ABSTRACT MARTINGALE CONVERGENCE THEOREMS

FRANK S. SCALORA

Introduction. The study of probability theory in abstract spaces
became possible with the introduction of integration theories in such
spaces. Thus the idea of the expectation of a random variable which
takes its value in a Banach space was studied by Frechet [6] with what
amounted to the Bochner integral, and by Mourier [13] with the Pettis
integral. Doss [2] studied the problem in a metric space. Kolmogorov
[10] generalized the notion of characteristic function. Generalizations
of the laws of large numbers and the ergodic theorem appear in Mourier
[13] and Fortet-Mourier [5]. In this paper we generalize the concept
of martingale and prove various convergence theorems.

Chapter I is devoted to listing various definitions and theorems which
we shall have to refer to later. In Chapter II we introduce the idea
of the conditional expectation of a Banach space valued random variable.
We also prove the existence of the strong conditional expectation for
strongly measurable random variables. This part of our work was also
done by Moy [14] independently, and without the knowledge of the
author. Chapter III is devoted to the definition and study of weak and
strong X-martingales, with emphasis on the latter.

In Chapter IV we prove a series of convergence theorems for X%-
Martingales with the help of theorems of Doob [1]. The main theorem
says that if {x,, %, n = 1} is an X-Martingale where X is a reflexive
Banach space, and if {||x,||,» = 1} is a uniformly integrable class of
functions, then there is a strongly measurable X-valued function x.. such
that || z.(@) — 2.(®) || — 0 as n — o with probability 1 and {x,, #,, 1 <
n < oo} is an X-martingale. We close by discussing examples where X
is one of the standard Banach spaces, [, L*(I), and C(I).

CHAPTER 1.

PRELIMINARY DEFINITIONS

1. Measurability concepts. A. Let (2, P, _#) be a probability
space. Thus 2 is an abstract set of points w, # is a Borel field of
subsets of 2, and P is a probability measure defined on _~. We recall
that a Borel field of sets is a class of sets which is closed under count-
able unions and intersections, and complementation. A probability
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measure P is a completely additive non negative set function defined
on a Borel field of sets, such that P{Q} = 1. We will be concerned with
functions x(-) defined on 2, and taking their values in a Banach space
X. The sets of _# will be referred to as the measurable sets.

DEFINITION 1.1. =z is a weak random wvariable if it is a weakly
measurable function from 2 to X.

DEFINITION 1.2. =z is a finitely (countably) valued random variable
if it is constant on each of a finite (countable) number of disjunct
measurable sets 4,; with 2 = U,4;.

DEFINITION 1.3. =z is a strong random variable if it is a strongly.
measurable function from 2 to X.

DEFINITION 1.4. « is almost separably valued if there is a set 4 in
. such that P{4} = 0 and x(2 — A4) is separable.

Note. x is strongly measurable if and only if it is weakly measur-
able and almost separably valued. (Pettis [15] and Hille-Phillips [9]
Theorem 3.5.3, p. 72).

B. The measure induced in X. Suppose % is a function from 2

to X. We define a class of subsets of ¥ in the following way: Let &
be a Borel field of measurable subsets of 2, # < _#Z. Let # be the
class of subsets of ¥ with the property that & € & if & € X and
{w: x(w) e &7} is an & set. & is a Borel field.
If ove. 7 define P*{or} = P{w: 2(w) e %7}. Clearly P*is a probability
measure on .%. This gives us a probability triple on %, (%X, P®, F ).
Now, let . & = _#, the class of measurable sets of 2. In order to
assure that .2, will contain some interesting subsets of X we shall
have to assume some measurability properties for x, which we now
proceed to do.

a. Suppose that x is weakly measurable. Then f(x) is a real
measurable function for all f e ¥*, the real first conjugate space of X.
Thus for every real Borel set B, {w: f(x(w)) € B} is an _# set. Next
{w: f(2(w)) € B} = {w: x(w) € f~Y(B)}. Hence fY(B) is in .#, for every
S in ¥* and real Borel set B. Since f is continuous, f~‘(B) is open
(closed) if B is open (closed).

Further, _#, contains all the weak neighborhoods of X if « is weakly
measurable. In fact, let N(&; f,, +++, fa; €) be a weak neighborhood of
%. Then
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NG fo oo £ = 1HE — FiE) <& G=1-m)
= (& 17O — FE) 1 <9 -

But the inverse image of each of the sets in the intersection by =« is
clearly an _# set since f(x) is a real valued measurable function for
every linear functional f. Thus _#, contains all of the weak neighbor-
hoods of %, and hence the smallest Borel field containing the weak
neighborhoods.

Conversely, if .#, contains all the weak neighborhoods of X then
2 is weakly measurable. To prove this, we must show that f(x) is a
real valued measurable function on 2 for every f in X*. If f is the
zero functional then f(x(w)) =0 for all w, and thus f(x) is clearly
measurable. Otherwise f takes on all real values. In this case we show
that {w: f(x(w)) € B} is an _# set for every real Borel set B and linear
functional f. If Bis the open interval (¢ —¢,a + ¢), then {w: f(x{w)) € B} =
{w: | f(x(w)) —a| < e}. Since f takes on all real values there is an
element & in X such that f(§)=a. Hence {w: f(x{(w)) e B} =
{w: x(w) € N(&; f;¢)} which is an _#Z set by hypothesis for _#, contains
all the weak neighborhoods of X. Next, every open set in the reals, in
fact, in any separable metric space, is a countable union of open spheres.
Thus, if B is an open set in the reals B = {J, V, where V, is an open
interval for every mw. Since _ 1is closed under countable unions
{w: f(x{w)) € B} = U, {o: fla(w)) € V,} is an _# set. Finally, the class
of real sets B for which {w: f(x{w)) € B} is an _# set is a Borel field
which contains the open sets, thus it must contain all the real Borel
sets, and so 2« is weakly measurable. Thus the definition of weak
measurability may be rephrased as follows:

DEFINITION 1.1.* 2 is weakly measurable if _, contains all the
weak neighborhoods of %, that is, if {w:2{(w)e N} is an _# set for
every weak neighborhood N.

b. Suppose that = is strongly measurable. Then there is a sequence
x, of finitely valued functions, and a set 4 in _# such that P{4} = 0,
|| (@) — x{w) ]| >0 as n— o for w e 2 — 4. Let g be a real valued
continuous function. Then g(x) is a real valued measurable function on
Q. Consequently, {w: g(x(w)) € B} is an _# set and ¢ Y(B) is an _7,
set for every real Borel set B and real continuous function g. Next let
" be the class of real valued functions ¢ defined on ¥ such that g(x)
is a real valued measurable function on £2. Then & contains the
continuous functions and is closed under the limit operation, thus it
contains all the Baire functions on X to the reals. Now let 4 be a
Borel set in X. Then there is a real number ¢ and a Baire function g
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such that A = {&: g(¢§) > a}. Now A = g~(B) where B = (a, «). Thus
A is an _#, set since {w:g(x(w)) € B} is an _# set by the measur-
ability of g(x). Therefore if x is strongly measurable, then _#, contains
all the Borel sets of X, or {w:x(w) € B} is an _# set for every Borel
set B of %.

C. Independence. Let x and y be (weakly or strongly) measurable
random variables on 2 to X. We can then define a Borel field _~; , of
subsets X x ¥ in an analogous way. Consider _#, X _#,={A x B: Ae _#,,
Be _#,}. Let P*Y(A x B) = Plw: x(w) € A, y(w) € B}. This probability
is well defined for the set on the right is the intersection of two _#
sets and hence is itself an _~# set. Let R,, be the field of finite unions
of sets of _7, x _#,. Then P*¥ can be defined on R, , to be a probability
measure in the obvious way in a unique fashion. Next P*? can be
extended uniquely to ., ,, the smallest Borel field of measurable subsets

of ¥ x ¥ containing R,, (Doob [1] Theorem 2.2, p. 605).

