the inverse mapping being $-N^{*}$ restricted to $\overline{\mathfrak{M}}$.

Since $\operatorname{dim} \mathscr{E}(+i)=\operatorname{dim} \mathscr{F}(-i)$ the operator \mathscr{N}^{1} has self-adjoint
extensions in \mathfrak{K}_{2}. They are in a one-to-one correspondence with the isometries of $\mathscr{E}(-i)$ onto $\mathscr{E}(+i)$. If \mathscr{S} is a self-adjoint extension of \mathcal{N} there is a unique isometry \mathscr{V} of $\mathscr{E}(-i)$ onto $\mathscr{E}(+i)$ such that $\mathfrak{D}(\mathscr{S})=$ $\mathfrak{D}(\mathscr{N})+(\mathscr{F}-\mathscr{V})\left(\mathscr{E}(-i)\right.$, where \mathscr{F} is the identity operator on \mathfrak{K}_{2}. Let us consider that self-adjoint extension \mathscr{S} of \mathscr{N} determined in this way by the isometry $-\mathscr{U}$ restricted to $\mathscr{F}(-i)$. Then we have $\hat{h} \in \mathfrak{D}(\mathscr{S})$ if and only if $\hat{h}=\hat{f}+\hat{\psi}+\mathscr{U} \hat{\psi}$, for some $\hat{f} \in \mathfrak{D}(\mathscr{N})$, $\hat{\psi} \in \mathscr{F}(-i)$. If $\hat{h}=\left\{h_{1}, h_{2}\right\}, \hat{f}=\left\{f_{1}, f_{2}\right\}, \hat{\psi}=\left\{\psi_{1}, \psi_{2}\right\}$, this means $h_{1}=f_{1}+2 \psi_{1}, h_{2}=f_{2}$, where $f_{1} \in \mathfrak{D}(N), \psi_{1} \in \mathfrak{M}, f_{2} \in \mathfrak{I}(\bar{N})$. Thus $\mathfrak{I}(\mathscr{S})$ is the set of all $\left\{h_{1}, h_{2}\right\}$ with $h_{1} \in \mathfrak{D}(N)+\mathfrak{M}, h_{2} \in \mathfrak{D}(\bar{N})$. Now the operator \mathscr{S}_{1} with domain all $\left\{h_{1}, h_{2}\right\}$ with $h_{1} \in \mathfrak{D}\left(\bar{N}^{*}\right), h_{2} \in \mathfrak{D}(\bar{N})$, and such that $\mathscr{S}_{1}\left\{h_{1}, h_{2}\right\}=$ $\left\{\bar{N} h_{2}, \bar{N} * h_{1}\right\}$, is readily seen to be a self-adjoint operator in \mathscr{S}_{2} satisfying $\mathscr{N}^{-} \subset \mathscr{S} \subset \mathscr{S}_{1} \subset N^{*}$. Hence $\mathscr{S}=\mathscr{S}_{1}$, and we see that $\mathscr{D}\left(\bar{N}^{*}\right)=$ $\mathfrak{D}(N)+\mathfrak{M}$. The sum is a direct one, for if $f \in \mathfrak{D}(N) \cap \mathfrak{M}, \quad 0=$ $\left(I+N^{*} \bar{N}^{*}\right) f=f+N^{*} N f$ implying $0=\left(f+N^{*} N f, f\right)=\|f\|^{2}+\|N f\|^{2}$, or $f=0$.

A similar argument shows that the self-adjoint extension \mathscr{S} of \mathscr{N} determined by the isometry \mathscr{V}^{\prime} equal to \mathscr{U} restricted to $\mathscr{F}(-i)$ has domain the set of all $\left\{h_{1}, h_{2}\right\}$ with $h_{1} \in \mathfrak{D}(N), h_{2} \in \mathfrak{D}(\bar{N})+\overline{\mathfrak{M}}$. This operator is equal to the self-adjoint extension of \mathscr{N}^{2} having domain the set of all $\left\{h_{1}, h_{2}\right\}$ with $h_{1} \in \mathfrak{D}(N), h_{2} \in \mathfrak{D}\left(N^{*}\right)$, implying that $\mathfrak{D}\left(N^{*}\right)=$ $\mathfrak{D}(\bar{N})+\overline{\mathfrak{M}}$, a direct sum. This completes the proof of Theorem 1.

