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Introduction* If G is a multiplicative group with elements x,y,
we define the commutator (x, y) by (x, y) = x~λy~λxy and, inductively for
length n, (xlf , xn-19 xn) = ((x19 , xn-i), #n) We also use the notation
(a?, •••,#; 2, , w) for the commutator ((a?, , y), •••,(£, ι w)).
For each positive integer n9 let Gn be the subgroup of G generated by
all commutators of length n.

A group, G, is of exponent 4 in case x* = 1 for every x in G but
y2 Φ 1 for some # in G. Let .F be a free group of rank k, and let F4

be the subgroup generated by fourth powers of elements of F. Let
B(k) — F/F\ Then B{k) is clearly a group of exponent 4 on & gener-
ators. Moreover, every group of exponent 4 on k generators is a homo-
morphic image of B(k).

I. N. Sanov has shown that B(k) is finite. (See [2], pp. 324-325,
or [3]). Unfortunately, his proof gives very little additional information
about B(k). The present paper is devoted to the study of relations be-
tween commutators in the group B(k), a consequence of the relations
obtained being that B(k)Bk = 1.

Preliminaries* Let G be a group of exponent 4, and let α, 6, be
elements of G. Then

( 1 ) (α, b)2 == (α, 6, δ, δ)(α, 6, 6, a)(a, 6, α, α) mod G4

( 2 ) (α, δ, α)2 = (α, δ, α, α, α) = (α, δ, α; α, δ)

( 3 ) (α, δ, c) = (δ, c, α)(c, α, δ) mod G4

( 4 ) (α, δ; c, d) = (a, c; δ, cϊ) (α, d; δ, c) mod G5

( 5 ) (α, δ; c, d; / ) = (α, d; c, /; δ)(α, /; c, δ; d) mod G6

where the bold-face type in (5) has no significance other than to point
out which entries are left fixed while the others are cyclicly permuted—
whenever bold-face type appears in a computation an application of (5)
is about to be made. The relations (1) and (2) can be shown to hold in
J5(2); hence they certainly hold in any group, G, of exponent 4. Relation
(3) is simply the Jacobi identity (which holds in any group) adapted to
exponent 4. Relations (4) and (5) were proved in [4] for the case in
which the entries are of order 2, but the proofs clearly go through
without this restriction, since in proving the relations we are simply
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looking at the first significant terms of (abed)4 and (abedf)4 as collected
by P. HalΓs process. It should be noted that these relations are
' 'identical'' in the sense that they hold for every choice of a, b, c, d
and / in G. This property gives us the freedom of substitution which
we shall use later.

The following result, which appeared in a slightly different form as
the Corollary to Lemma 3.2 in [4], is easily proved using (1) and (3).

(A). Let G be a group of exponent 4. Let

C = (χlf , χif a, xi+1, , xn^)

where xlf , xn-λ and a are in G. Then, modulo Gn+1, C is a product of
commutators of the form (a, ylf , yt, χt+19 , xn-λ), where ylf , 2/«
are xlf , xt in some order.

Finally, we need to know that if a and b are the generators of
B(2), then B(2)5 is generated by (b, a, a; b, a) and (b, a, b; b, a), and
B(2)6 = 1. These results may be verified directly or deduced from
Burnside's original work in [1].

Throughout this paper we shall be concerned with the relations
between commutators in B(k). Our first lemma gives us a method of
reducing our problems to a few relatively tractable cases.

LEMMA 1. Suppose (x19 •••,#„) is a commutator of length n in a
group, G, of exponent 4. If one of x3, , xn is a and one b, then,
modulo Gn+1, (x19 , xn) is a product of commutators of length n of
the following four types:

( i ) (x,y, . . . , α , 6, •••)

(ii) (x,y, •••,&, a, •••)

(iii) (x, y, , a, z, b)

(iv) (x, y, , 6, z, a).

Loosely stated, Lemma 1 says that we may bring a and b more or
less together and keep them out of the first two positions.

Proof of Lemma 1. Observe first that we can rewrite (3) as

(a, b, c) = (a, c, b)(a; b, c) mod G4.