DEFINITION 1.5. 2 and y are said to be independent if P{w: z(w) e
A, y(w) e B} = P{w: x(w) € A}P{w: y(w) € B} for A, B subsets of ¥ when-
ever all of the probabilities in the equality are defined; i.e., whenever
the above sets are in _# . The equality may be rewritten as P*Y(4 x B) =
P*(A)PY(B).

Notice that this definition can be rephrased to say that the product
relationship holds whenever A is in ., and B is in _,, for only then
will all of the probabilities in the product be defined. This is the type
of definition that has been given by Kolmogorov; e.g., Gnedenko-Kolmo-
gorov ([7], p. 26). The definition used by Doob [1] differs in that it
says that the product relationship holds whenever A and B belong to
a possibly smaller class of sets, namely the Borel sets. For a full dis-
cussion of the connection between the two types of definition the reader
is referred to Doob’s appendix to the above mentioned book by Gnedenko
and Kolmogorov.

THEOREM 1.1. If x and y are independent, then fi(x), « -+, fu(2) are
independent of 9.(y), -++, g.(y) in the semse of Kolmogorov for every
finite set of real valued limear fumctionals fi, <<+, fr 91, =+, Om ON X.

Proof. Let A,,+++,A,,B,,---, B,, bereal sets such that {: f,(x(®)) € A,}
and {w: 9,(y(w)) € B} are _#Z sets for j=1,---,mand k=1, .-, m.
Then fi7%(A4,) is in _7, and gz;'(B,) is in _#,. Next, N, fi'(4)) e _#,
and N\™~, 97'(By) € _#,. Thus
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P{CD: fl(.’E(O))) € AU ) fn(x(w)) € Ana gl(y(w)) € B19 M) gm(y(w)) € Bm}
= Plo: (@) ¢ (1£7(4), y(@) & () :'(By)

= Plo:x(0) € ()£ (A)}Plo: y(0) e (1 :'(B))

by the independence of z and vy

= P{w: fi(x(w)) € Ay, + -, fuol@(w) € A}P{w: g(y(®)) € B,, ++-,
9.(y(®)) € B,} Q.E.D.

THEOREM 1.2. If x and y are weakly measurable and independent,
then fi(x), «--, fa(x) are independent of ¢.(y), +--, 9.(y) in the sense of
Doob for every finite set of real valued limear functionals fi, +++, fa
Gis ***y G ON x.

Proof. Let A; and B, in the above proof be real Borel sets; then
{w: fi(x(w)) € A;} and {w: g,(y(w)) € B,} are _# sets for fi(x) and g4(y)
are real valued measurable functions by the weak measurability of x
and y. The rest of the proof goes as above.

THEOREM 1.3. If x and y are weakly measurable, and such that

Fi(@), <+, fulx) are independent of g.(y), +--, 9.(y) for every finite set of
real valued linear functionals fi, «++, fu, G1, ***, Im 00 X, then x and y
are independent relative to the smallest Borel field of X sets contain-
ang the weak meighborhoods; i.e.,

P{w: x(w) € A, y(w) € B} = P{w: x(w) € A}P{w: y(w) € B}
for all A and B in the smallest Borel field containing the weak neigh-
borhoods of X.
Proof. Let A = N(&; fi, +++,fn;¢) and B = N(9; gy, **+, gm; 8): then

P{w: x(w) € A, y(w) € B}
= Plo: | fi(x(@) — filE) | <e, 1=1,+-,m;
l9,y(w)) —g,) | <8, 7=1,--+,m}
= Pl{o: | filx(w)) — filE) | <e, t1=1,--+,n}
Plo: | g,y(@)) — 9,01 <8, J=1,+++,m}

by the hypothesis, and so
P{w: x(w) € A, y(w) € B} = P{w: 2(w) € A} P{w: y(w) € B}

when A and B are weak neighborhoods of X. Now the class of weak
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neighborhoods is closed under finite intersections and thus the inde-
pendence multiplicative relationship is preserved if we extend this class
to the smallest Borel field containing it (Loéve [12] p. 225).

The notion of independence is easily generalized to aggregates of
random variables. For a fuller discussion of the measurability concepts
mentioned in this section, see Pettis [15] and Hille and Phillips [9].

Note. Let (§,7)e% x . Define ||(§7) |l =VIEF+17IP. By
this definition, X x X becomes a Banach space. Let f be a real linear
functional on % x X. If fi(&) = fI(, 6)] and f,(n) = fI(6, )], then f,
and f, are real linear functionals on %, and f[(&, 7)] = fi(&) + fi(y). If
x and y are weakly measurable %X-valued functions on £, then fi(x) and
f(y) are real valued measurable functions on 2. Thus the weak meas-
urability of « and y implies the weak measurability of (x,%) on 2 to
X x X. Similarly, if # and y are strongly measurable, there exist
sequences %, and vy, of finitely-valued measurable %-valued functions
such that ||z, — z||— 0 and ||y, — ¥ || — 0 as » — o with probability 1.
But (x,, v, gives a sequence of X x X finitely-valued functions, and
n — . Thus, if £ and y are strongly measurable, then so is (x, ¥).

2. Integrability concepts. Let = be a countably valued function
taking the value &, on the measurable set 4,. Then x is said to be
Bochner integrable if and only if ||x(:)]|| is integrable, and by definition

(B) | a(@dP= S e,PW) .

DEFINITION 2.1. «(-) is integrable in the sense of Bochner if there
is a sequence z,(-) of countably valued random variables converging
with probability 1 to «(+), and such that

lim Sg” Za(®) — (@) || dP =0 .

m,n—roo

Then the limit of (B)Snxn(a))dP exists and by definition
(B)ng(w)dP = lim (B)S 2 (@)dP.
n—oo 2
Since P{Q} = 1, we may again replace the word countably by finitely.
We will later need the following result apparently proved first by

Pettis ([15] Theorem 5.2, p. 293), and later by Moy ([14] Theorem 1,
pp. 3, 4.)

THEOREM 2.1. If x is strongly measurable relative to the Borel field-
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Z  of measurable sets and Bochner integrable and such that S 2(w)dP =
4
0 for every set A in F then x(w) = 6 almost everywhere.

CHAPTER 11

GENERALIZATIONS OF THE RADON-NIKODYM THEOREM
AND ABSTRACT CONDITIONAL EXPECTATIONS

1. It is well known that a real or complex valued completely addi-
tive set function which is absolutely continuous on a o-finite measure
space is actually the integral in the usual sense of a finite measurable
point function (unique almost everywhere). The existence of this point
function is assured by the classical Radon-Nikodym theorem (Halmos
[8] p. 128).

Using a theorem due to Dunford and Pettis ([4], p. 339) it is possible
to get a definition of conditional expectations for more general random
variables such as Dunford and Pettis integrable functions. Since it is
too weak for our purposes, we will no longer refer to it in this paper.

2. Strong conditional expectations. If we restrict ourselves to
Bochner integrable random variables it is possible to get a sharper
version of the conditional expectation.

With this end in mind, let 2(:): 2 — X% be finitely valued; in fact,
let #(w) =§; on 4;; =1, ++-, k. Then x(0) = 3}, &-),(w) where x4,
is the characteristic function of 4,.

DEFINITION 2.1. & *{w| 7 H@)=3). &, E{)4,| 7 Hw), where E{y,,| 7}
is the ordinary conditional expectation (Doob [1]) of y,, relative to .7 .
&Hx| 7} will be referred to as the strong conditional expectation of
x relative to & .