Note added in proof. The results of Theorem 1 can be obtained more directly, although some of the discussion given in the proof above is required for our proof of Theorem 2. Let $\mathfrak{G}(T)$ denote the graph of an operator T. If A, B are any two closed operators with dense domain, and $A \subset B$, then it is easy to see that $\mathscr{G}(B) \ominus \mathscr{(G)}(A)$ is the set of all $\{u, B u\} \in \mathbb{G}(B)$ such that $u \in \mathfrak{N}\left(I+A^{*} B\right)$. Since

$$
\mathfrak{G}(B)=\mathscr{G}(A) \oplus[\mathscr{G}(B) \ominus \mathscr{G}(A)]
$$

we have $\mathfrak{D}(B)=\mathfrak{D}(A)+\mathfrak{N}\left(I+A^{*} B\right)$, a direct sum. This implies Theorem 1.

3. Normal extensions.

Theorem 2. If N_{1} is a normal extension of a formally normal operator N in a Hilbert space $\underset{\mathscr{C}}{ }$, then there exists a unique linear map W of \mathfrak{M} onto itself satisfying
(i) $W^{2}=I$,
(ii) $\|\phi\|^{2}+\left\|\bar{N}^{*} \phi\right\|^{2}=\|W \phi\|^{2}+\left\|\bar{N}^{*} W \phi\right\|^{2},(\phi \in \mathfrak{M})$,
(iii) $(I-W) \mathfrak{M}=\bar{N}^{*}(I+W) \mathfrak{M}$,
(iv) $\left\|\bar{N}^{*}(I-W) \phi\right\|=\left\|N^{*}(I-W) \phi\right\|,(\phi \in \mathfrak{M})$.

In terms of W we have

$$
\begin{equation*}
\mathfrak{D}\left(N_{1}\right)=\mathfrak{D}(N)+(I-W) \mathfrak{M}, \quad N_{1} f=\bar{N}^{*} f, \quad\left(f \in \mathfrak{D}\left(N_{1}\right)\right) \tag{1}
\end{equation*}
$$

Conversely, if W is any linear map of \mathfrak{M} onto \mathfrak{M} satisfying (i)(iv) above, then the operator N_{1} defined by (1) is a normal extension of N in \mathfrak{K}.

Remarks. Condition (i) implies that $P_{1}=(1 / 2)(I+W)$ and $P_{2}=$ $(1 / 2)(I-W)$ are projections (not necessarily orthogonal) in \mathfrak{M}, and \mathfrak{M} is the direct sum of $\mathfrak{M}_{1}=P_{1} \mathfrak{M}$ and $\mathfrak{M}_{2}=P_{2} \mathfrak{M}$. If $\phi \in \mathfrak{M}$, then $\phi \in \mathfrak{M}_{1}$ if and only if $W \phi=\phi$, and $\phi \in \mathfrak{M}_{2}$ if and only if $W \phi=-\phi$.

Condition (ii) implies that if $\phi, \phi^{\prime} \in \mathfrak{M}$ then

$$
\left(\phi, \phi^{\prime}\right)+\left(\bar{N}^{*} \phi, \bar{N}^{*} \phi^{\prime}\right)=\left(W \phi, W \phi^{\prime}\right)+\left(\bar{N}^{*} W \phi, \bar{N}^{*} W \phi^{\prime}\right) .
$$

If $\phi \in \mathfrak{M}_{1}, \phi^{\prime} \in \mathfrak{M}_{2}$ we see that $\left(\phi, \phi^{\prime}\right)+\left(\bar{N}^{*} \phi, \bar{N}^{*} \phi^{\prime}\right)=0$, which means that the graph of \bar{N}^{*} restricted to \mathfrak{M}_{1} is orthogonal to the graph of \bar{N}^{*} restricted to \mathfrak{M}_{2}.