Using this form and working modulo GΊ we have

(x, y, a, z, b, w) = (x, y, a, b, z, w) (x, y, a; b, z; w)

= (xf y, a, b, z, w)(x, y, z; b, w; a)(x, y, w; b, a; z)

ΞΞ (x, y, a, b, z, w)(x, y, z, b, w, a)(x, y, z, w, b, a)

-(x, y, w, b, a, z)(x, y, w, a, b, z) .
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Let G(n, a, b) be the (normal) subgroup of G generated by Gn+1 and
all commutators of length n of types (i) and (ii). Let G*(n, α, δ) be the
(normal) subgroup of G generated by G(n, a, b) and all commutators of
length n of types (iii) and (iv). Then certainly if w is in G(n, a, b) and
g is in G, (w, g) is in G(n + 1, α, δ), and by the relation just proved, if
z is in G*(n, α, δ), then (z, g) is in G*(n + 1, α, 6). Thus it will be suf-
ficient to prove the lemma under the assumption that xn is either a
or b (say b).

We have reduced the problem to showing that if C has length n
and if C = (xί9 x2, , xt9 a, , 6), then C is in G*(n, α, b). If
2 <£ w — i ^ 3, then C is in G*(w, α, 6). We proceed by induction on
n — i. Suppose for induction that for some j ^ 4 and all w ^ i + 2,
C is in G*(n, α, 6) whenever n — ί <j. We shall show that if n — ΐ = i,
then C is in G*(w, α, 6), so that by finite induction we shall have C in
G*(n, a, b) for all i such that 2 ^ n — ί ^ n — 2, i.e., such that
2 ^ i ^ n — 2. Thus the lemma will be proved.

Let i = n — j . By the inductive assumption and (3) we have,
modulo G*(n, α, 6),

where X = (xlf , a?4), and where A = (a, , a?n_4) if n — 4 > i but
A = α if ^ — 4 = ΐ . Now, modulo Gn + 1, using (4), (3) and (5),

(A, Xι) A, xn-3m> %n-2) o) = (A, ^w-3; A, ^έ; %n-2) b)\xiy xns) A, X.) xn-2Ί o)

j Xi9 JL\ Oy Xn-z\ Xn—2) ( Ά , Xί, 0] Xn-2> %n—3> -Λ- /

•(^4., -Λ., X^J 0 , Xn—z't Xn—2) \A-j -X., 0] Xn—2> ffln—z' %i)

But by the inductive assumption (X, xn-z, xn-2', A, xt; b), (A, xi9 b; xn-2, wn-z'> X)$
(xt, xn-3, b; A, xn-2, X) and (A, b; a?n_3, xi9 X; xn^2) are all in G*(n9 a, b).
Further,

(A, Xi9 X) 0, Xn-2> Xn-2)\A9 X, Xι) 0, Xn-z) Xn-2)

= (X, xt9 A; bf xn-,; xn-2) mod Gn+1 .

Thus, modulo G*(n9 a, 6),

(Xy Xl'y Ay X n-£ Xn~2Ί 0)

y Jί.y 0] Xn-2j X<n-3> %i)

L, Xly Xn-27 ^y Λ.\ X n-%)

•(A, X; xn.2y xn-Zy b; xt)(xn-29 xn-ύ A, X; δ; a O
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— \Af 0) Xn-2, X<n—3f %i'f **-)\Af Xι) Xn—2t %n—ZJ •**-'* 0)

*\%n-2i Λ.f A, 0) XW_3J X ί)(Xw_2* b] A, Wn-ii X> %ί)

— \%n-2> o; A, xns) X] Xί)

~ \χn-2> bf A, Xns't Xi', X)\xn-2, o; Ay xn-3*f X, Xί)

= {xn_2, Xn-*; A, xt; b; X)(xn-2, xt; A, b; a?n_8; X)

•(αv-a, A; X, xi9 a?n_8; δ)(X, xt, xn-2; 6, #w_3; A)

Hence, (x19 x2, , xi9 a, , α?w_3, α?n_2, b) is in G*(w, α, 6), as desired.
Thus the lemma is proved.

An immediate consequence of Lemma 1 is the following.

COROLLARY. If C — (x19 •••,$») and if two of x3, , xn are a, then
modulo Gn+1, C is a product of commutators of length n of the forms:

( i ) (x, y , • • - , ( * , α , •••)

( i i ) (x,y, *--,a,z,a) .

We next observe that, using (1),

(xlf ••-,&«> α 2 ) = to, •••,««, α ) 2 ( ^ , , xm, α , α )
= (»i, •••,««,», α) mod G m + 3 .