In this section all integrals will be in the sense of Bochner, so we
will remove the letter B preceding the integral sign.

LEMMmA 2.1. If x is a measurable finitely valued function on Q to
%, then V(w)dp: S @z | FYw)dP for every Ae .
4

Proof.
|2 ) @aP = | (S 6B, 5 Yw)iP
= S el B, | S H@ap

where the integral is in the ordinary sense
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Ma'

= 2. &P{4, N 4}

J

I
-

ey

Ax(a))dP . Q.E.D.

LEMMA 2.2. If x is a measurable finitely valued function on 2 to
X, then || &z | F Hw)|| < E{lz]||| &} () with probability 1.

Proof.
lee | S| = |5 8w, | )|
= 216 1-Blu, | Y@

for x4, =1 or 0.
= E{||z||| # Hw) . a.e. Q.E.D.

LEMMA 2.3. If x, ---, %, are finitely valued measurable functions,
and a, -+, a, are scalars, then

&a@, + 00 + a | F Ho) = j;ang{xj[gf Haw)
with probability 1.

Proof. Let {A4,}:m =1, -+, p be a decomposition of 2 such that
each z, takes on only one value on each A,; in fact, let z;,(w) = 9,(4.)
for w € A,,. Then since &*{x| & } depends on x and # and not on the
decomposition of £, the same representation holds for all the &*{x,| &+ }.
Hence

& | FH) = 3 24 B, | 7 Y0) .

gau, + -0+ a0 | FH)
= 3 024 + -+ + P AIE{L, | 7 H©)

@ 3 PUANE (L, | FHO) + -+ + 4 3% 2UAD (L, | FHO)

;V:‘,a,gs{x,lﬁ'}(w) with probability 1. Q.E.D.

THEOREM 2.1. Let x(+): 2 — X be integrable in the sense of Bochner
and F# a Borel field of measurable Q2 sets. Then there exists a func-
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tion x| 7 }(+): 2 — X which is Bochner integrable, strongly measur-
able relative to F , unique a.e., and

SAw(a))dP - Sﬁg%w | 7 H@)dP for all Ae 7 .

Proof. Let x be strongly measurable and integrable in the sense
of Bochner. Then there exists a sequence x, of finitely valued measur-
able functions such that z,(®w)— x(w) with probability 1 as n— oo;

S | (@) — z,(w)||dP—0 as n,m— o; and ngn(a))dP — | z(w)dP.
2 2
Now &*{x,| #} is defined for all x, by Definition 2.1. Also

| &) 7o) - &*lenl 7 H@) || dP
= [ 10 — 20l )@ [P by Lomma 2.3

< LE{H &y — @y||| . F }@)dP by Lemma 2.2.
_ S | 2%(w) — @,(@) || dP by.the deﬁnltlon. of ordinary con-
9 ditional expectations
— 0 by the defining property of the z,’s as n, m — .
Then according to Hille and Phillips ([9] p. 82, Theorem 3.7.7), there

exists a function, ¥, which is Bochner integrable, strongly measurable
relative to &, unique a.e., and such that

16 &l 7)) — y@) [[dP—0  asn— .
Next,
[ sse - ]
= ||| st@ap - | @, F1wiap
+ | gl 7 y@aP - SAx(w)dPH
= | Ilvt@) — & | 7Y@ 1P

+ “ [ za(@ap - de(w)dpll by Lemma 2.1.

— 0 as m— o by (1) above and by the definition of Ax(a))dP. Thus
Sy(w)dP - S 2(@)dP for all e 5. We are now justified in calling
Vi A

y(+) the strong conditional expectation of x relative to .# and we use
the notation &*{x| 7 }(-). Q.E.D.
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DEFINITION 2.2. & x| Z } is called the strong conditional expect-
ation of x relative to .& .

We shall now examine the properties of the strong conditional ex-
pectation. In what follows we will be concerned mainly with the strong:
rather than the weak conditional expectation.

THEOREM 2.2.
1. If x(w) = & on 2 then &z | F Hw) = £ with probability 1.

2. g{g; ¢, [%} = Sve,e{w,| 7} with probability 1.

3. ||z FHw) || = E{|x]||| &} with probability 1.

4. If ||w.(w) — 2(w)||—0 as n— o with probability 1, and
there is a real random variable a(w) = 0 such that ||z, (w)]| <
a(®) with probability 1 and E{a} < o, then lim,_ .. &{z,| 7 } =
& | Z} with probability 1.

Proof.
(1) The function x(w) = £ has the defining property of & *{x|. & )
and is measurable relative to any Borel field & .

@ |z{% ;| 7 J@dP= | (3e,@)aP by Theorem 2.1.
_ S(jg ¢, %, | %}(w))dP for all A€ .7
Thus
g'{Sew, 1.5} = F (w17} with probability 1.
(8) Let x, be as in the proof of Theorem 2.1. and let 4 € & .
Now || &*{r,| 7))l = Efll, ||| }@) with probability 1 by
Lemma 2.2. Thus
& @ Y 1dP < | Bz, ||| Ya)dP .
But
| A @1 dP— | | &6 T 1dP  as n—
by Theorem 2.1., and
[ Ellealll #¥@)dP = | [l || aP— | ||a@) || 4P

= [ Bl Y@0ap -
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Hence
& 7@ l1aP < | Bllo|l| 7 )o)dP for de.5,

and thus ||€{x | 7 Hw) || < E{||z]||| # Hw) with probability 1.

@) &, | 7 Ho) — e | 7 Hw) ||
= || gz, — x| F Hw)]|| by (2) with probabilility 1.
< E{l|z, — 2||| &# Hw) by (8) with probability 1.
— 0 as n— o by Doob ([1] p. 23). Q.E.D.
Next it will be convenient to show that every linear transformation

distributes over &°.

THEOREM 2.3. Let x be Bochner integrable, & a Borel field of

measurable sets, f a linear (bounded) transformation from X to another
Banach space ). Then

fIZ x| 7 Hw)] = &{f(x)| & Hw) with probability 1.

Proof. Since f is a linear (bounded) transformation, f(x) and
SI&{x| ~#}] are Bochner integrable (Hille-Phillips [9] p. 84). Let
Ae . Then

®B)| f12 | 7 WP = F1(B)| & ] 7 H@)P]
(Hille-Phillips [9] Theorem 3.7.12, p. 83)

= 71(B)| w(w)dP]
= (B)gAf (x(w))d P by the preceding reference
= ®)| £ @] WP,

Thus f[&{x | F Hw)] = £{f(x) | & Hw) with probability 1 by Theorem
2.1. of Chapter I. Q.E.D.

COROLLARY. Let x be Bochner integrable, # a Borel field of
measurable Q sets, fe€X*, then
fI& x| 7 Hw)] = E{f(x)| & Hw) with probability 1.
A final remark. If & < &2, then
glg | FH o =g{g | AT = 2| 7}
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with probability 1. For

I

Zx| F Hw)dP for Ae &

4

| g1 @l 1 oH)aP

SdggS{gS{w | ). 7 Y @)dP

i

ZHx | S Hw)dP for Ae &

i

X 2(w)dP for A€ &7; .. also for A e F
S Efx| 7 Ww)dP for 4e . QE.D.

CHAPTER III.

ABSTRACT MARTINGALES

1. Preliminary definitions.

DErFINITION 1.1. Let T be a linear index set. Let x.(:): 2— X be
integrable in the sense of Bochner for 7 € T and % be a Borel field
of measurable subsets of 2 for e T. Let &, c # if 0 < 7. Suppose
2, is strongly measurable relative to % or equal almost everywhere to
such a function. If &°*{x.| F,} =z, with probability 1 when o < T
then {z., 7, t e T} is a strong X-martingale.