Since \bar{N}^{*} is one-to-one from \mathfrak{M} onto $\overline{\mathfrak{M}}$, condition (iii) implies that $\mathfrak{M}_{2}=\bar{N} \mathbb{M}_{1} \subset \mathfrak{M} \cap \overline{\mathfrak{M}}$, and \mathfrak{M}_{2} has the same algebraic dimension as \mathfrak{M}_{1}. In particular the dimension of \mathfrak{M} must be even.

Proof of Theorem 2. Let N_{1} be a normal extension of the formally normal operator N in \mathfrak{L}. Then we have $N \subset N_{1} \subset \bar{N}^{*}, \bar{N} \subset N_{1}^{*} \subset N^{*}$. Let the operator \mathscr{N}_{1} in \mathfrak{S}_{2} be defined with domain all $\left\{h_{1}, h_{2}\right\}$ such that $h_{1} \in \mathfrak{D}\left(N_{1}\right), h_{2} \in \mathfrak{D}\left(N_{1}^{*}\right)$, and so that $\mathscr{N}_{1}\left\{h_{1}, h_{2}\right\}=\left\{N_{1}^{*} h_{2}, N_{1} h_{1}\right\}$. Then it is easily seen that \mathscr{N}_{1} is a self-adjoint extension of the operator \mathscr{N} defined in the proof of Theorem 1.

Let \mathscr{N}_{1} be any self-adjoint extension of \mathscr{N}, and let \mathscr{V}^{\prime} be the unique isometry of $\mathscr{E}(-i)$ onto $\mathscr{E}(+i)$ such that $\mathfrak{D}\left(\mathscr{N}_{1}^{\prime}\right)=\mathfrak{D}(\mathcal{N})+$ $(\mathscr{F}-\mathscr{V}) \mathscr{F}(-i)$. Then we may write $\mathscr{V}^{n}=\mathscr{W} \mathscr{H}$, where \mathscr{U} is the isometry defined on $\mathscr{F}(-i)$ to $\mathscr{F}(+i)$ by $\mathscr{U}\left\{\psi_{1}, \psi_{2}\right\}=\left\{\psi_{1},-\psi_{2}\right\}$, and \mathscr{W} is a unitary map of $\mathfrak{F}(+i)$ onto itself. For $\left\{\phi_{1}, \phi_{2}\right\} \in \mathscr{F}(+i)$ let $\mathscr{W}\left\{\phi_{1}, \phi_{2}\right\}=\left\{\chi_{1}, \chi_{2}\right\}$. Then $\phi_{1}, \chi_{1} \in \mathfrak{M}$ and $\phi_{2}=-i \bar{N}^{*} \phi_{1}, \chi_{2}=-i \bar{N}^{*} \chi_{1}$. Define the map W of \mathfrak{M} into \mathfrak{M} by $W \phi_{1}=\chi_{1}$. Then W is linear, and since \mathscr{W} is unitary, W is onto, and

$$
\left\|\left\{\phi,-i \bar{N}^{*} \phi\right\}\right\|^{2}=\left\|\left\{W \phi,-i \bar{N}^{*} W \phi\right\}\right\|^{2}, \quad(\phi \in \mathfrak{M}),
$$

or

$$
\begin{equation*}
\|\phi\|^{2}+\left\|\bar{N}^{*} \phi\right\|^{2}=\|W \phi\|^{2}+\left\|\bar{N}^{*} W \phi\right\|^{2}, \quad(\phi \in \mathfrak{M}) \tag{2}
\end{equation*}
$$