H e n c e ,

( 6 ) {x19 , x ^ α, α, α; i + 1, , x n ) = (ajj, •••,»„ α 2 , x ί + 1 , •••,«„)

m o d u l o ( τ w + 3 .
W e m a y n o w p r o v e t h e f o l l o w i n g u s e f u l r e s u l t .

LEMMA 2. Let G be a group of exponent 4, and let (x19 •• 9xn) be

a commutator of length n in elements of G. If some three of xZ9 , xn

are a, then modulo Gn+19 (x19 •••,»„) i>s a product of commutators of

the forms:

( i ) (Vi, 2/2, 9 yn-*> α> «» a)

( ϋ ) (Vi, 2/2, " , l/n-4, α, α, yn_3, α) .

Proof. We first derive two shifting relations. Using (1) and (3)
we obtain modulo G7,

(a?, 2/, α, α, α, «) Ξ ((X, y, α)2, «) = (x, y9 a, zf Ξ (X, y; a, zf{x, y, z9 of

= (x, y, z9 a)2 = (x, 1/, 2, α, α, α) .

Hence,
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(7 ) (x, y, a, a, α, z) = (x, y, z, α, α, a) mod G7 .

Thus, modulo longer commutators, a string of three α's can be shifted
to the right.

We also have, modulo G7,

{x, y, a, a, z, a) = (x9 y, α, z, a, a) (x, y, a; z, a; a) == (x, y, a, z, a, a) .

Thus

( 8 ) (x, y9 a, z, a, a) = (x, y, a, a, z, a) mod G7 .

Further, modulo G8,

(x, y, a, a, z, α, w) = (x, y, a, a, a, z, w) (x, y, a, a; a, z; w)

= {%> V, a, a, a, z, w) (x, y, a2; α, z; w)

ΞΞ (x, y, a, α, α, z, w)(x, y, z; a, w; a2)

= (x, y, a, a, a, z, w) (x, y, z, a, w, a, a)(x, y, z, w, a, a, a) .

Applying (7) and (8) we get

( 9) (x, y, α, α, z, α, w) Ξ= (X, y, z, a, a, w, a) mod G8 .

Thus, modulo longer commutators, a trio of α's with one gap may be
shifted to the right.

It is clear from (7) and (9) that it is sufficient to prove the lemma
under the assumption that xn = a. Considering (x19 •••, xn^) now, it is
clear from the Corollary of Lemma 1 that we may restrict ourselves to
the consideration of commutators of the following two types:

I (xlf x 2 , *--,a,a, , χn_19 a)

I I (x19 x 2 , •••,«, x n - 1 9 α , a) .

By (8), commutators of type II are already of type (ii), Further,

(x19 x29 , α, a, , xn-ly a) = (x19 x2, , a\ , xn-19 a) mod G w + 1 .

Now applying Lemma 1 with b replaced by a2 we find that modulo
Gn+i> (#i> ̂ 2> •> a2, •> %n-u ^) is a product of commutators of form
(Vu V2> , α, α, α, •) and commutators of form (y19 y2, , α, α, yn-19 a).
Thus, by (7), any commutator of type I is a product to commutators
of types (i) and (ii) modulo Gn+1. The lemma follows.

The main, theorems*
In this section we derive more consequences of Lemma 1 and find

an upper bound on the nilpotency class of B(k). The first theorem is
much like Lemma 2.

THEOREM 1. Let Gbe a group of exponent 4, and suppose (xi9 , xn)
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is a commutator of length n with entries from G such that some four
(or more) of xlf , xn are a. If n ^ 6, then (x19 , xn) is in Gn + 1.

Proof. If (x19 , xn) Φ 1, then since four entries of (x19 •••,#»)
are α, it follows that at least three of x39 , xn are α. By Lemma 2
and (A) we may restrict attention to commutators of the following types:

( i ) (a,x29 •• ,α?Λ-3,α,α,α)

(ii) (α, a?a, , α, α, αn_3, α) .

Applying (7) and (9), we may confine our study to commutators of the
following types:

( i ' ) (α, x2, a, α, α, x39 , xn^)

( i i ' ) (a, x 2 9 a, a, x 3 , α , •••) .