In most of our work we will be concerned with the case in which
T is the set of positive integers, and in this case the martingale will
be denoted by {x,, Fn, % =1} and the martingale equality becomes.
“x, | Fn} = %, with probability 1 for n > m.

By using the Dunford-Pettis Theorem alluded to in Chapter II, it
is possible to get a definition of weak X-martingales, but because of a
separability assumption in the theorem, they turn out to be strong X-
martingales.

2. General properties of strong X-martingales. From this point we
will denote (B)S 2(w)d P by S 2(w)d P, (B)S 2(w)d P by &{x}, and &*{x|.F }
by &{x| 7}, ajld omit theAword strongg when discussing strong mar-
tingales.

THEOREM 2.1. {x., 5%, 7€ T} is an X-martingale if and only if
S 2 (w)dP = S TAw)dP for o <t and A in .
A A

Proof. If {x., #,7 € T} is an X-martingale, then &{x.| #} = »-
with probability 1. Thus for every A in &, we have the equality
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| ge@ip = & | Z)Yw)aP = | s(@)ap,

the last equality following from the definition of conditional expectations.
Conversely, if g 2. (w)dP = S 2 (w)dP, for A in F#,0<7, then
4 4
S &{x. | FoHw)dP = § z(w)dP. Therefore, & {x.| #} =z, with prob-
A A

ability 1 by Theorem 2.1 of Chapter I, and hence the process in ques-
tion is an X-martingale.

THEOREM 2.2. If {x., &#,7 € T} is an X-martingale, and f is a
limear (continuous) transformation from X to another Bamach space %),
then {f(x.), Z,t€ T} 1s a Y-martingale. Thus, in particular, the
conclusion 1is true for every f im %X*. On the other hand, if
{f(x.), 7, 7€ T} is a real martingale for every f in X*, and the =x.
are Bochner integrable, then {x., 7,7 < T} is an X-martingale.

Proof.

(1) . is strongly measurable relative to #; thus f(x.) is also
strongly measurable relative to &% Dby the continuity of f. Next,
&£{f(x.)] FHw) = fl&{x. | 7 Hw)] with probability 1 by Theorem 2.3
of Chapter II, where both sides of the equality are in §). The expression
on the right is equal to f(z.(w)) with probability 1 by the definition of
X-martingale. Hence, &{f(x.)] %, Hw) = f(z-(w)) with probability 1;
thus, {f(x.), &, 7 e T} is a 9-martingale. In particular, this is true
for all real linear functionals f, and in this case, the resulting martin-
gale is a real one.

(2) On the other hand, if . is Bochner integrable and strongly
measurable relative to %, then by hypothesis Z{f(x.)| #} = f(x,)
with probability 1 for every f in X*. Then we can write

£(] #d@aP) = | s@@)aP = | Elf@)| Y @)iP
= | r@f@)ap = £(] z.(@)iP)

for every fin X¥* and A in &#,. Therefore, S 2z (w)dP = Lx,(w)dP for

every A in &,. Hence {x,, . %%,7e T} is an %A-martingale by Theorem
2.1. Q.E.D.

Note. By virtue of Hille-Phillips ([9] Theorem 3.7.12, p. 83), the
theorem is true for f, a closed additive transformation from X to 9), if
we assume that f(x.) is Bochner integrable for every r in T.

DEFINITION 2.1. Let 9 be a Banach space. A subset & of 9 is
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called a positive cone if

1) 0e&,

(2) & e & and a nonnegative imply af € &,

(B) if £eR and —£ e R, then £ =90,

(4) if Ee R and ne &, then £§ + 7 e K,

(5) & is closed. By definition £ = 7 if and only if £ — 7 ¢ & The
order thus induced is a partial order (Hille-Phillips [9] Theorem 1.11.1,
p. 15).

DEFINITION 2.2. Let ¥ be a Banach space with a positive cone.
Let T and & for T € T be as in Definition 1.1 of this chapter. Let z,
be a Bochner integrable 9)-valued strongly measurable (relative to &)
function on 2 for 7€ T. Then {y., &, 7 € T} is a Y-semi-martingale if
“ Y. | F-Hw) = y,(w) with probability 1 for ¢ < 7.

DEFINITION 2.3. A function ¢ defined on X with values in 9, a
Banach space equipped with a positive cone, is said to be sub-additive
i£ 9+ 1) = 96) + 9(m), positive-homogeneous if g(a&) = ag(&) for a = 0.

THEOREM 2.3. If x 1is @ Bochner integrable X-valued function on
2, Z a Borel field of measurable subsets of 2, and g a continuous
subadditive positive-homogeneous function on X to ¥), a Banach space
with a positive cone, such that g(x) is Bochner integrable, then

o(] #(@iP) < | g@@)P and g(&ie| 7 N0) £ Flo@) | Ho) with

probability 1. In particular, the conclusion follows for real valued g
without the assumption of integrability on g(x).

Proof. If x and g(x) are Bochner integrable, then by the methods
of Hille-Phillips ([9] Corollary, p. 81, and Theorem 3.7.17, p. 83) there
exists a sequence of countably valued integrable random variables z,
such that ||2,(w) — z(w)|| — 0, || 9(x,(®)) — g(x(w)) || — 0 uniformly with
probability 1 as % — oo, and also mem—x@mdpéo and

A
LHg(x,,(w)) — g(x(w))]||dP— 0 as n— o for every measurable set A.
TMSS%@WPﬁgx@MPaM.S@mwﬂP~SMM®WPasn~m
Furthermore, &{x,| 7 }— &{x| 5}, £{9@,)| F}— £{g®)| #} uni-
formly with probability 1 as » — o, and S |&{r,| 7} — & {x| 7 }||dP—0,
A4
Moy [14] p. T) | I Mo(en) |57} — &1g(@)| ) ||[AP—0 as n— e for
every measurable set A. Let z,(®) = &, for w in A, where the A’ are
disjunct measurable sets such that

;Pmﬁ:1.
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Then
| n(@)dP = 33 EPAY) = lim 3, ELP(A3).
Now
N N
o(3 EP1AY) = SoE)P(A)
Jy the subadditivity and positive-homogeneity of g. Further,
oo N
| 9@ @)dP = 5 g€ P{A} = lim 3% (D) P{AL} .
Hence,
o(] w@)dP) = g (lim 3, £1PAL}) = lim (33 £1.P(4D)
= lim 31 g(E)P{AL} = | g (@)dP,
N—soo j=1 2
since ¢ is continuous and the positive cone in 9 is closed. Similarly,
&, | 7} = X5 ELE{ .| 7} almost everywhere and thus,
N
0(& (o, | 7N = olim & EE (g | 7))
N
< llvlfri j;g(fiz)E{XAg | 77} = @{9(x,) | 7 }w) a.e.
Finally, g(Sgwn(w)dP> . g(ng(w)dP) and ¢(Z{w,|. 7)) —9(= (] 7)) ace.

by the continuity of g and the known convergence of the integrals and
conditional expectations in question. Thus,

g(Sgw(w)dP) - g(lim ngn(w)dP> = lim g<ggx,,(w)dp>

n—oo

< lim | g(e.(@)aP = gggm(w)dP

and
9(ZE{x| 7)) = g(lim Z{r,| 7} ae.
= lim g(&{x,| 7)) a.e. = lim &{g(@,) | 77} a.e.
=&{9(x)| Z} a.e.