Conversely, suppose W is a linear map of \mathfrak{M} onto \mathfrak{M} satisfying (2). Then for $\hat{\phi}=\left\{\phi,-i \bar{N}^{*} \phi\right\} \in \mathscr{F}(+i)$ define $\mathscr{\mathscr { V }} \hat{\phi}=\left\{W \phi,-i \bar{N}^{*} W \phi\right\}$. Then \mathscr{W}^{-}maps $\mathbb{F}(+i)$ onto $\mathbb{E}(+i)$ and (2) implies that \mathscr{W} is unitary. Thus we see that the self-adjoint extensions \mathscr{N}_{1} of \mathscr{N} are in a one-to-one correspondence with the linear maps W of \mathfrak{M} onto \mathfrak{M} satisfying (2). We have $\hat{h}=\left\{h_{1}, h_{2}\right\} \in \mathscr{D}\left(\mathscr{N}_{1}\right)$ if and only if \hat{h} can be represented in
the form $\hat{h}=\hat{f}+(\mathscr{F}-\mathscr{Y} \mathscr{U}) \hat{\psi}$, where $\hat{f}=\left\{f_{1}, f_{2}\right\} \in \mathscr{D}(\mathcal{N}), \quad \hat{\psi}=$ $\left\{\phi, i \bar{N}^{*} \phi\right\} \in \mathbb{F}(-i)$. This means $h_{1}=f_{1}+(I-W) \phi, h_{2}=f_{2}+i \bar{N}^{*}(I+W) \phi$, where $f_{1} \in \mathfrak{D}\left(V^{\prime}\right), f_{2} \in \mathfrak{D}(\bar{N}), \phi \in \mathfrak{M}$.

The self-adjoint extension \mathscr{N}_{1} arising from the normal extension N_{1} of N has the property that if $\hat{h}=\left\{h_{1}, h_{2}\right\} \in \mathfrak{D}\left(-l_{1}\right)$ then so does $\mathscr{P}_{1} \hat{h}=\left\{h_{1}, 0\right\}$. It will now be shown that a self-adjoint extension \mathscr{N}_{1} of \mathscr{N} has this property if and only if the W corresponding to \mathscr{N}_{1} satisfies $W^{2}=I$. First suppose $\mathscr{P}_{1} \hat{h} \in \mathscr{D}\left(\mathscr{N}_{1}^{\prime}\right)$ for all $\hat{h} \in \mathscr{D}\left(\mathscr{N}_{1}\right)$. Letting $h_{1}=f_{1}+(I-W) \phi, h_{2}=f_{2}+i \bar{N}^{*}(I+W) \phi$ as above, we see that this implies that there exist elements $f_{1}^{\prime} \in \mathfrak{D}(N), f_{2}^{\prime} \in \mathfrak{D}(\bar{N}), \phi^{\prime} \in \mathfrak{M}$, such that

$$
\begin{gathered}
f_{1}+(I-W) \phi=f_{1}^{\prime}+(I-W) \phi^{\prime} \\
0=f_{2}^{\prime}+i \bar{N}^{*}(I+W) \phi^{\prime}
\end{gathered}
$$

Since $\mathfrak{D}(N)+\mathfrak{M}$ and $\mathfrak{D}(\bar{N})+\overline{\mathfrak{M}}$ are direct sums these equations imply that $f_{1}=f_{1}^{\prime},(I-W) \phi=(I-W) \phi^{\prime}, f_{2}^{\prime}=0$, and $\bar{N}^{*}(I+W) \phi^{\prime}=0$. The last equation implies $(I+W) \phi^{\prime}=0$ since \bar{N}^{*} is one-to-one from \mathfrak{M} to $\overline{\mathfrak{M}}$. Thus we have

$$
\begin{align*}
\phi^{\prime}+W \phi^{\prime} & =0 \tag{3}\\
\phi^{\prime}-W \phi^{\prime} & =\phi-W \phi
\end{align*}
$$