But now, modulo G7, using (2) and (5),

(α, x, α, α, α, #) = (a, x, a; α, x; y) = (α2, x; a, x; y) = 1 ,

and

(α, a?, α, α, /̂, α) Ξ (α, x, a2, y, a) = (a, x9 y, α2, α)(α, x; α2, y; α)

= (α, x, 7/, α, α, a) = {a, x, a, a,a,y) = 1 .

Thus a commutator of type (?) or (ii;) is in Gn+1. The theorem follows.
Let x19 •• ,flJfc be generators of JB(A ). Then it is easy to show that

a?i, •••, flJi-i generate a group isomorphic to i?(fc — 1). We may thus
consider B(k — 1) as imbedded in B(k).

If A and B are subgroups of a group, G, we define (A, B) as the
subgroup of G generated by all commutators (α, δ) with α in A and
δ in B.

THEOREM 2. .For eαc/& positive integer k,

(B(fc)8*-i, B(fc + 1)) S ^(fc + l W i .

Proo/. We firsts show that the theorem holds for k = 2, then we
proceed by induction on k. Thus suppose first that k = 2. Now as
noted above, JE>(2)5 is generated by [xu x2, xx\ xlf x2) and (x2, a?!, x2; x2, xλ).
But if /̂ is in B(3), then modulo J5(3)7,

\Xl9 X2f Xij Xχ9 X2) y) = (Λ/i, X25 X\y X2\ V) ^ •»•

Similarly, (a?2, a?lf x2; x19 x2\ y) = 1 modulo I?(3)7. Thus the theorem is true
if k = 2.

Now suppose inductively that for some n the theorem is true for
all k such that 2 ^ k < n. We shall show that
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CB(rc)s»-i, B(n + 1)) £ B(n + l ) s n + ϊ .

It will be sufficient to show that if y19 •• ,ysn-1 are chosen in any way
from x19 -- ,xn and if z is in i?(w-j-1), then (y19 , y2n_19 z) is in
B(n + l) 3 n + 1. Now if four of y19 •• ,2/3n_1 are equal, then by Theorem
2 (2/1, *- ,y3n-i,z) is in B(w + l) 3 n + 1 . Thus suppose the contrary, i.e.,
suppose that each of (say) x29 , xn appears three times among ylf , y3n^
and that xλ appears twice. By (A) we may restrict attention to the case
in which y1 = χlm But in this case, since n ^ 3, we must have at least
one (say xn) of x2, , xn appearing three times among y3, , yn, so
that by Lemma 2 we may restrict ourselves to consideration of com-
mutators of the following types:

' 1 ) \Vli Viy ' ' * 9 Vsn—Af %n> %n> %ni %)

( 1 1 ) \V\y Vit * * * y Wπ) %ny Van—if %n> %) 1

where xλ appears twice among y19 , ysn-4 and each of x29 , xn-λ ap-
pears three times. Now by (9),

\Vι> Vϊ) * * 1 %ny %n) Vsn-i? %ni %) ^ \Vit ' ' ' t Vzn-if &nf %n> %> %n)

modulo B(n + l) 3 n + 1 . But (y19 , yzn^ is in B(n — l)3(w-i)-i so that, by
the inductive assumption, a commutator of type (i) or type (ii) is in
B(n + 1)3W+1. The theorem follows.

Finally, we have the principal goal of this paper.

THEOREM 3. For each positive integer k, B(k\k — 1.

Proof, It follows immediately from Theorem 2 that B(k)zh = B(k)2k+ι

so that, since B(k) is nilpotent, B(k)dlc = 1.
One may apply the foregoing results to obtain numerical estimates

of the derived length and order of B(k). It follows immediately from
Theorem 3 that if B(k){m) Φ 1, then 2W < 3fe, so that the derived length
of B(k) is at most log2 (3fc — 1). By means of the Witt formulae (see,
for example, [2], p. 169) one can also obtain an upper bound on the
order of B(k) using Theorems 2 and 3. Such estimates, both of derived
length and order, are easily seen to be imprecise. For example, the
Witt formula calculations give the order of B(S) as at most 2484, whereas
a little direct computation shows that the order is at most 270. Also,
Iog2(3 3 - 1) = 3, but one can show that B(3)'" = 1.

Finally we would like to point out that it can be shown that B(k)k Φ 1,
so that perhaps the upper bound on the class given here is not too
far from the true class. Indeed, the bound is precise for k = 2, and
preliminary work suggests that it may be precise for k — 3.
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