If, in particular, g is a real valued subadditive positive-homogeneous
continuous function, then there exists a finite nonnegative number
M,, M, = sup [g(§); || ]| = 1], such that [g(&)| = M,(||&] + 1) (Hille-
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Phillips [9] Theorem 2.5.2, p. 25). Thus, |g(x(®w))| = M,(||z(w)]|| + 1),
and, since the function on the right is integrable on 2, it being a finite

measure space, g(x) is Lebesgue integrable, and the conclusion of the
theorem follows. Q.E.D.

THEOREM 2.4. Let {x., 7,7 € T} be an X-martingale, and let g be
a continuous subadditive positive-homogeneous function on X% to %), a
Banach space with a positive cone such that g(x.) is Bochner integrable
for every T in T. Then {9(x.), #,7 € T} is a P-semi-martingale. In
particular, if g 1s a continuous subadditive positive-homogeneous func-
tional the conclusion ts that the resulting process is a real semi-martin-
gale without assuming that g(x.) is integrable. Finally {||x.||, #,t e T}
is @ real semi-martingale.

Proof. By Theorem 2.3, &{g(x.)| F Hw) = 9(Z{z.| Z Hw)) a.e.
But the righthand side is equal almost everywhere to g(x.(w)) since
{x., 7,7 e T} is an X-martingale. Thus, &{g(x.) | Z, Hw) = g(x.(w)) a.e.
for 0 < 7. Since g(x.) is clearly strongly measurable relative to .7,
{9(x.), &, T e T} is a Y-semi-martingale. Q.E.D.

Next we consider some examples.

ExAMPLE 2.1. Let z be Bochner integrable and { } as before.
Let z, = £{z|.#}. Then {x.,, %, € T} is an X-martingale. For let
de Z,0<7,

gAx,(a))dP - SAg{z | 2N @)dP = SAz(w)dP
as a consequence of the definition of &{2| #,}, and
SAx,(w)dP - SAg{z | 7 N w)d P = SAz(a))dP ,

the last equality being true for all 4 € /% and hence forall 4 e Z, = #.

Thus S T (W) P = S Z(w)dP for Ae ,. Hence, by Theorem 2.1,
A A

%= %, T € T} is an X-martingale.

Before proceeding to the next example we shall have to prove the
following lemma.

LEMMA 2.1. Let z and y be strongly measurable independent
random variables. Let Z# be the Borel field of measurable sets gener-
ated by x; i.e., the smallest Borel field of measurable sets with respect
to which x s strongly measurable. Suppose & {y| F } exists, and define
Slylet =&{y| F}. Then £{y|a} = E{y} with probability 1.
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Proof. If x and y are independent, then f(x) and f(y) are real
valued independent random variables by Theorem 1.1 of Chapter I for
every f in X*. Thus E{f(y)| & } = E{f(y)} with probability 1. Next,
let A be an # set. Then

(| Fwlai@air) = 7(| ) HwaP) = | f& W] 7 Ho)ip
= | Brw| )i = | BrnaP=1(| zwdp)
by Theorem 3.3 of Chapter II. Thus
| £l e @ip = z@ap,

for every A in &% . Hence &{y|x} = £{y} with probability 1 by
Theorem 2.1 of Chapter I. Q.E.D.

In like manner, it can be shown that if {y,} are mutually independ-
ent, then #{y,| 7 } = & {y,} with probability 1 if & is the smallest
Borel field relative to which v, + -+, ¥._, are strongly measurable.

ExaMPLE 2.2. Let {y,,j = 1} be mutually independent, &{y;} =&
for j > 1, #, be the smallest Borel field relative to which y,, +--, ¥, are
all strongly measurable, and z, = >7,¥,. Then {z,, #,n =1} is an
X-martingale.

We show that & {x,|.#,-.} = ¢, with probability 1.

Note. g;{xn l %—1} = g{mn l Yiy ** yn—l} = E'f{wn ] Ly *0*y xn—l} .

Clearly

n n—1
xn:jgllyj:j-;yj+yn=xn—1+yn'
Then

E{wn| Fni} = E{Zpos + Yu| Fui}
= & {Cy| Fn-i} + E{WYn| Fu-i} by Theorem 2.2 of Chapter II.
=%, + EY.| Fn} with probability 1 for x,, is meas-
urable relative to .#,_,.
=2, + £{y.} with probability 1 by Lemma 2.1
=2, for &{y,} =6 for n > 1.

Thus {z,, Z,, n = 1} is an X-martingale.
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CHAPTER IV

MARTINGALE CONVERGENCE THEOREMS
IN A BANACH SPACE

Let ¥ be a Banach space. We will prove various convergence
theorems for ¥-martingales. Thus we will show that if {z,, Z,n = 1}
is an X-martingale, then under certain conditions there will exist an %-
valued random variable x such that x, — 2 with probability 1 in various
senses.

THEOREM 1. Let {x,, Z,, n = 1} be an X-martingale, and let .
be the smallest Borel field of 2 sets such that F.2 Ug., %, Let
Yn(®) = [|2x(@)||. Then

E{le, |} = E{lla, |} < -+ = E{[|2all} = -+

(1) If Lu.b., E{|z.]} < « then lim,.. || %,| = ¥. exists with prob-
ability 1, and E{y.} < . In fact, the boundedness condition reduces
to lim,... E{||z,||} = K < «, and then FE{y.} < K.

(2) a. If the ||«,|I’s are uniformly integrable then

l.gb.b. E{lz,||} < o, }gg E{ly. — |z, ]|} =0,

and the process {¥,, Fn, 1 =1 = o} is a real semi-martingale dominated
by a semi-martingale relative to the same fields. (Doob [1] p. 297)

b. If Lu.b., E{||z,|l} < « so that y. exists, and if the process
{Yn) Fny 1 =1 < o} is a real semi-martingale, then lim, .. E{|z,|]} = E{y.}
and the || «,|]’s are uniformly integrable.

Proof. 1f {x,, Fn, n = 1} is an X-martingale, then {||z, ||, F, n = 1}
is a real semi-martingale by Theorem 2.4 of Chapter III, and then
E{|x )} =<+ E{|2,]|]} =< ++- according to Doob ([1] Theorem 2.1 (ii) p.
311). The other conclusions follow from Theorem 4.1 s of Doob ([1] p.
324-325). Q.E.D.

THEOREM 2. Let {%,, F,,n =1} be an X-martingale. Let X be
reflexive. Suppose lim,_.. E{||x,|]} = K < oo. Then there is an X-valued
strongly measurable random variable x. such that xz,— x. weakly as
n— oo with probability 1.

Proof. Since z, is strongly measurable, there is a measurable set
A, such that P{4,} = 0 and «,(2 — A,) is separable, for strongly meas-
urable functions are almost separably valued (Hille-Phillips [9] Theorem
3.6.3, p. 72). Let Y, = z.(2 — A,) and let Y be the closed linear mani-
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fold spanned by U;-19.. Then 9§ is a separable subspace of X and
z(w) € Y for almost all w, for each n. Now 9 is reflexive since ¥ is.
(Hille-Phillips [9] Corollary 1 to Theorem 2.10.3, p. 38). Further, since
9 is separable, then so is 9** for Y = P**. But then Y* is separable
by Theorem 2.8.4 of Hille-Phillips ([9] p. 34). Now if fe 9* then

{f(x,), Fn, n =1} is a real martingale by Theorem 2.2 of Chapter III.
Also

E{fa)} = E{IA I 21} =[£I E{ll2a [} = (| £ K

because E{||x, |} < +++ E{||x, |} £ +++ = K by Theorem 1. By virtue of
Doob ([1] Theorem 4.1, p. 319) for every fe 9* there exists a real
measurable function z,, and a measurable set 4, such that P{A;} =0
and | f(z,(w)) — z,(w)| — 0 as n — o for w € 2 — 4,. By the separability
of 9* there is a countable dense subset {f;} of 9*. Thus for every f;
there is a 4, and 2z, as we have seen, such that P{4,}=0 and
| £z (w)) — 2 (@)|—0asn— o for we2—4,. Let 4= Ui, Ay,
Then

P{d)} = P{g A,j} < fi P{4,}=0.