from which results $2 \phi^{\prime}=(I-W) \phi$. Returning to the first equation in (3) we obtain $(I+W)(I-W) \phi=\left(I-W^{2}\right) \phi=0$ for all $\phi \in \mathfrak{M}$, showing that $W^{2}=I$. Conversely, suppose $W^{2}=I$ on \mathfrak{M}. Then if $\hat{h}=\left\{h_{1}, h_{2}\right\} \in$ $\mathfrak{D}\left(\mathscr{H}_{1}\right), \quad h_{1}=f_{1}+(I-W) \phi, \quad h_{2}=f_{2}+i \bar{N}^{*}(I+W) \phi, \quad$ define $\quad \phi^{\prime}=$ $(1 / 2)(I-W) \phi$. Then equations (3) will be valid, implying that

$$
\begin{gathered}
f_{1}+(I-W) \phi=f_{1}+(I-W) \phi^{\prime} \\
0=0+i \bar{N}^{*}(I+W) \phi^{\prime}
\end{gathered}
$$

which shows that $\mathscr{P}_{1}^{P} \hat{h}=\left\{h_{1}, 0\right\} \in \mathscr{D}\left(\mathscr{N}_{1}\right)$.
If \mathscr{N}_{1}^{1} is any self-adjoint extension of \mathscr{N} for which $W^{2}=I$, then $\mathfrak{D}\left(\mathscr{N}_{1}\right)$ consists of those $\left\{h_{1}, h_{2}\right\}$ such that $h_{1}=f_{1}+(I-W) \phi, h_{2}=f_{2}+$ $i \bar{N}^{*}(I+W) \phi^{\prime}$, for some $f_{1} \in \mathfrak{D}(N), f_{2} \in \mathfrak{D}(\bar{N})$, and $\phi, \phi^{\prime} \in \mathfrak{M}$. The point is that ϕ and ϕ^{\prime} need not now be the same element. Indeed, if h_{1}, h_{2} have such representations let $\phi^{\prime \prime}=(1 / 2)(I-W) \phi+(1 / 2)(I+W) \phi^{\prime}$. Then $(I-W) \phi=(I-W) \phi^{\prime \prime}$, and $(I+W) \phi^{\prime}=(I+W) \phi^{\prime \prime}$, which implies that $\left\{h_{1}, h_{2}\right\} \in \mathfrak{D}\left(\mathscr{N}_{1}\right)$. For such an \mathscr{N}_{1} define N_{1} to be the operator in \mathfrak{S}_{2} with $\mathfrak{D}\left(N_{1}\right)=\mathfrak{D}(N)+(I-W) \mathfrak{M}$, and $N_{1} h_{1}=\bar{N}^{*} h_{1}$ for $h_{1} \in \mathfrak{D}\left(N_{1}\right)$. Similarly define N_{2} on $\mathfrak{D}\left(N_{2}\right)=\mathfrak{D}(\bar{N})+\bar{N}^{*}(I+W) \mathfrak{M}$ by $N_{2} h_{2}=N^{*} h_{2}$ for $h_{2} \in$ $\mathfrak{D}\left(N_{2}\right)$. In terms of N_{1} and N_{2} we have $\left\{h_{1}, h_{2}\right\} \in \mathfrak{D}\left(\mathscr{N}_{1}\right)$ if and only if $h_{1} \in \mathfrak{D}\left(N_{1}\right), h_{2} \in \mathfrak{I}\left(N_{2}\right)$, and $\mathscr{N}_{1}\left\{h_{1}, h_{2}\right\}=\left\{N_{2} h_{2}, N_{1} h_{1}\right\}$. A short computation shows that $\mathfrak{I}\left(\mathscr{N}_{1}^{*}\right)$ is the set of all $\left\{g_{1}, g_{2}\right\}$ such that $g_{1} \in \mathfrak{D}\left(N_{2}^{*}\right)$,
$g_{2} \in \mathfrak{D}\left(N_{1}^{*}\right)$, and $\mathscr{N}_{1}^{*} *\left\{g_{1}, g_{2}\right\}=\left\{N_{1}^{*} g_{2}, N_{2}^{*} g_{1}\right\}$. But since $\mathscr{N}_{1}=\mathscr{N}_{1}^{*}$ we obtain $N_{2}=N_{1}^{*}$. Hence $\mathfrak{D}\left(\mathscr{N}_{1}\right)$ consists of all $\left\{h_{1}, h_{2}\right\}$ with $h_{1} \in \mathfrak{D}\left(N_{1}\right)$, $h_{2} \in \mathfrak{D}\left(N_{1}^{*}\right)$, and $\mathscr{N}_{1}\left\{h_{1}, h_{2}\right\}=\left\{N_{1}^{*} h_{2}, N_{1} h_{1}\right\}$. Here

$$
\begin{align*}
\mathfrak{D}\left(N_{1}\right) & =\mathfrak{D}(N)+(I-W) \mathfrak{M}, \tag{4}\\
\mathfrak{D}\left(N_{1}^{*}\right) & =\mathfrak{D}(\bar{N})+\bar{N}^{*}(I+W) \mathfrak{M},
\end{align*}
$$

and $N \subset N_{1} \subset \bar{N}^{*}, \bar{N} \subset N_{1}^{*} \subset N^{*}$. Thus any self-adjoint extension \mathscr{N}_{1} of \mathscr{N} having the property that $W^{2}=I$ determines a unique operator N_{1} in \mathfrak{S} as above, which is easily seen to be closed. In particular, if N_{1} is a normal extension of N, then the equalities (4) hold.

It remains to characterize those \mathscr{N}_{1} such that $W^{2}=I$ for which N_{1} is normal, that is $\mathfrak{D}\left(N_{1}\right)=\mathfrak{D}\left(N_{1}{ }^{*}\right)$ and $\left\|N_{1} h\right\|=\left\|N_{1}^{*} h\right\|, h \in \mathfrak{D}\left(N_{1}\right)$. We claim that this is true if and only if

$$
\begin{equation*}
(I-W) \mathfrak{M}=\bar{N}^{*}(I+W) \mathfrak{M}, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\bar{N}^{*}(I-W) \phi\right\|=\left\|N^{*}(I-W) \phi\right\|, \quad(\phi \in \mathfrak{M}) \tag{6}
\end{equation*}
$$

If (5) is valid then (4) implies that $\mathfrak{D}\left(N_{1}\right)=\mathfrak{D}\left(N_{1}{ }^{*}\right)$, since $\mathfrak{D}(N)=\mathfrak{D}(\bar{N})$. Let $h \in \mathfrak{D}\left(N_{1}\right), h=f+(I-W) \phi, f \in \mathfrak{D}(N), \phi \in \mathfrak{M}$. Then $(I-W) \phi \in$ $\mathfrak{M} \cap \overline{\mathfrak{M}}$, and we have $N_{1} h=N f+\bar{N}^{*}(I-W) \phi, N_{1}^{*} h=\bar{N} f+N^{*}(I-W) \phi$. Thus

$$
\begin{aligned}
\left\|N_{1} h\right\|^{2}=\|N f\|^{2} & +\left(N f, \bar{N}^{*}(I-W) \phi\right)+\left(\bar{N}^{*}(I-W) \phi, N f\right) \\
& +\left\|\bar{N}^{*}(I-W) \phi\right\|^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|N_{1}^{*} h\right\|^{2}=\|\bar{N} f\|^{2} & +\left(\bar{N} f, N^{*}(I-W) \phi\right)+\left(N^{*}(I-W) \phi, \bar{N} f\right) \\
& +\left\|N^{*}(I-W) \phi\right\|^{2}
\end{aligned}
$$