By Theorem 1 there is a measurable set M such that P{M} =0 and
such that || z,(w)|| is a convergent sequence for w € @ — M. Let 4=
4, UM. Then P{4}=0. Next, let we 2 — 4. Then we 2 —- M so
that ||z,(w)]|| is a convergent sequence. Thus there is a constant C
such that ||z,(@)]|| < C for all n.

Define Q,(f) = f(x,(®)) for f € P*. The Q,’s form an equi-continuous
sequence of functions on 9*, for, given € > 0, 36 = ¢/C such that for
every n, ||f — gl| < & implies

1Qu(f) — @u(@) | = |f(@al®)) — g@u(@) | = [|f — gl [[@a(@) || <¢[C-C=c¢.

Furthermore, since w € 2 — 4, s for every j,
|Qu(f5) — Qu(f) | = | F@n(®)) — fi@u(®)|— 0 as n,m — o .

But, an equicontinuous sequence of functions converging on a dense set
of a metric space converges on the whole space. Thus for every
FeD51Qu(f) — Qu(f) | — 0 as n,m — oo ie., [ f(@a(®)) — f (@n(®)) | — 0O
as n, m — o« for every w e 2 — A.

Therefore f(x,(®)) is a convergent sequence for all w € 2 — 4 and
fePD*. The reflexiveness of ¥ and %) implies that X and 2 are weakly
complete. Thus there is an z. (strongly measurable) such that for every
feP*and w e Q2 — 4 we have | f(z,(®) — f(x.(®)| — 0asn— c;ie 2,
converges to x., weakly with probability 1. Q.E.D.
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Note. =z, is strongly measurable since it is the weak limit of strongly
measurable functions (Hille-Phillips [9] Theorem 3.5.4, p. 74). Theorem 2
may be restated as follows:

THEOREM 2*. Let {x,, F,,n =1} be an X-martingale. Let % be
weakly complete and suppose that X* is separabdle, and lim, ... E{|| z, ||} =
K < . Then there is an X-valued strongly measurable random vari-
able x., such that x, converges to x., weakly with probability 1.

COROLLARY 1. Let {x,, F,, n = 1} be an X-martingale. Suppose X
18 a Hilbert space, and that lim,_ . E{||z,||} = K < . Then there
exists a strongly measurable X-valued random wvariable x. such that
X, — X Weakly with probability 1.

Proof. Since % is a Hilbert space, it is reflexive and weakly com-
plete. Hence all of the hypotheses of Theorem 2 are satisfied, and so
the above conclusion follows. Q.E.D.

By making a stronger assumption on the ||z, ||’s we will show that
the last result may be sharpened to give strong convergence with prob-
ability 1.

THEOREM 3. Let {x,, F,,n =1} be an X-martingale; let X be
reflexive. If the ||x,||’s are uniformly integrable, then there is a
strongly measurable %-valued random variable . such that
| (@) — (@) || =0 as m— oo with probability 1, and in fact
e Fny1 <1 £ o} is an X-martingale.

Proof. As in the proof of Theorem 2, there is a separable sub-space
Y of %X, and for each n, z,(w) € Y for almost all w. Also P is reflexive,
80 therefore 9** is separable, which implies that 9* is separable. Now
E{llx, |} = E{l|z,|}} £ -+ = E{|| %, I} = +-+ since {|x, ]|, Znn=1}is a
semi-martingale. Therefore lim, .. E{||z,||} =K < o, while lim, .. E{| f (z,)} =
lim,_. ||| E{]|«. |} = ||f]| K. But the uniform integrability of the
|, ||’s makes K < o (Doob [1] Theorem 4.1, p. 319). Theorem 1 tells

us that there is a y.. such that |||#,|] — ¥.]| — 0 as n— o with prob-
ability 1, and such that {y,, #,,1 < n =< o} is a real semi-martingale,
where y,(@) = ||z (®)|] and Y.(w) = lim,.. || 2. (®)]- In fact,

E{ly. — ||z, ||} =0 as n— . By Theorem 2, there is a strongly
measurable X-valued random variable z.. such that | f(z,(®)) — f (®.(®))|—0
as n— o with probability 1 for every fe 9*. Furthermore, if the
||, |]’s are uniformly integrable, then so are the f(z,)’s for every f € 9*
because, first of all,

(: 17 @) > M) & {or (@) 1| > 2}
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if ||fIl<0. (If ||fll =0, then trivially the f(x,)’s are uniformly
integrable.) Thus

| F@@)|dP = | | (o)) | 4P

X(«»:uun(mnw) (@] 1zp (@) [I>HM/11r1}

< 11711 l2u(@) (| dP—0
{w: 1z () 11> 2/11711}
uniformly in n as M — o .

By the uniform integrability of the || «,||’s, thus proving the uniform
integrability of the f(x,)’s for every f € 9*. Hence {f(2,), Fn, 1 =1 < o}
is a real martingale for every f e 9* by Doob ([1] Theorem 4.1, p. 319).

Next, x. is strongly measurable (in fact, relative to #.) by Theorem
2. Furthermore, F{||%. |} < o, for, «, — x. weakly with probability 1.
Hence || 2.(w) ]| = lim,, .. inf || 2, (®) || for almost all w. But the right
hand side equals y..(w) with probability 1 by Theorem 1. Thus || z.(®) || <
y.(w) a.e. Since y. is integrable, so is || . ||; hence, by Theorem 8.7.4
of Hille-Phillips ([9] p. 80), x.. is Bochner integrable. Thus, by Theorem
2.2 of Chapter III, {x,, %, 1 <mn =< »} is an X-martingale. Then
1%, ll, Fny1 £ < o} is a semi-martingale by Theorem 3.4 of Chapter
III. But sois {|[. ][], =<, || @a]l, ++*, Y} relative to F, +++, Fp, *++, Fu

We now show that || «.. || = y. with probability 1. We have already
shown E{l|x. |} < Efy.}. But E{|z,|} = E{|w. ||} since {|z,]l, 7, 1 <
n = oo} is a semi-martingale, and since EY{||z, ||} — E{y.} by Theorem 1,
we have F{y.} =< E{||z.||}. Hence, E{|z.|} = E{y.}. But ||z.(w)]|| =
Y.(w) for almost all @. Therefore by Theorem B of Halmos ([8] p. 104),
1] (@) || = Yo(w) for almost all w, and ||z (®)]|] — || v.(®)]|] with prob-
ability 1, even as x, — x.. weakly with probability 1. Next, let £e 9.
‘Then {z, — &, #,, n» = 1} is an X-martingale, for

E{w, — E| Fp} = E{,| Fnt — E{E| F,} with probability 1 by Theorem
2.2 of Chapter II
=2, — & with probability 1, since
{€,, Fnyn = 1} is an X-martin-
gale, and by Theorem 2.2 of
Chapter II.