Since N is formally normal $\|N f\|=\|\bar{N} f\|$. Moreover $\bar{N}^{*}(I-W) \phi \in \overline{\mathfrak{M}}$ implies that $\left(N f, \bar{N}^{*}(I-W) \phi\right)=\left(f, N^{*} \bar{N}^{*}(I-W) \phi\right)=-(f,(I-W) \phi)$, and similarly $\left(\bar{N} f, N^{*}(I-W) \phi\right)=-(f,(I-W) \phi)$. Using (6) we see that $\left\|N_{1} h\right\|=\left\|N_{1}^{*} h\right\|$ for all $h \in \mathfrak{D}\left(N_{1}\right)$, proving that N_{1} is normal.

Conversely, suppose N_{1} is normal. Then (6) is clearly valid, for $(I-W) \phi \in \mathfrak{D}\left(N_{1}\right)$ by (4). Suppose $h \in \mathfrak{D}\left(N_{1}\right)=\mathfrak{D}\left(N_{1}^{*}\right)$ and $h=f+$ $(I-W) \phi=f^{\prime}+\bar{N}^{*}(I+W) \phi^{\prime}$ with $f, f^{\prime} \in \mathfrak{D}(N), \phi, \phi^{\prime} \in \mathfrak{M}$. We show that $f=f^{\prime}$ and $(I-W) \phi=\bar{N}^{*}(I+W) \phi^{\prime}$. Applying this to $f=0$ we obtain $(I-W) \mathfrak{M} \subset \bar{N}^{*}(I+W) \mathfrak{M}$, and with $f^{\prime}=0$ we get $\bar{N}^{*}(I+W) \mathfrak{M} \subset(I-W) \mathfrak{M}$, proving (5). Now for any $g \in \mathfrak{D}(N)$ we have $\left(N_{1} h, N_{1} g\right)=\left(N_{1}^{*} h, N_{1}^{*} g\right)$, or

$$
(N f, N g)+\left(\bar{N}^{*}(I-W) \phi, N g\right)=\left(\bar{N} f^{\prime}, \bar{N} g\right)-\left((I+W) \phi^{\prime}, \bar{N} g\right)
$$

Since $\left(\bar{N} f^{\prime}, \bar{N} g\right)=\left(N f^{\prime}, N g\right)$ and $\quad\left(\bar{N}^{*}(I-W) \phi, N g\right)=-((I-W) \phi, g)$, this yields

$$
(N f, N g)-((I-W) \phi, g)=\left(N f^{\prime}, N g\right)-\left(\bar{N}^{*}(I+W) \phi^{\prime}, g\right)
$$

or

$$
\left(N\left(f-f^{\prime}\right), N g\right)+\left(\bar{N}^{*}(I+W) \phi^{\prime}-(I-W) \phi, g\right)=0
$$

But $\bar{N}^{*}(I+W) \phi^{\prime}-(I-W) \phi=f-f^{\prime}$, and hence

$$
\left(N\left(f-f^{\prime}\right), N g\right)+\left(f-f^{\prime}, g\right)=0
$$

for all $g \in \mathfrak{D}(N)$. Letting $g=f-f^{\prime}$ we obtain $f=f^{\prime}$ as desired. This completes the proof of Theorem 2.
4. Abstract boundary conditions. For $u \in \mathfrak{D}\left(\bar{N}^{*}\right), v \in \mathfrak{D}\left(N^{*}\right)$ define $\langle u v\rangle=\left(\bar{N}^{*} u, v\right)-\left(u, N^{*} v\right)$.