Now by what we have already proved in this theorem, since the
|2, — E|’s are clearly uniformly integrable, there is a . such that
f(z, — & — f(u.) with probability 1 for every f e 9* and || z,(w) — &|| —
u.(®) with probability 1. But [z (@) — &] = f(x(®)) — f(&) —
f(@(w) — f (&) = flz(w) — E] as m— oo with probability 1. Thus
U(®) = x.(w) — & with probability 1. Hence || z,(®) — &|| — || z.(®) — &]|
with probability 1. Let {£} be a denumerable dense set in §). Then
‘there is a 4, such that P{4,} =0 and || z,(®) — &, || — || x.(®) — &, ]| for
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we Q2 —4,, Let 4=U,4,, Then P{4} =0. Let we 2 — 4, and
define R,(&) = || z.(w) — €| for £ € Y. The R,’s form an equicontinuous
sequence of functions on 9, for given ¢ > 0, 38 = ¢, such that for every

n, || € — 7] < 8= e implies | Ry(&) — Ru()) | = | | 2(0) — & || — || z(@) — 7] | =
[|E — || <e. Furthermore, since w € 2 — 4, for every j,

| Ba(§)) — [[@a(@) — &l | = | [|@a(@) — &[] — || 2(@) — &[> 0asn— oo

But, as an equicontinuous sequence of functions converging on a dense
set of a metric space converges on the whole space, thus for every
£e 9, | RE) — || za(@) — £l | = ||| #a(@) — & | — |[@ul@) — [ |—0 @S —
for every w € 2 — A. Now, for w ¢ 4, let £ = x..(w). Then || 2,(0) — 2.(w) || —
[| #o(®) — Zo(w) || = 0. Thus there is a measurable set 4 such that P{4} =

and such that for w € 2 — 4, ||z, (®) — z.(®)||— 0 as n— . Q.E.D.

COROLLARY 2. If X is a Hilbert space, or 17, or L*, 1 < p < oo, and
{Xny Fmy n = 1} 18 an X-martingale in which the || z,|’s are uniformly
integrable, then there is an x.. such that {x,, Z,,1 <n < «} is an %-
martingale, and || 2, (@) — (@) ]| — 0 as n— o with probability 1.

Proof. All of the above named Banach spaces are reflexive, and
thus the result follows from Theorem 3.

REMARK. Let X be a Banach space with a partial order induced
by a positive cone. Suppose {z,, %, n =1} is an ZX-semi-martingale.
Then, as in Doob ([1] p. 297), =, can be represented in the form

n
xn-:x;,-l—j_zlzl,,

where 4, = 6; 4, = £{x;| F1-} — ;.. = 6,7 > 1; and {x,, F,, n =1} is
an ZX-martingale. Thus convergence problems for Z%-semi-martingales
can be reduced to convergence of X-martingales if reasonable conditions
can be found for the convergence of the monotone sequence y, = >, 4,.

THEOREM 4. Let {x,, Z,, n = —1} be an X-martingale in which X
s reflexive, and let F ﬂ Fne Then x_., exists, such that
[| 2. (w) — 2_o(®) || = 0 a8 n — — oo with probability 1, and {x,, F,, —o <
n = —1} 18 an X-martingale.

Proof. {l|x.ll, Zn n = —1} is a real semi-martingale; thus by Doob
([1] Theorem 4.25, p. 329) lim,_ .. || z,(w) || = y_.. exists with probability
1, and — £ ¥Y_. < o, while {||®,||, Fn, —c0 <n < —1} is a semi-
martingale. By Theorem 4.2 of Doob ([1] p. 328) lim,__.f(x,) exists
for almost all ® and every f e ¥*. Using the methods of Theorem 2,
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we can show that there is an «_. such that f(x,(®))— f(z_.(w)) as
n — —oo for almost all w and all f. Using the methods of Theorem 3,
we show that {x,, %, —o <n < —1} is an ZX-martingale, and that
|%-w|] = Y- and ||z, (@) — z_.(w)||— 0 as n — — oo with probability 1.
Q.E.D.

THEOREM 5. Let z be a strongly measurable random wvariable, X
reflexive, with E{|z||} < oo; let o0 F, S e+ & FH S +0o S -0 &
Ty S +++ be Borel fields of measurable Q sets. Let F .. = Npe-w Fn»
be the smallest Borel field of 2 sets with 7.2 Up—w. Then
lim,, .&{&| 7.} = €| 7.}, and lim,.. & {z| 7} = £{z| F.} with
probability 1.

Proof. Let x,=&{&| Fp}, —© <n < . Then {x,, F,, — =
n < oo} is an X-martingale by Example 2.1 of Chapter III. Thus by
Theorem 4, lim,. . &{z| 7} =&{| F.}. Next, {||%,]|, Fn, —c0 =
n < o} is a real semi-martingale, with a last term in which all the
random variables are nonnegative. Thus by Theorem 3.1 of Doob ([1]
p. 311) the ||z, ||’s are uniformly integrable. Hence by Theorem 3, there
is a y such that ||z,(®w) — y(®)||—0 as m— o for almost all w and
{,,1 =m < o,y} is an ZX-martingale. We finally must show that
Z.(w) = y(w) with probability 1. But this is true for both x.. and y are
equal almost everywhere to functions measurable relative to .Z.. Also

SAxw(w)dP - SAg{z | ZoN@)dP = SAz(a))dP for Ae .- and SAy(a))dP -

SAxn(a))dP = SAg{z | ZuHw) dP = SAz(a))dP for every 4 € %, and thus for
every 4 e, ¥, Hence S Y(w)d P = g T(w)dP for every A c Un Fu;
thus, S Fy(@)dP = S F@(@)dP for every Ac U, .7, and f e X*. But
these inAtegrals define Acompletely additive set functions of Z. sets which
are identical on the fields U, .#, and therefore identical on & (Doob
[1] Theorem 2.1, p. 605). Thus Sy(w)dP: S z.dP for every Ae 7.
Hence y(w) = x.(w) with probabililtl;y 1 and lirﬁln_m S{e| Fy = {2 F}
with probability 1. Q.E.D.

COROLLARY 3. Let z be a strongly measurable random wvariable,
with E{||z ||} < o and let y,, ¥y, -+ be strongly measurable. Let &,
be the smallest Borel field with respect to which y,, Yn, +++ are strongly
measurable. Then lim,..&{z| %} = {1 Ni ), lim,... {2 | 5 =
w{z| .} where 27 1is the smallest Borel field relative to which
Yi» Yy =+ *, Y are strongly measurable, 57 the smallest Borel field con-
taining U=, 72,

Proof. In Theorem 5, let &2 = &, and 54 = &,. Q.E.D.
Using this corollary it is possible to get a proof of the Banach space
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version of the strong law of large numbers. In fact, such a proof is
virtually along the lines outlined in Doob ([1] p. 841). Mourier [13] has

proved an ergodic theorem, more general than this one, by a more
direct approach.

ExAMPLE 1. Let ¥ =1%,1< p < o (real I?). Then
#@) = EP(@), -+, E7(@), +++) where 3 |E7@)] < e,
and
lew@ | = {S 1 g7@ P} .