Theorem 3. If N_{1} is a normal extension of the formally normal operator N such that $\mathfrak{D}\left(N_{1}\right)=\mathfrak{D}(N)+(I-W) \mathfrak{M}$, then $\mathfrak{D}\left(N_{1}\right)$ may be described as the set of all $u \in \mathfrak{D}\left(\bar{N}^{*}\right)$ satisfying $\langle u \alpha\rangle=0$ for all $\alpha \in(I-W) \mathfrak{M} .{ }^{6}$

Remark. For differential operators the conditions $\langle u \alpha\rangle=0$ become boundary conditions. They are self-adjoint ones, that is, $\left\langle\alpha \alpha^{\prime}\right\rangle=0$ for all $\alpha, \alpha^{\prime} \in(I-W) \mathfrak{M}$. Indeed $\alpha, \alpha^{\prime} \in \mathfrak{D}\left(N_{1}\right)=\mathfrak{D}\left(N_{1}^{*}\right)$ and for any $\alpha \in \mathfrak{D}\left(N_{1}\right), \quad \alpha^{\prime} \in \mathfrak{I}\left(N_{1}^{*}\right) \quad$ we have $\left(\bar{N}^{*} \alpha, \alpha^{\prime}\right)=\left(N_{1} \alpha, \alpha^{\prime}\right)=\left(\alpha, N_{1}^{*} \alpha^{\prime}\right)=$ $\left(\alpha, N^{*} \alpha^{\prime}\right)$.

Proof of Theorem 3. If $u \in \mathfrak{D}\left(N_{1}\right), \alpha \in(I-W) \mathfrak{M} \subset \mathfrak{D}\left(N_{1}^{*}\right)$, the above argument shows that $\langle u \alpha\rangle=0$. Conversely suppose $u \in \mathscr{D}\left(\bar{N}^{*}\right)$ and $\langle u \alpha\rangle=0$ for all $\alpha \in(I-W) \mathfrak{M}$. Let $u=f+(I-W) \phi+(I+W) \phi$, where $f \in \mathfrak{D}(N), \phi \in \mathfrak{M}$. We note that $\langle>$ is linear in the first spot, and $f+(I-W) \phi \in \mathfrak{D}\left(N_{1}\right)$. Thus $\langle(I+W) \phi \alpha\rangle=0$ for all $\alpha \in(I-W) \mathfrak{M}$. Let $\alpha=\bar{N}^{*}(I+W) \phi \in(I-W) \mathfrak{M}$, since $(I-W) \mathfrak{M}=\bar{N}^{*}(I+W) \mathfrak{M}$. Then

$$
\begin{aligned}
0=\left\langle(I+W) \phi \bar{N}^{*}(I+W) \phi\right\rangle= & \left(\bar{N}^{*}(I+W) \phi, \bar{N}^{*}(I+W) \phi\right) \\
& +((I+W) \phi,(I+W) \phi),
\end{aligned}
$$

which proves that $(I+W) \phi=0$, and hence $u \in \mathfrak{D}\left(N_{1}\right)$ as desired.
University of California,
Los Angeles

[^1]
[^0]: Received January 13, 1960. This work was supported in part by the National Science Foundation and the Office of Naval Research.
 ${ }^{1}$ See, e.g., B. v. Sz. Nagy, Spektraldarstellung linearer Transformationen des Hilberts. chen Raumes, Ergeb. Math., 5 (1942), 33.
 ${ }^{2}$ Ibid; p. 39.
 ${ }^{3}$ Y. Kilpi, "Über lineare normale Transformationen im Hilbertschen Raum", Annales Academiae Scientiarum Fennicae, Series A-I, No. 154 (1953).
 ${ }^{4}$ R. H. Davis, "Singular normal differential operators", Technical Report No. 10, Department of Mathematics, University of California, Berkeley, Calif., (1955).
 ${ }^{5}$ Y. Kilpi, "Über das komplexe Momentenproblem", Annales Academiae Scientiarum Fennicae, Series A-I, No. 236 (1957).

[^1]: ${ }^{6}$ A result similar to Theorem 3 appears in the report by Davis (4) for the case when $\operatorname{dim}\left(\mathfrak{D}\left(\bar{N}^{*}\right) / \mathfrak{D}(N)\right)<\infty$.