If z, is Bochner integrable, then its integral satisfies the equation

[ on@ar={| gr@ap, -, | g @ap, .-}

where the components are ordinary Lebesgue integrals; thus the com-
ponents of x, are real-valued Lebesgue integrable functions.
The martingale equality becomes

{SAS{n)(w)dP, vee, S;’W(w)dp’ }
:{SAfim)(w)dP, o, SA W@)AP, -}, m < m, A e FoC T,

or, alternatively,
S EM(0)dP = g Em@)AP,m < m, Ade o C Frfor j=1,2 .
A 4

Thus for every j, {§, %, n = 1} is a real martingale, which can also
be seen by noticing that the mapping from an I? vector to any of its
components is a linear functional. Then if

E(lal} = | {S1g7@P) P K< o,

by Theorem 2 there is an x(w) = {£,(®), +++, &(w), +++} € I? such that for
every 1) = (7, +++, Ny +++) €14 1p + 1/g = 1, 37, PEM (@) — 352, 7,E(@)
as n— oo for almost all . Note that the boundedness assumption on the
E{||z||}’s implies boundedness for E{| &™ |'’s for every j; thus we could
get convergence in each component by the ordinary martingale convergence
theorems.
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Finally, if the ||z, |’s are uniformly integrable, that is, if

[ Eig@r] aP—o

A
uniformly in n as K— oo, 4, = {0: [>52, | E(w) |?]"* > K}. We can get
by the ordinary martingale convergence theorem that S E(w)dP =
A

S "w)dP for 4 e #,,n =1 for every j.
A

However, we get more by Theorem 3, namely, >\, | §}(®) — E(w) > — 0
‘with probability 1 asn — <o, and also, of course 3.7, | E/(w) |*— 3352, | Ew) |
with probability 1 as n — . '

ExXAMPLE 2. Let X = L?(I), where I is the closed unit interval
with Lebesgue measure, p>1. Then x,(w) =g,(t, ®) where S |9t w)|PdE < oo
2

Now if z,(w) is strongly measurable relative to .&,, there is a represent-
ation g,(t, w) which is measurable over 2 x I such that g,(-, ®) = z,(w)
in LI) a.e. in £, and any two representations of x,(.) differ over
2 x I on at most a set of measure zero. (Dunford-Pettis [4] Theorem

1.3.2, p. 336).
If x,(-) is Bochner integrable, then besides being strongly measur-

able, Sgllxn(w)l|dP< o.
Thus

1/
{10t 0) pat} 7 ap = | jlo@1aP < .
2 I 2
Hence
1/p
1{{outt @) 1at}ar = | {{ 10.t, @) pat} " aP <
by the Holder Inequality. Therefore, by the Fubini Theorem,
S S g.(t, @)dt dP = S S g.(t, @)dPdt
RJ)r I1Je
and
S {S x,,(w)dp}(t)dt - S S 2, (@)(t)dt dP
I 2 2J)r
- S S ga(t, w)dt dP = S S g.(t, @)dPdt .
Q)1 )2
Hence

{Sg”"(“’)dp }(t) = gggn(t, ®)dP
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for almost all ¢.

If {x,, ., n =1} is an L*-martingale, then SAxn(a))dP: Lxm(a))dP’
for 4 e &, m<mn, ie., S 9., w)dP = g In(t, @)d P for almost all ¢, and
Ade Z,,m<n. Hence, ff)r almost all tAe I (Lebesgue measure) if &,
is generated by countably many sets, {g.(, *), Zn, % = 1} is a real marting-

ale.
Next, if

B{lo.l} = [ [ oatt, o)t "aP s K < oo,

there is an x(w) = g(t, w) e L*(I), S | g(t, w) |?dt < ~ by Theorem 2 such
that § h(t)g,(t, w)dt — S h()g(t, w)di as m— oo with probability 1 for
every he Le(I), 1/p + 17(1 =1

Furthermore, by Theorem 3, if the ||x,]||’s are uniformly integrable,
then S | gu(t, @) [7dt — S | g(¢, @) |?dt as m— oo with probability 1, and even
better,I S | 9.(t, @) — g(t: ) |’dt — 0 as n — o with probability 1.

The uniform integrability condition says that

Ssz[S,l 9.(t, @) |”dt]1/pdp__, 0

uniformly in » as N— oo,

{w: [SJ 0.(t, ®) [pdt]”" > N} — 4,

This implies uniform integrability of the random variables in the real
martingales {g,(¢, +), #,, n = 1}. Thus for almost all {, we can apply
the ordinary Doob martingale theorems, and thus get convergence
theorems in each coordinate.

The functions g,(t, @) as functions of ¢ might, as a further illustra-
tion, be sample functions of a sequence of measurable stochastic proc-
esses (Doob [1] p. 60) with the property of being absolutely integrable
over 2 x I.

ExavpLE 3. We have seen in Example 2.2 of Chapter III that if
{95, 5 = 1} are mutually independent, as X-valued random variables, with
Z{y;} =0 for j > 1, and & is the smallest Borel field relative to which
Yy, *++,Y; are -all strongly measurable, and if z,= 37",y, then
{0y Fn,n=1}is an X-martingale. Theorem 2 tells us that if lim,,_... E{||x,|[}=
K < o, then >3, f(y,(w)) converges with probability 1. If, further, the

|| #,||’s are uniformly integrable, then by Theorem 8, S5, y,(w) converges
with probability 1.
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Examples 1 and 2 above illustrate an important point. It is clear
from them that an [?-martingale is really a countable collection of one-
dimensional martingales, while an L*-martingale is a non-denumerable
collection of ordinary real martingales. Thus, it is possible to prove
convergence theorems for I? or L? by first proving convergence in each
coordinate, using the Doob theorems on convergence of ordinary martin-
gales. One could prove the convergence theorem for abstract Hilbert
space by first proving the theorem for I* in each coordinate and then
using the fact that there is a one-to-one linear norm preserving trans-
formation between [* and abstract Hilbert space. In fact, one could
prove convergence theorems for any ZX-martingale in which ¥ is a
function space or a coordinate space by first proving martingale conver-
gence theorems in each coordinate.

Let {&,t € I =0, 1]} be a separable Brownian motion process (Doob
[1] p. 52, p. 392). Then there is a measurable set 2, C 2, such that
P{Q — 92} =0, and such that for w e 2, &,(w) is a continuous function
of t e I. Let z(w) = &(w) = g(t, ). Then 2(-): 2 — C(I), the continuous
function space on the unit interval, and || z(®) || = supse; | 9(t, ®)|.

We next show that x(-) is strongly measurable. Let f € ¥* = C(I)*.
Then there is a function of bounded variation F' such that f(x(w)) =

| gt 0)ar

= lim > 9(u,, O)[F(t) — F(t;-)]
max|tj—z:j_.1{—>0 J=1
where 0 =¢, <t < -++ <t,=1 and ¢t,, <wu,<t;, But each sum is
clearly measurable in w, so the limit must be too. Thus x(-) is weakly
measurable, but since C(I) is separable, this is equivalent to strong
measurability of x.

To show that x(.) is Bochner integrable, we need only show that
E{]|z|]} < oo, for «(-) is strongly measurable. To this end, let & =0
with probability 1, and let A{w) = || x(w) || = sup,e; | 9, @) |.

Then

—n2/202

Plo: ho) = n} =21/ 2
n' x
(Doob [1] p. 392) Thus
oo O —n2/202
S Plw: k(o) = n} < ol/gzle g < o .
n=1 T n=17

Hence, E{||x|]} < o, and x(-) the sample function of a separable
Brownian motion process is Bochner integrable.
Let & Dbe the Borel field of 2 sets generated by &, &, &; . % the
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Borel field generated by &, &, £y Esss £, and in general &, the Borel
field generated by &, &, ++ ¢, Emym, & Then s, C F C oo0 © F, C oo
Let f.(t)(w) = E{&, | Z (). Lévy ([11]) p. 18) has shown that f,(t)(w)
is a polygonal line function of ¢ for almost all w, and that | f,.(t)(w) — &, (w)| —
0 as n— oo uniformly in ¢ for almost all w. If we let y.(w) =
fal)w) e C(I) for we 2, then {y,, F,n =1} is a C(I)-martingale.
Lévy’s result does not as yet come out of our work because C(I) is not
reflexive.

The validity of the Martingale Convergence Theorem for non-reflexive
spaces is not known to the author. In fact, various, attempts in proving
it have failed. If it were established, then further interesting examples.
like the last one for important non-reflexive spaces, e.g., L' or [I', could
be given.
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